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Identification and validation of circulating biomarkers for detection of liver 
cancer with antibody array 

Shuangzhe ZHANG1,2,3,#, Chunhui GAO4,#, Qi ZHOU5,6,#, Lipai CHEN4,#, Wei HUANG1, Gordon Fan HUANG7, Hao TANG1,7, Xuedong SONG1, Zhuo ZHANG1, 
Kelly WHITTAKER7, Xiaofeng CHEN3,8,9, Ruo-Pan HUANG1,2,7,* 

1Raybiotech Co., Ltd., Guangzhou, Guangdong, China; 2South China Biochip Research Center, Guangzhou, Guangdong, China; 3Department of 
Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China; 
4Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China; 5Department of Liver Surgery, The 
First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong China; 6Department of General Surgery, Hui Ya Hospital of The 
First Affiliated Hospital Sun Yat-Sen University, Huizhou, Guangdong, China; 7RayBiotech Life Inc., Peachtree Corners, Georgia, United States; 
8National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Centre, Guangzhou, 
Guangdong, China; 9Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 
Higher Education Mega Centre, Guangzhou, Guangdong, China 

*Correspondence: rhuang@raybiotech.com 
#Contributed equally to this work.
 
Received June 6, 2022 / Accepted December 9, 2022

The aim of this study was to find new protein biomarkers that could be used to detect hepatocellular carcinoma (HCC) 
in the serum. We identified 11 proteins in the tissue that could be used to classify samples from HCC and control subjects. 
The 11 identified tissue biomarkers were combined with 10 commonly used serum HCC biomarkers for further verification 
in a large number of serum samples from HCC patients and healthy controls. 17 of the 21 prospective serum biomarkers 
were determined to be differentially expressed through collinearity and significance analysis. Through the method of 
supervised learning, a random forest model was constructed to reduce the dimensionality of the number of differentially 
expressed proteins, and finally, 4 differentially expressed proteins were identified: AFP, GDF15, CEACAM-1, and MMP-9, 
and suggested to have potential application in clinical diagnosis of HCC. 
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Hepatocellular carcinoma (HCC) is the 5th most common 
cancer, but the 3rd leading cause of cancer death globally 
with approximately 700,000 fatalities annually [1, 2]. HCC 
ranks as the 2nd most malignant tumor in China, accounting 
for about 55% of global HCC cases. The high mortality of 
HCC is always closely associated with late detection. The 
onset of HCC is often not accompanied by obvious clinical 
symptoms, and it is often difficult for patients to detect it at 
an early stage [3]. Most patients with HCC are already in the 
middle and advanced stages when they are diagnosed.

The current clinical main methods for the detection of 
HCC are magnetic resonance imaging (MRI) [4], ultra-
sound (US) [5], and computed tomography (CT) [6] scans to 
detect lesions [7]. In contrast with these detection methods, 
biomarkers from peripheral blood are a widely accepted 
new way to detect primary HCC and its metastases. The 
liver secretes many proteins into the blood, allowing for a 

non-invasive collection of proteins for analysis. Peripheral 
blood biomarker detection has the additional advantages 
of convenience and low cost compared to the commonly 
used imaging methods. Various proteomic methodologies 
have been proposed to identify proteins that are altered in 
the serum of those with HCC. Using such methods, proteins 
such as peroxiredoxin 3, osteopontin, and alpha-fetoprotein 
(AFP) have been identified as potential markers of HCC [8], 
with upregulation of these proteins observed in HCC patient 
samples compared to healthy individuals or those with liver 
disease [9]. AFP lacks the specificity and sensitivity to stand 
alone as a powerful biomarker. However, AFP combined 
with US screening significantly increased the sensitivity of 
US screens [10] and now becomes one of the most widely 
used screening methods for HCC. Another serum protein 
that has shown potential as a biomarker is des-gamma 
carboxyprothrombin (DCP) [11], and studies suggest it to 
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be a more powerful biomarker than AFP for larger tumors 
as well as those arising from viral etiology. Recent experi-
ments have begun to utilize combinations of protein markers 
to create more sensitive biomarker panels, for example 
combining AFP with another serum protein, fibronectin 1 
[12]. This multi-marker panel approach illustrates that detec-
tion performance can be improved by integrating separately 
characterized protein biomarkers. 60–70% of patients with 
primary liver cancer have elevated AFP levels, as well as 
testicular cancer, ovarian tumors, pancreatic cancer, gastric 
cancer, bowel cancer, and lung cancer. Therefore, it is critical 
to developing novel protein biomarkers to match the applica-
tion of AFP. It can be divided into two cases, one is that when 
AFP is not expressed, the novel biomarkers can detect the 
occurrence and development of liver cancer, and the other is 
that when AFP is present, the novel biomarkers are needed to 
rule out other cancers mentioned above. In order to identify 
novel and effective biomarkers, we first screened out differ-
ential proteins from tissue biomarkers. Since the differen-
tial protein in the tissue does not mean that it will enter the 
peripheral blood and can be detected, therefore, we screened 
the differential protein in the tissue and then verified it in the 
serum to achieve real-time non-invasive detection [13, 14].

At present, partial surgical resection and liver transplan-
tation are the main methods of radical treatment for HCC, 
but the recurrence rate still reaches 50–70% after 5 years. The 
5-year survival rate for primary HCC patients diagnosed at 
advanced stages is less than 5%, while for those diagnosed 
at early stages, the survival rate can reach 70–80%, which 
highlights the importance of early detection to improve the 
overall survival. Besides, cancer metastasis is now recog-
nized as a process of interaction between tumor cells and the 
host microenvironment, which can affect tumor biology and 
promote or inhibit tumor cell colonization in target organs. 
With the emergence of high-throughput research methods 
such as microarray technology, a large number of molecules, 
gene expression profiles, and signaling pathways derived from 
the microenvironment and involved in the specific metastasis 
of tumor organs have been discovered. Early detection and 
identification are important for monitoring and preventing 
the occurrence of tumor metastasis. Currently, there is a lack 
of an effective biomarker or biomarker panel for early detec-
tion of HCC, metastasis, and prognosis. Therefore, finding 
new biomarkers for HCC will be of great value [15].

