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Immunotherapy has improved the prognosis of patients with advanced non-small cell lung cancer (NSCLC), but only 
a small subset of patients achieved clinical benefit. The purpose of our study was to integrate multidimensional data using 
a machine learning method to predict the therapeutic efficacy of immune checkpoint inhibitors (ICIs) monotherapy 
in patients with advanced NSCLC. We retrospectively enrolled 112 patients with stage IIIB-IV NSCLC receiving ICIs 
monotherapy. The random forest (RF) algorithm was used to establish efficacy prediction models based on five different 
input datasets, including precontrast computed tomography (CT) radiomic data, postcontrast CT radiomic data, a combi-
nation of the two CT radiomic data, clinical data, and a combination of radiomic and clinical data. The 5-fold cross-
validation was used to train and test the random forest classifier. The performance of the models was assessed according 
to the area under the curve (AUC) in the receiver operating characteristic curve. Survival analysis was performed to 
determine the difference in progression-free survival (PFS) between the two groups with the prediction label generated 
by the combined model. The radiomic model based on the combination of precontrast and postcontrast CT radiomic 
features and the clinical model produced an AUC of 0.92±0.04 and 0.89±0.03, respectively. By integrating radiomic 
and clinical features together, the combined model had the best performance with an AUC of 0.94±0.02. The survival 
analysis showed that the two groups had significantly different PFS times (p<0.0001). The baseline multidimensional 
data including CT radiomic and multiple clinical features were valuable in predicting the efficacy of ICIs monotherapy 
in patients with advanced NSCLC. 
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Lung cancer is the most common cancer worldwide, 
seriously endangering human health and life, and non-small 
cell lung cancer (NSCLC) accounts for 85% of lung cancers. 
Multiple clinical trials [1, 2] have demonstrated that immune 
checkpoint inhibitors (ICIs), targeting the programmed 
death 1 (PD-1)/programmed death ligand 1 (PD-L1) 
signaling pathway, have significantly improved the survival 
benefit of patients with advanced NSCLC, and are recom-
mended by treatment guidelines for driver gene-negative 
advanced NSCLC [3]. However, only about 20% of patients 
with advanced NSCLC respond to ICIs monotherapy in an 
unselected population [4, 5]. Additionally, patients who do 
not respond to immunotherapy not only have expensive 

drug costs but also may suffer from serious immune adverse 
events. Therefore, it is crucial to identify potential beneficia-
ries of immunotherapy early.

PD-L1 expression is the most widely used and evidence-
based positive predictor of immunotherapy efficacy in 
NSCLC patients [6]. However, PD-L1 expression is contro-
versial in clinical practice, and the survival benefit can also be 
observed in the PD-L1 negative subgroup [4]. The expression 
of PD-L1 in tumors is spatially and temporally heterogeneous 
[7]. In addition, the tumor mutation burden (TMB) [8] is 
currently recognized as another immunotherapy biomarker 
for screening potential beneficiaries with some limitations 
in terms of inconsistent threshold, and high detection cost. 
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Therefore, it is necessary to identify inexpensive, noninva-
sive, and easily available biomarkers to predict the efficacy of 
immunotherapy.

Many previous studies [9–13] have demonstrated that 
CT radiomics can be used as a noninvasive imaging marker 
to predict the outcomes of immunotherapy for NSCLC. In 
addition, multiple clinical factors are considered to be related 
to the prognosis of immunotherapy, such as histologic type 
[14], liver metastasis [15], and some peripheral blood inflam-
matory indicators [16]. Yang et al. [9] combined CT radiomics 
and clinicopathological characteristics to predict the clinical 
outcome of immunotherapy in lung cancer patients, but the 
study cohort, which included monotherapy and immuno-
therapy in combination with chemotherapy, was heteroge-
neous. In fact, the efficacy mechanism of chemotherapy was 
completely different from that of immunotherapy. Some 
studies [10–13] predicted the efficacy of monotherapy but 
did not incorporate clinical factors into the analysis. Due to 
tumor heterogeneity and the complex anti-tumor mecha-
nism of immunotherapy, radiomics can only characterize the 
internal heterogeneity of tumor tissue, while multidimen-
sional source data can comprehensively evaluate the biolog-
ical behavior of the tumor and the physiological status of the 
body.