Patients and methods

Patient samples of tissues and sera. The patients’ samples 
were collected at the Department of Surgery, The First Affili-
ated Hospital, Sun Yat-Sen University as described in the 
previous publication [16]. HCC tissue and para-cancerous 
tissue were obtained from 25 patients (Table 1). In addition, 
serum samples from 76 HCC patients and 120 controls (80 
healthy, 10 esophageal cancer, 10 lung cancer, and 20 gastric 
cancer) were obtained for validation (Table 2). The detection 

of HCC was determined pathologically and immunohisto-
chemically according to the WHO classification. Prior to 
the collection of patient information and serum samples for 
analysis, written informed consent was obtained from each 
participant, and this study was approved by the institutional 
ethics committee of Sun Yat-Sen University.

Screening of candidate biomarkers. A total of 25 HCC 
tissues and 25 para-cancerous tissues of 25 patients were 
subjected to RayBiotech antibody array AAH-CYT-G4000 
with 274 secreted proteins for the candidate biomarker 
screening. This array is printed on a glass slide and is essen-
tially a semi-quantitative, high-throughput sandwich-based 
ELISA. Each capture antibody was printed in duplicate on 
the glass for detection. All sample handling and microarray 
assays were performed in accordance with the operating 
instructions.

Tissue samples were cut into 1–3 mm3 pieces, 500 μl of 
tissue lysis buffer was added and a homogenizer was used 
for tissue lysis. 100 μl blocking buffer was added into each 
well and incubated at room temperature for 30 min to block 
slides. Arrays were incubated with samples at room tempera-
ture for 2 h. After washing, the arrays were incubated with 
a biotinylated antibody cocktail for 2 h at room tempera-
ture. After washing, Cy3 equivalent dye-streptavidin was 
added, and the fluorescent signal was visualized using a laser 
scanner equipped with a Cy3 wavelength (green channel) 
(InnoScan 300 Microarray Scanner, Innopsys, France). The 
data were normalized using the RayBiotech analysis tool, an 
array-specific, Excel-based program that performs sophisti-
cated data analysis on the raw numerical data extracted from 
the array scan.

Serum samples from 76 HCC patients and 120 controls 
were diluted 2-fold and loaded on the array directly. A 
custom antibody array was developed for the detection of 
21 proteins (11 proteins with significant differences screened 
from HCC tissues and 10 common HCC serum biomarkers 
reported in the literature). The subsequent experimental 
steps are the same as the antibody array utilized for the tissue 
sample indicated above.

Model construction. Four different models (LR, LDA, RF, 
and SVM) were trained with R package ‘caret’. The data set 
(76 HCC samples, 120 controls) was split into two subsets 
at a ratio of 4:1. The larger (4/5) subset was used for model 
training, while the smaller one (1/5) served as test/validating 
samples. The 4 models were trained using a scheme of 
4-fold cross-validation with 5 repeats. The performance of 
these models was evaluated by accuracy and kappa values 
from cross-validation during model training, and the AUC 
analysis on model prediction in the test dataset.

Statistical analysis. The concentration of all tested 
samples was calculated using a linear regression curve fitted 
to the standard data points. A t-test in SPSS 20.0 was used to 
analyze the protein level differences between HCC patients 
and healthy volunteers. The sensitivity and specificity of all 
biomarkers for HCC detection were evaluated by receiver 
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operating characteristic (ROC) curves and areas under the 
curves (AUC) with a 95% confidence interval (CI). The 
comparison ROC was conducted by GraphPad (version 
8.0). The best cut-off value for detection was determined 
by maximizing the specificity and sensitivity at a 95% CI. A 
two-tailed p-value less than 0.05 was considered significant. 
All figures were generated using GraphPad Prism version 8.0 
for Windows.

Results

The antibody array identified 11 candidate biomarkers 
in HCC. An antibody array AAH-CYT-G4000 was used to 
detect the expression levels of 274 proteins in the cancer 
tissues and para-cancer tissues of a cohort of 25 HCC 
patients (Figure 1). SAM (Significant Analysis of Micro-
array, FDR <5%) resulted in 69 differential proteins between 
HCC tissues and para-cancerous tissues, of which 15 were 
upregulated and 54 were downregulated (Supplementary 
Table S1). A Wilcoxon test (p<0.05) found 76 proteins were 
significantly differentially expressed in HCC tissues and 
para-cancer tissues, of which 12 were upregulated and 64 
were downregulated (Supplementary Table S2). A paired 
t-test (p<0.05) yielded 67 differentially expressed proteins, 
of which 13 were upregulated and 54 were downregulated 
(Supplementary Table S3). Adding the condition |d-score| >3 
in SAM and intersecting with the results of the Wilcoxon and 
paired t-test, 33 differentially expressed proteins were identi-
fied, of which 4 were upregulated and 29 were downregulated 
(Supplementary Table S4, Figure 2A).

A cluster analysis of the 33 differentially expressed 
proteins indicated that the classification accuracy was about 
82% (Figure 2B). The volcano plot shows 11 proteins with 
differential expression based on the Bonferroni cutoff: 
p-value <0.00018, log2

FC >1 (Figure 2C). Compared to the 
control group, there were 4 upregulated and 7 downregulated 
proteins, including CEACAM-1 (carcinoembryonic antigen 
related cell adhesion molecule 1), GDF15 (growth differen-
tiation factor 15), ACRP30 (Adiponectin), Nidogen-1, AXL 
(Tyrosine-protein kinase receptor UFO), FGF-9 (Fibro-
blast growth factor 9), Fas/TNFRSF6 (Apoptosis-mediating 
surface antigen FAS/Tumor necrosis factor receptor super-
family member 6), IGFBP-3 (Insulin-like growth factor-
binding protein 3), Fcγ RIIB/C (type IIB/C Fc receptor), 
MMP-9 (Matrix metalloproteinase 9), LYVE1 (lymphatic 
vessel endothelial hyaluronic acid receptor 1).

To elucidate the roles of 33 (intersection of three 
methods, Figure 2A) differentially expressed proteins in 
HCC patients, GO enrichment analysis was performed 
with a threshold of p<0.05. The analysis was classified into 
three functional groups: cellular components (Figure 3A), 
molecular functions (Figure 3B), and biological processes 
(Figure  3C). In the cellular component group, aberrantly 
expressed proteins were mainly enriched in the extracellular 
region and plasma membrane. In the molecular function 
group, cytokine activity, growth factor activity, extracellular 
matrix binding, and chemokine activity were the main areas 
of enrichment. The results indicate that differential proteins 
are mainly enriched in biological processes of positive 
regulation of cell proliferation, cell death, cell motion and 

Figure 1. Sample screening with semi-quantitative antibody array. 25 pairs of HCC and adjacent control tissue samples from HCC patients were 
screened using an antibody array (AAH-CYT-G4000). Changes in expression levels in 274 proteins, including growth factors, inflammation factors, 
angiogenesis, apoptosis factors, and adhesion molecules were examined.
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bladder cancer, and pathways in cancer (Figure 3D). The 
results of GO and KEGG enrichment analyses suggest that 
the differentially expressed proteins are closely related to cell 
apoptosis, cell growth, and cell adhesion.

Serum sample validation of 21 tumor markers and 
model construction. According to the protein marker 
screening results of the HCC tissues and adjacent tissues, 
we identified 11 differentially expressed proteins. To further 
identify more effective biomarkers in the detection of HCC, 
we combined the 11 differentially expressed proteins identi-
fied in the tissue samples with 10 commonly used serum 
biomarkers previously reported in the literature to verify 
with a large number of serum samples from normal healthy 
controls and HCC cancer patients. A total of 21 biomarkers 
(Table 3) were measured in 76 HCC patients and 120 
control samples (80 healthy, 10 esophageal cancer, 10 lung 
cancer, and 20 gastric cancer) using a custom antibody 
array (Raybiotech, Inc). 18 biomarkers showed signifi-
cant differential expression between the two groups (FDR 
<0.05, Table 3). The Yeo-Johnson transformation is an 

cytokine-mediated signaling pathway, and regulation of cell 
adhesion.

KEGG analysis further explored which signaling pathways 
are predominantly enriched in the differentially expressed 
proteins. According to KEGG enrichment analysis, the 
differentially expressed proteins were primarily enriched in 
cytokine-cytokine receptor interaction, autoimmune thyroid 
disease, JAK-STAT signaling pathway, allograft rejection, 

Table 1. Basic information of tissue samples from 25 HCC patients.
HCC (n=25)

Gender Male 21
Female 4

Age <55 15
≥55 10

BCLC stage A 18
B 2
C 5
D 0

Figure 2. Protein expression analysis of 25 patients. A) Venn diagram for three different statistical analysis methods (t-test, Wilcoxon test, and SAM). 
B) Heatmaps for hierarchical clustering were obtained from differential proteins in HCC patient tissues and para-cancerous tissues. Highly expressed 
proteins in the tumor are shown in red, and those with low expression are shown in green. C) Volcano plot visualizing and identifying significantly 
differentially expressed proteins according to their log FC (x-axis: FC: fold change) and significance (y-axis: -log10 adjusted p-value) in the HCC and 
control groups.
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extension of the Box-Cox transformation, which allows the 
transformation of data containing zero or negative values. 
All the following analyses, including model construc-
tion and collinearity analysis, were implemented with the 
transformed 21 biomarker values. Herein, we excluded 3 
biomarkers: Fcγ RIIB/C, VEGF, and SCCA1, that were not 
sufficiently different (FDR ≥0.05) and 1 biomarker that was 
highly collinear (TGF-β1, average R >0.7) (Figure 4) from 
the 21 biomarkers to facilitate subsequent model building 
with 17 differential proteins.

The 17 biomarkers: AFP, GDF-15, CEACAM-1, MMP-9, 
GP73, B2M, IGFBP-3, ACRP30, Ferritin, Axl, LYVE-1, 
Fas, DKK-1, HGF, IL-8, FGF-9, and Nidogen-1 were used 

to construct 4 different models, logistic regression (LR), 
linear discriminant analysis (LDA), random forest (RF), 
and support vector machine (SVM). The models trained 
with the 17 biomarkers demonstrated good performance 
(Figures 5A, 5B). Models were trained with a different 
number of biomarkers from 16 to 2. We found that the model 
performance with 4 biomarkers was as good as that of 17 
biomarkers (Figures 5C, 5D). The four models constructed 
with different numbers of protein biomarkers may have their 
own advantages in the prediction accuracy of the test set 
(Figure 5E). Therefore, multiple models were constructed 
and compared, rather than a single model, and the optimal 
model RF was selected.

Figure 3. Gene ontology and KEGG analyses in the differentially expressed proteins. p<0.05 was considered statistically significant. Gene ontology 
enrichment analysis includes three subtypes: cellular component (A), molecular function (B), and biological process (C). D) KEGG pathway enrich-
ments in the differentially expressed proteins.

Table 2. Basic information of serum samples from 76 HCC patients and 120 controls.