Moreover, the outcomes based on the persistence of the 
benefit time can more representatively reflect the real benefit 
of immunotherapy, eliminating patients with rare short-term 
reactions [17]. In clinical practice, the durable clinical benefit 
(DCB) is usually used to measure immunotherapy efficacy 
with a threshold of progression-free survival (PFS) lasting 
more than 6 months.

We hypothesize that the integration of multidimensional 
data including CT radiomics, demographic characteris-

tics, clinical characteristics, and peripheral blood indica-
tors using a machine learning method will be able to predict 
immunotherapy efficacy, which is DCB in our study. In 
order to identify advanced NSCLC patients who will benefit 
from immunotherapy itself, our study only enrolled patients 
treated with PD-1/PD-L1 monotherapy to decrease the 
heterogeneity of the study cohort. A flow chart of our study 
is shown in Figure 1.

Patients and methods

Patients. We retrospectively included 180 patients with 
pathologically confirmed NSCLC between January 2016 and 
September 2020 in Zhejiang Cancer Hospital. The inclu-
sion and exclusion diagrams are shown in Figure 2. The 
study ultimately enrolled 112 eligible patients. The Ethics 
Committee of Zhejiang Cancer Hospital approved this study 
(ethics approval number: IRB-2022-370). Written informed 
consent was waived by the Institutional Review Board due to 
the retrospective nature of the study.

Clinical features. We included a total of 20 clinical 
features, which were all previously reported to be associated 
with the prognosis of immunotherapy. The clinical features 
in our study included baseline demographic characteristics, 
clinical characteristics, and peripheral blood indicators, as 
follows:

The demographic and clinical characteristics included age 
[18], sex [19], body mass index (BMI, kg/m2) [20], smoking 
history [21], chronic obstructive pulmonary disease (COPD) 
[22], Eastern Cooperative Oncology Group (ECOG) score 
[23], histologic type [14], type of ICIs [24], therapy line [25], 
tumor stage [26], bone metastasis [27], brain metastasis [28], 
liver metastasis [15], and pleural effusion [29].

Figure 1. The flow chart of our study. The workflow includes radiomic features extraction, radiomic and clinical features selection, model construction, 
and model evaluation. Radiomic features extraction was carried out by manual segmentation based on precontrast CT and postcontrast CT images, 
respectively. The recursive feature elimination method was used to select 10 of the important radiomic features from precontrast and postcontrast 
radiomic data, respectively. Twenty clinical features related to efficacy were artificially selected. The random forest algorithm was used to establish 
prediction models, and 5-fold cross-validation was used to train and test the classifier. Finally, the performance of the models was evaluated by the 
receiver operating characteristic (ROC) curves and the calibration curves, and the progression-free survival (PFS) was analyzed using survival analysis.
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Laboratory data were obtained within 2 weeks prior to 
the first ICIs treatment. The final peripheral blood indica-
tors for data analysis included hemoglobin (g/dl) [30], serum 
albumin (g/dl) [31], lactate dehydrogenase (LDH) (U/l) 
[32], and composite inflammation indicators including the 
neutrophil-to-lymphocyte ratio (NLR) [16], platelet-to-
lymphocyte ratio (PLR) [16], and lymphocyte-to-monocyte 
ratio (LMR) [33].