HCC
(n=76)

Control
(n=120)

Lung cancer
(n=10)

Esophageal cancer
(n=10)

Gastric cancer
(n=20)

Normal
(n=80)

Gender Male 69 9 6 16 53
Female 7 1 4 4 27

Age <55 39 2 0 5 53
≥55 37 8 10 15 27



LIVER CANCER PROTEIN BIOMARKER SCREENING BY ANTIBODY ARRAY 41

Figure 5A shows the ROC curves of the four 17-biomarker 
models using the training dataset. The accuracy and kappa 
values, which are used to evaluate the model built on the 
training dataset with the test dataset are shown in Figure 5B. 
The method of 17 protein biomarkers to assess HCC is still 
complex in practice, 17 is still a large number. Therefore, it is 
necessary to find protein biomarkers with a number smaller 
than 17 in the process of dimensionality reduction, while 
maintaining the accuracy of the classification and prediction 
of the model.

As the dimensionality reduction (reducing the biomarker 
number from 16 to 2) model construction proceeded, it was 
found that four protein markers: AFP, GDF-15, CEACAM-1, 
and MMP-9 could be well constructed for model building 
and still maintain high prediction accuracy (Figure 5E).

A comparison of the accuracy of the four models demon-
strated that RF is a method that can ensure high classifica-
tion accuracy of both the training dataset and the test dataset 
(Figures 5F, 5G). When 17 protein markers are modeled by 
RF, the accuracy of the training dataset and test dataset are 1 
and 0.949 (Table 4), respectively. The accuracy of the training 

Figure 4. Collinearity between the 21 biomarkers after Yeo-Johnson 
transformation.

Table 3. Comparison of expression levels of biomarkers between the control and HCC groups.
Variable Control HCC Statistic p-value FDR
AFP 1033.32 (78.65; 6018.6) 4457.6 (207.75; 11439.2) W=950 0 0
GDF-15 575.87 (164.96; 1980.85) 1479.86 (296.2; 2688.43) W=1255 0 0
CEACAM-1 1185.46 (341.5; 23978.71) 2271.04 (287.02; 10145.78) W=1650 0 0
MMP-9 4579.14 (0; 12715.81) 2002.07 (344.02; 7820.54) W=7503 0 0
GP73 6075.82 (530.93; 15963.3) 10287.03 (2651.19; 21120.25) W=1765 0 0
B2M 644.31 (291.56; 2377.27) 1152.6 (374.78; 2501) W=1818 0 0
IGFBP-3 51627.25 (6108.52; 97901.45) 65636.13 (20925.56; 174243.1) W=2381 0 0
ACRP30 3322.69 (159.75; 47097.56) 10871.04 (273.28; 189290.9) W=2736 0.0000008 0.0000021
Ferritin 3556.1 (4.25; 16876.18) 8175.08 (114.5; 25044.08) W=2713 0.0000018 0.0000043
Axl 5.78 (0; 3536.73) 10.72 (0.38; 72.54) W=2916 0.0000076 0.000016
LYVE-1 1540.6 (0; 3237.66) 2089.93 (887.84; 5868.59) W=2846 0.0000095 0.0000181
TGF-β1 1497.25 (0; 7339.73) 826.99 (0; 3478.18) W=6238 0.000077 0.0001348
Fas 10.86 (0.23; 1961.94) 16.2 (2.71; 1890.45) W=3210 0.0001916 0.0003095
DKK-1 53.92 (0; 3655.42) 26.03 (0; 639.7) W=6091.5 0.0003405 0.0005108
HGF 245.02 (77.68; 2083.29) 337.27 (64.13; 1888.87) W=3400 0.0011637 0.0016292
IL-8 67.89 (0; 341.43) 46.45 (0; 166.04) W=5874 0.0024508 0.0032167
FGF-9 80.69 (0; 1178.2) 65.83 (0; 441.59) W=5741 0.0070823 0.0087487
Nidogen-1 6018.17 (0.26; 14229.39) 6797.5 (1202.72; 15365.03) W=3713 0.0286917 0.0334737
SCCA1 346.79 (0; 18681.44) 306.56 (0; 1833.73) W=4982.5 0.4433278 0.4726889
VEGF 93.61 (10.25; 3746.45) 89.1 (2.74; 738.89) W=4978 0.4501799 0.4726889
Fcγ. RIIB/C 234.1 (0; 3535.17) 214.32 (0; 2066.69) W=4906.5 0.5662143 0.5662143

Table 4. Performance of 17-biomarker models using the training dataset.
17-biomarker models in training set 17-biomarker models in test set

threshold sensitivity specificity accuracy threshold sensitivity specificity accuracy
LR 0.375 0.967 0.948 0.955 LR 0.478 0.933 0.875 0.897
LDA 0.294 0.918 0.958 0.943 LDA 0.568 0.933 0.917 0.923
RF 0.483 1.000 1.000 1.000 RF 0.617 0.933 0.958 0.949
SVM 0.279 0.967 0.969 0.968 SVM 0.531 0.933 0.917 0.923
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Figure 5. Model building and biomarker dimensionality reduction. A) ROC curves of four 17-biomarker models using the training dataset. B) Cross-
validation accuracy and kappa values of the four 17-biomarker models. C) ROC curves of four 4-biomarker models using the training dataset. D) 
Cross-validation accuracy and kappa values of the four 4-biomarker models. E) Accuracy of the four models using different numbers of biomarkers. F) 
The 4-biomarker RF model prediction using the training dataset. G) The 4-biomarker RF model prediction using the test dataset.
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and test datasets is the same as the model for the four protein 
markers (Table 5). Therefore, we identified three novel 
protein biomarkers (GDF-15, CEACAM-1, and MMP-9) 
from HCC tissue that can be utilized non-invasively in serum 
in addition to the well-characterized AFP with high accuracy 
to differentiate HCC patients from controls.