Efficacy evaluation criteria and follow-up. If the 
patients received multi-line immunotherapy, the analysis 
was performed using the first immunotherapy. Response 
assessment was based on the Response Evaluation Criteria 
in Solid Tumors (RECIST), version 1.1 [34], which included 
complete response (CR), partial response (PR), stable disease 
(SD), and progressive disease (PD). When the results of PD, 
retrospectively determined according to RECIST 1.1, were 
inconsistent with the results determined by clinicians based 
on the conditions of patients, PD cases identified by clini-
cians in real-time were regarded as events. The therapeutic 
efficacy was defined as DCB (CR, PR, or SD lasting >6 
months) and no durable benefit (NDB: PD or SD lasting ≤6 
months) [17]. PFS was defined as the time from the first ICIs 
treatment to disease progression or death from any cause, 
and patients without progression were censored at the time 
of the last clinical visit.

Image acquisition. The CT scans of all patients were 
acquired with a 16 or 64 row multi-slice spiral CT (Siemens 
SOMATOM Sensation 16; Siemens SOMATOM Definition 
Flash 64; GE Optima CT680). During the scan, the patients 
were instructed to hold their breath at the end of deep inhala-
tion to avoid breathing motion artifacts. The tube voltage was 
120 kV, and the tube current was 150–200 mAs with automatic 
adjustment. The pitch was 1.2–1.375. The slice thickness and 
slice spacing were both 5 mm. The CT images were recon-
structed with a 512×512 matrix. In contrast scanning, the 
injection rate was 2.0–2.5 ml/s, and the injection volume was 
80–100 ml. The contrast scanning was delayed by 38–40 s.

Image segmentation and feature extraction. Image 
segmentation and feature extraction were performed on 
YITU AI Enabler, using Python pyradiomics (version 3.0.1). 
The Feature extraction was based on Imaging Biomarker 
Standardization Initiative (IBSI) [35].

All imaging data were preprocessed by resampling to 
1 mm × 1 mm × 1 mm voxel size to minimize the impact 
of different scanning protocols or equipment on quantita-
tive radiomics analysis. The primary lung lesions were delin-
eated as ROIs layer-by-layer for the entire tumor by a chest 
radiologist (Liu N). Another senior chest radiologist (Sun JJ) 
then confirmed and adjusted the outlined boundary. The two 
radiologists were both blinded to the therapeutic efficacy.

ROIs were delineated on the postcontrast CT images to 
avoid blood vessels and atelectasis as far as possible, and then 
the ROIs were copied to the precontrast CT images. Nine 
hundred and sixty features were first extracted from each 
patient based on precontrast and postcontrast CT images, 

respectively. Then a feature stability check was performed 
with minor changes of ROIs to filter out unstable features 
using intraclass correlation coefficients (ICC) between the 
features extracted within the lesion ROIs and the extended 
lesion ROIs. The extended lesion ROIs were produced by 
extending the boundary of ROIs by 1 image pixel. The 
features with an ICC greater than 0.8 were preserved as stable 
features.

In precontrast CT images, there were 790 stable features 
(Supplementary Figure S1) from each patient including 14 
shape features, 167 first-order statistics features, 213 gray 
level co-occurrence matrix (GLCM) features, 131 gray level 
difference matrix (GLDM) features, 155 gray level run length 
matrix (GLRLM) features and 110 gray level size zone matrix 
(GLSZM) features. In postcontrast CT images, there were 
767 stable features (Supplementary Figure S2) from each 
patient including 14 shape features, 161 first-order statis-
tics features, 196 GLCM features, 141 GLDM features, 151 
GLRLM features, and 104 GLSZM features.

Model construction. We used recursive feature elimi-
nation (RFE) to select 10 radiomic features most related to 
the therapeutic efficacy from precontrast and postcontrast 
radiomic data, respectively. The scikit-learn package (version 
1.0.2) in Python programming software (version 3.9.7) was 
used for model construction and evaluation. We performed 
random over-sampling (imblearn package; version 0.9.0) of 
the minority class and used these balanced datasets for devel-
oping machine learning models. All the codes are available at 
https://github.com/BioAI-kits/RadClin.

Based on the random forest (RF) algorithm, we 
constructed five RF models with different input datasets. The 
dataset and corresponding model were as follows: precon-
trast CT radiomic features, precontrast model; postcontrast 
CT radiomic features, postcontrast model; precontrast and 
postcontrast CT radiomic features, radiomic model; clinical 
features, clinical model; combined clinical and radiomic 
features, combined model.