Discussion

To identify effective biomarkers for HCC, 11 differentially 
expressed proteins were discovered in HCC tissues and para-
cancerous tissues of 25 HCC patients. Since the differentially 
expressed proteins found at the tissue level may not necessarily 
be different in serum, verification of a large number of serum 
samples is required. Therefore, 11 differential proteins found 
in tissues were combined with 10 protein markers commonly 
used in HCC serum detection reported in the literature and 
validated with a large number of serum samples.

Through the verification of serum samples, 4 protein 
biomarkers (AFP, GDF-15, CEACAM-1, and MMP-9) were 
finally selected, and HCC was well predicted in the test 
dataset by random forest. Among them, AFP is a commonly 
used clinical diagnostic biomarker for HCC. GDF-15 and 
CEACAM-1 were highly expressed and MMP-9 was weakly 
expressed in HCC patients compared to control patients. 
Wang et al. found that GDF15 is positively associated with 
the elevation of Treg cell frequencies in patients with HCC. 
The study also noted gene ablation of GDF15 in HCC can 
convert an immunosuppressive tumor microenvironment to 
an inflammatory state. Generation and function enhance-
ment of Treg cells induced by GDF15 is a new mechanism 
for HCC-related immunosuppression [17]. The expression of 
GDF15 was significantly upregulated in HCC cells exposed 
to chemotherapeutic agents. GDF15 from chemotherapy-
damaged HCC cells promoted the in vitro proliferation, migra-
tion, and tube formation of endothelial cells. The pro-angio-
genic effect of GDF15 was through the activation of Src and 
its downstream AKT, MAPK, and NF-κB signaling [18]. 
Serum GDF15 is positively related to the levels of PIVKA-II 
and AFP in patients with HCC and GDF15 is a potent serum 
marker for the detection of HBV-associated HCC. PIVKA-II 
combined with GDF15 was found to improve diagnostic 
accuracy for HBV-associated HCC [19]. GDF15 is a protein 
closely related to HCC and can be used in combination with 
other markers to improve diagnostic accuracy. CEACAM-1 

is a transmembrane glycoprotein and a member of the 
carcinoembryonic antigen family. CEACAM-1 expression 
was positively correlated with the expression of EMT-related 
factors and microvessel density of tumor tissues in HCC [20]. 
The mechanism of action of CEACAM-1 in tumors is not 
very clear, and it was thought to inhibit tumorigenesis in the 
early stage. However, some studies [20, 21] have shown that 
it promotes angiogenesis and lymphangiogenesis, thereby 
promoting tumor growth. Herein, the detected CEACAM-1 
level in the HCC tissue and serum was higher than that of the 
control group. MMP-9 is considered to be a matrix metal-
loproteinase closely related to tumor invasion and metastasis. 
A recent study found that the expression of MMP-9 in HCC 
has a certain relationship with tumor invasion and metastasis 
[22–24]. However, to date, the research on MMP-9 in HCC 
is relatively limited, and the mechanism is not very clear. It 
is possible that the interaction of MMP-9 with CD4+, CD8+, 
TNF-α, etc. may be one of the mechanisms affecting the 
invasion and metastasis of HCC. Most studies have shown 
that MMP-9 is overexpressed in HCC [25–29], but controver-
sially, our experimental results show that MMP-9 is decreased 
in both serum and tissue compared to healthy controls. Most 
of the selected samples may be in the A and B stages of 
BCLC staging and have not yet experienced metastasis and 
invasion, which may explain the downregulation of MMP-9 
in the HCC group. Further studies with additional samples 
at different stages would be required to determine the role of 
MMP-9 in HCC more clearly.

In conclusion, we found four protein biomarkers that can 
monitor HCC in serum. The combination of the four proteins 
can well avoid the problems that may arise when AFP is used 
alone as a diagnostic basis, and greatly improves the sensi-
tivity, specificity, and accuracy of HCC diagnosis, thus it is 
probably to be a powerful tool for the clinical diagnosis of 
HCC.

Supplementary information is available in the online version 
of the paper.

Table 5. Performance of 4-biomarker models using the training dataset.
4-biomarker models in training set 4-biomarker models in test set

threshold sensitivity specificity accuracy threshold sensitivity specificity accuracy
LR 0.382 0.902 0.938 0.924 LR 0.845 0.933 0.958 0.949
LDA 0.220 0.918 0.917 0.917 LDA 0.779 0.933 0.958 0.949
RF 0.502 1.000 1.000 1.000 RF 0.605 0.933 0.958 0.949
SVM 0.592 0.951 0.969 0.962 SVM 0.606 0.933 0.875 0.897
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Supplementary Table S1. 274 proteins of AAH-CYT-G4000.
4-1BB

ACE-2
Adiponectin

Activin A
Adipsin

(TNFRSF9/CD137) (ACRP30) (Complement Factor D)

AgRP
ALCAM

Alpha-fetoprotein Amphiregulin Angiogenin
(CD166)

Angiopoietin-1 Angiopoietin-2 ANGPTL4 Axl
CD80

Beta-2 Microglobulin BCAM
BCMA

BDNF
(B7-1) (TNFRSF17)

beta IG-H3 bFGF
BLC

BMP-4 BMP-5
(CXCL13)

BMP-6 BMP-7 beta-NGF
Betacellulin

CA125
(BTC)

CA15-3 CA19-9 CA9
Cardiotrophin-1

Cathepsin S
(CT-1)

HCC-1 6Ckine CCL28
CD14 CD23

(CCL14) (CCL21) (MEC)
CD30 CD40 CD40 Ligand

CEA CEACAM-1
(TNFRSF8) (TNFRSF5) (TNFSF5)
CK beta 8-1

CNTF Cripto-1
CRP CTACK

(CCL23) (C-Reactive Protein) (CCL27)
CXCL16 DAN Decorin DKK-1 Dkk-3

Dkk-4
CD26 DR6

Dtk E-Cadherin
(DPPIV) (TNFRSF21)

EDA-A2 EGF EGFR
EG-VEGF ENA-78
(PK1) (CXCL5)

Endoglin Eotaxin-1 Eotaxin-2 Eotaxin-3 TROP1
(CD105) (CCL11) (MPIF-2/CCL24) (CCL26) (EpCAM)

ErbB2 ErbB3 Erythropoietin R E-Selectin
Fas
(TNFRSF6/Apo-1)

Fas Ligand Fc gamma RIIB/C
Ferritin FGF-4 FGF-6

(TNFSF6) (CD32B/C)
FGF-7

FGF-9 Flt-3 Ligand FLRG Follistatin
(KGF)
Fractalkine

FSH Furin Galectin-7
GCP-2

(CX3CL1) (CXCL6)

GCSF GDF-15 GDNF
GITR GITR Ligand
(TNFRSF18) (TNFSF18)

GM-CSF GRO alpha/beta/gamma
GRO alpha

Growth Hormone HB-EGF
(CXCL1)

HCC-4
hCG intact HGF

HVEM I-309
(CCL16) (TNFRSF14) (TCA-3/CCL1)
ICAM-1 ICAM-2 ICAM-3

IFN-gamma IGFBP-1
(CD54) (CD102) (CD50)
IGFBP-2 IGFBP-3 IGFBP-4 IGFBP-6 IGF-1

IGF-1 R IGF-2 IL-1 R2
IL-1 R4

IL-1 R1
(ST2)
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IL-10 IL-10 R alpha IL-10 R beta IL-11 IL-12 p40
IL-12 p70 IL-13 IL-13 R alpha 2 IL-13 R1 IL-15
IL-16 IL-17A IL-17B IL-17C IL-17F

IL-17 RA IL-18 BP alpha
IL-18 R beta IL-1 alpha IL-1 beta
(AcPL) (IL-1 F1) (IL-1 F2)

IL-1 ra
IL-2

IL-2 R beta IL-2 R gamma
IL-2 R alpha

(IL-1 F3) (CD122) (Common gamma Chain)

IL-21 R IL-22
IL-28A IL-29

IL-3
(IFN-lambda 2) (IFN-lambda 1)

IL-31 IL-4 IL-5 IL-5 R alpha IL-6

IL-6 R IL-7
IL-8

IL-9 Insulin
(CXCL8)

IP-10 I-TAC
LAP/TGF beta 1 Leptin Leptin R

(CXCL10) (CXCL11)

LIF
Light

LIMPII
L-Selectin

Luteinizing hormone
(TNFSF14) (CD62L)

Lymphotactin
LYVE-1 Marapsin

MCP-1 MCP-2
(XCL1) (CCL2) (CCL8)
MCP-3 MCP-4

M-CSF M-CSF R
MDC

(MARC/CCL7) (CCL13) (CCL22)

MICA MICB MIF
MIG MIP-1 alpha
(CXCL9) (CCL3)

MIP-1 beta MIP-1 delta MIP-3 alpha MIP-3 beta
MMP-1

(CCL4) (CCL15) (CCL20) (CCL19)
MMP-10 MMP-13 MMP-2 MMP-3 MMP-7

MMP-8 MMP-9
MPIF-1

MSP alpha/beta
NAP-2

(CCL23) (PPBP/CXCL7)
NCAM-1 NGFR

Nidogen-1 NrCAM
NRG1-beta 1

(CD56) (TNFRSF16) (HRG1-beta 1)

NT-3 NT-4 Oncostatin M
Osteopontin Osteoprotegerin
(SPP1) (TNFRSF11B)

PAI-1
PARC

PDGF-AA PDGF R alpha PDGF R beta
(CCL18)

PDGF-AB PDGF-BB
PECAM-1

PLGF
Platelet factor 4

(CD31) (CXCL4)
Procalcitonin Prolactin PSA-free PSA-total RAGE
RANK RANTES

Resistin S100 B
SAA

(TNFRSF11A) (CCL5) (Serum Amyloid A)

SCF
SCF R SDF-1 alpha SDF-1 beta

gp130
(CD117/c-kit) (CXCL12 alpha) (CXCL12 beta)

Sonic Hedgehog N-
Terminal Siglec-5

Siglec-9
TNF RII TNF RI

(Shh-N) (CD170) (TNFRSF1B) (TNFRSF1A)

TACE
TARC TECK

TGF beta 2 TGF alpha
(CCL17) (CCL25)

TGF beta 3 TGF beta 1
Thrombopoietin

Thyroglobulin Tie-1
(TPO)

Tie-2
TIM-1

TIMP-1 TIMP-2 TIMP-4
(KIM-1)

TNF alpha
TNF beta TRAIL R2 TRAIL R3 TRAIL R4
(TNFSF1B) (TNFRSF10B/DR5) (TNFRSF10C) (TNFRSF10D)

Trappin-2 TREM-1 TSH TSLP Ubiquitin+1

uPAR
VCAM-1 VE-Cadherin

VEGF-A VEGFR2
(CD106) (CDH5)

VEGFR3 VEGF-C VEGF-D XEDAR

Supplementary Table S1. Continued . . .
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Supplementary Table S2. SAM (Significant Analysis of Microarray, FDR < 5%) screening of 69 differentially expressed proteins between HCC tissues 
and para-cancer tissues.
Protein d-score Protein d-score Protein d-score
Acrp30 4.040771312 Follistatin 2.017659974 I-TAC –2.642609461
Angiogenin 2.119673499 GCSF –3.152900461 LAP 1.425004374
Axl –2.25864129 GDF-15 3.360832432 LYVE-1 –7.524597203
BCAM 2.517766815 GDNF –1.769272479 MCP-4 –1.588191178
BDNF –2.258750686 GM-CSF –2.694724607 M-CSF –1.829620965
BMP-6 –1.824564228 HB-EGF –1.986716928 MIP-3-alpha –1.179841296
CD23 –1.418256489 hCGa, intact –3.107843916 MMP-10 –1.911451919
CD40 Ligand –2.97722624 HGF –2.034775196 MMP-7 –1.682205813
CEACAM-1 3.456695869 I-309 –2.53637464 MMP-9 –3.096942344
CK beta 8-1 –1.575450545 IFN-gamma –2.331008596 NGF R –1.962834504
CNTF –2.85163759 IGFBP-3 –2.602695507 Nidogen-1 5.260659198
CRP 1.842492184 IL-1 R4/ST2 –2.268898856 Osteopontin –1.857941272
DKK-3 –1.474679665 IL-10 –2.105873245 PAI-I 2.348633003
DPPIV 1.833307786 IL-13 –1.87026642 RANK –2.017881501
E-Cadherin –3.441371544 IL-13 R alpha1 –2.326993768 Resistin –2.091681873
EpCAM 2.188631011 IL-15 –2.2756541 Shh N –2.636357956
ErbB2 –2.177143026 IL-17B –1.452857553 Siglec-9 –1.39366937
ErbB3 2.071093038 IL-17R –2.816358916 TGF-beta 1 –2.151464751
Fas/TNFRSF6 –4.159939102 IL-2 –2.404221092 Thrombopoietin –2.089462051
Fcr RIIB/C –3.361004704 IL-2 Rapha –2.025754721 Thyroglobulin –2.004136217
Ferritin 1.765537687 IL-3 –2.762248395 TIMP-1 2.093905379
FGF-4 –1.732302617 IL-5 –1.087064232 Ubiquitin+1 –1.765059908
FGF-9 –2.391656413 IL-7 –1.904175188 VEGF-C –2.377831176

Supplementary Table S3. A Wilcoxon test (p < 0.05) screening of 76 differentially expressed proteins between HCC tissues and para-cancer tissues.

Protein Wilcoxon test Protein Wilcoxon test Protein Wilcoxon test Protein Wilcoxon test
Acrp30 0.001 FGF-4 0.008 IL-17B 0.011 Osteopontin 0.001
Axl 0.003 FGF-9 0.002 IL-17R 0 PAI-I 0.002
BCAM 0.008 Follistatin 0.002 IL-1alpha 0 PDGF-BB 0.031
BDNF 0.002 GCSF 0.002 IL-2 0.002 RANK 0.001
BMP-6 0.007 GDF-15 0.001 IL-2 Rapha 0.005 Resistin 0.005
CA19-9 0.026 GDNF 0.003 IL-3 0.001 Shh N 0.001
CD14 0.011 GM-CSF 0 IL-5 0.02 Siglec-9 0.019
CD23 0.006 GRO-alpha 0.004 IL-7 0.012 TGF-beta 1 0.004
CD40 Ligand 0.001 HB-EGF 0.007 I-TAC 0 Thrombopoietin 0.005
CEA 0.045 hCGa, intact 0 LYVE-1 0 Thyrobulin 0
CEACAM-1 0.001 HGF 0.04 MCP-4 0.048 TIM-1 0.004
CK beta 8-1 0.009 HVEM 0.037 M-CSF 0.015 TIMP-1 0.042
CNTF 0.001 I-309 0.001 MIG 0.026 TNF-alpha 0.012
DKK-3 0.009 IFN-gamma 0.005 MIP-3-alpha 0.034 Ubiquitin+1 0.001
DPPIV 0.04 IGFBP-3 0 MMP-10 0.001 VE-Cadherin 0.04
E-Cadherin 0 IL-1 R4/ST2 0.006 MMP-7 0.006 VEGF-C 0
ErbB2 0.004 IL-10 0.004 MMP-9 0.006
Fas/TNFRSF6 0.001 IL-13 0.012 NGF R 0.001
Fcr RIIB/C 0 IL-13 R alpha1 0.002 Nidogen-1 0
Ferritin 0.011 IL-15 0.002 Oncostatin M 0.002

LIVER CANCER PROTEIN BIOMARKER SCREENING BY ANTIBODY ARRAY - Supplemental Information
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Supplementary Table S4. A paired t-test (p<0.05) screening of 67 differentially expressed proteins between HCC tissues and para-cancer tissues.

HB-EGF 429.2490597 250.5054155 0.001488933
IL-13 R alpha1 580.5901513 339.6933758 0.000260814
hCGa, intact 876.8068873 518.2890513 0.000216336
CD40 Ligand 1005.531748 594.4613733 0.001940871
HGF 8355.707414 5002.170664 0.0403311
MMP-7 455.224252 273.2685353 0.009987108
Ubiquitin+1 331.1734193 201.4129275 0.001562813
IL-13 719.5378262 442.9891118 0.019008772
IL-15 871.6415525 547.4064262 0.004317489
ErbB2 658.6006479 414.3644436 0.002931434
IL-17R 777.9376056 493.1382936 0.015663125
Thyroglobulin 436.5635659 278.1804488 0.00027515
GM-CSF 1206.000712 770.7310689 0.001549253
IL-7 1111.538437 750.5630412 0.024138875
IL-17B 391.464719 270.8815847 0.013670341
TGF-beta 1 1118.413478 775.6240628 0.008405324
IL-10 931.781696 647.6302292 0.006498194
CD23 357.5499215 250.747118 0.006356876
DKK-3 470.651783 344.0706509 0.0237993
NGF R 630.261306 471.2715402 0.000788183
Angiopoietin-1 198.5782363 148.7715895 0.017357543
TIM-1 86.78018813 382.3287542 0.009079839
EpCAM 529.6611018 2291.461443 0.023592508
GDF-15 1509.1155 5463.53949 0.001945907
ErbB3 205.9762295 687.5797862 0.019713956
CEACAM-1 1031.037409 2809.533226 0.001192134
Follistatin 1873.946527 4645.614154 0.048619006
PAI-I 482.5540539 1145.362537 0.012017737
Acrp30 24506.68502 45559.3495 0.000725954
BCAM 728.8332415 1329.85711 0.005938727
Nidogen-1 6522.389135 10766.05042 1.08749E-05
TIMP-1 828.0197193 1359.009075 0.030160722
Ferritin 326.7858257 499.2970531 0.006684934
Angiogenin 31831.61648 41646.37015 0.042907819

Paracancer Tumor
Protein average average Paired t-test
IL-1 R4/ST2 336.0463779 16.21405293 0.010130448
FGF-4 218.2253411 10.72610617 0.00873652
TNF-alpha 285.8060271 22.10006402 0.013324349
BDNF 431.1836713 41.42291552 0.002182451
CNTF 607.550983 73.47477619 0.000499231
I-TAC 776.4091773 131.4170628 0.002546427
I-309 425.9986592 89.20665654 0.00070884
IL-2 Rapha 338.1192257 87.64886726 0.002069127
Axl 361.157938 95.08084452 0.000474427
FGF-9 424.9490706 124.2313417 0.001089075
LYVE-1 10246.19021 3030.320145 4.41758E-08
BMP-6 310.6391964 93.34137416 0.005631068
CK beta 8-1 247.5624468 74.83836633 0.01071304
Thrombopoietin 399.0638023 132.2249122 0.002556618
IFN-gamma 513.0922839 179.2616936 0.001871168
MIP-3-alpha 269.6051823 96.97236378 0.046586751
MMP-10 265.0196791 107.9712891 0.000692854
Fcr RIIB/C 749.1250958 306.7445268 6.48872E-05
M-CSF 565.9774313 241.7376153 0.022610864
MCP-4 322.4423751 138.2385031 0.034511498
RANK 244.3703889 105.6156763 0.000156861
IGFBP-3 461.9107766 216.1715687 0.000229518
VEGF-C 305.9857297 148.0722805 5.83362E-06
Osteopontin 302.619505 151.2018506 0.000678797
Fas/TNFRSF6 9651.481857 4911.800609 0.000201688
MMP-9 5700.035759 2901.863271 0.00349502
Shh N 585.9255253 298.4519793 0.000560887
GDNF 422.2124569 224.997724 0.009164448
IL-2 978.5719818 523.2021447 0.005372663
VE-Cadherin 257.2678994 140.5429311 0.04025829
GCSF 1794.817795 997.7916186 0.002043438
E-Cadherin 1255.62963 721.9167548 0.000332997
Resistin 555.8125734 322.8116698 0.00264719

Supplementary Table S5. Differentially expressed proteins of the intersection of 33 SAM (|d-score| >3), Wilcoxon and t-test results.

Protein Gene Wilcoxon paired t |d-score|>3 Protein Gene Wilcoxon paired t |d-score|>3
Acrp30 ADIPOQ 0.001 0.000725954 4.040771312 IGFBP-3 IGFBP3 0 0.000229518 –4.025513175
Axl AXL 0.003 0.000474427 –3.33310897 IL-13 R alpha1 IL13RA1 0.002 0.000260814 –3.419419264
CD40 Ligand CD40LG 0.001 0.001940871 –3.900368469 IL-17R IL17RA 0 0.015663125 –4.161035342
CEACAM-1 CEACAM1 0.001 0.001192134 3.456695869 I-TAC CXCL11 0 0.002546427 –3.139021677
CNTF CNTF 0.001 0.000499231 –3.520364411 LYVE-1 LYVE1 0 4.41758E-08 –7.524597203
E-Cadherin CDH1 0 0.000332997 –3.441371544 MMP-10 MMP10 0.001 0.000692854 –3.321856001
ErbB2 ERBB2 0.004 0.002931434 –3.07203438 MMP-9 MMP9 0.006 0.00349502 –3.096942344
Fas/TNFRSF6 FAS 0.001 0.000201688 –4.289788962 NGF R NGFR 0.001 0.000788183 –3.290269729
Fcr RIIB/C FCGR2B 0 6.48872E-05 –4.485951627 Nidogen-1 NID1 0 1.08749E-05 5.260659198
FGF-9 FGF9 0.002 0.001089075 –3.555722531 Osteopontin SPP1 0.001 0.000678797 –3.309735498
GCSF CSF3 0.002 0.002043438 –3.152900461 RANK TNFRSF11A 0.001 0.000156861 –3.660103122
GDF-15 GDF15 0.001 0.001945907 3.360832432 Resistin RETN 0.005 0.00264719 –3.049152962
GM-CSF CSF2RB 0 0.001549253 –3.378171995 Shh N SHH 0.001 0.000560887 –3.793116139
HB-EGF HBEGF 0.007 0.001488933 –3.119954508 Thyroglobulin TG 0 0.00027515 –3.380140756
hCGa, intact CGA 0 0.000216336 –3.107843916 Ubiquitin+1 UBA52 0.001 0.001562813 –3.132476113
I-309 CCL1 0.001 0.00070884 –3.422519102 VEGF-C VEGFC 0 5.83362E-06 –4.613277491
IFN-gamma IFNG 0.005 0.001871168 –3.032543676