We used a three-step approach to build the efficacy classi-
fication models. First, we constructed models using various 
combinations of tunable hyperparameters. After devel-
oping these models for each hyperparameter combination, 
we tested the performance of the models using the average 
values of AUC from 5-fold cross-validation. Finally, we 
selected the best hyperparameters with the highest average 
AUC to build models.

We evaluated the prediction performance of different 
models using the AUC in the ROC curves. In addition, the 
calibration curves were generated as a supplement to the 
model evaluation to visualize the goodness of fit of predictive 
models. The patients were divided into two groups with the 
prediction label (predicted DCB vs. predicted NDB), which 
was finally generated from the combined model. Survival 
analysis was performed on the PFS time of these two groups.

Statistical analysis. Comparisons of clinical features 
were performed using SPSS 26.0 for statistical analysis. The 
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were introduced into the combined model, the predictive 
performance was further improved (AUC=0.94±0.02). We 
also determined the goodness of fit of the radiomic model, 
clinical model, and combined model in the calibration curves 
(Figure 5A).

Applying the combined model to prognosis analysis. To 
quantify the contribution of individual clinical variables to 
efficacy prediction, we performed an interpretability analysis 
of the combined model. The results indicated that BMI, LMR, 
NLR, age, and PLR were the five most important clinical 
variables in efficacy prediction (Figure 5B). Furthermore, 
the patients were classified into two groups by the combined 
model: the predicted DCB group and the predicted NDB 
group. The survival analysis showed that PFS time between 
the two groups was significantly different (p<0.0001), with a 
median PFS time of 11.9 (95% CI: 10.47–24.80) months and 
1.9 (95% CI: 1.43–2.07) months, respectively (Figure 6).

Discussion

The results of the present study confirmed that CT 
radiomics and multiple clinical data were both valuable for 
the efficacy prediction of immunotherapy, and the combi-
nation of the two resulted in improved prediction. Further-
more, only patients treated with PD-1/PD-L1 monotherapy 
were included in this study to rule out interference due to 
other treatments. Currently, studies predicting the efficacy 
of ICIs monotherapy using multidimensional data are rarely 
reported.

Yang et al. [36] previously used deep learning models 
based on multidimensional data to distinguish responders 
and non-responders to ICIs monotherapy at 60- and 90-days 
post-treatment. In terms of the time point of efficacy predic-
tion, we assessed the therapeutic efficacy at 6 months. The 
efficacy was evaluated according to DCB and NDB, which 
is a practical and simple method for clinically classifying 
those who benefit from immunotherapy. The duration of the 
benefit time can more clearly capture the main contributor 
to the benefit, which is persistence. Compared with treat-
ment response defined by the best response, DCB can not 
only exclude short-term responders but also accurately assess 
benefit in those with SD, a population with heterogeneous 
immunotherapy benefit profiles [17].

CT is most commonly used for tumor staging and 
response assessment for NSCLC in the clinic. We used two 
types of CT radiomic features for modeling, and our findings 
demonstrated that radiomic models based on precontrast or 
postcontrast CT radiomic features both predicted efficacy. It 
is known that precontrast CT radiomic features are associ-
ated with the heterogeneity of tissue density due to necrosis, 
hemorrhage, and myxoid changes [37], and postcontrast CT 
radiomic features can provide information on the spatial 
heterogeneity of microvascular distribution and perme-
ability [38]. Thus, radiomic features at the macroscopic level 
can reflect the underlying tumor pathophysiology.

continuous variables are presented as mean (standard devia-
tion, SD) and median (interquartile range, IQR), which were 
compared by the independent sample t and Mann-Whitney 
U test. The χ2 and Fisher’s exact test were used to compare 
categorical variables.

Kaplan-Meier analysis was used to generate survival 
curves, and the log-rank test was performed to compare 
PFS time between the two groups on R software (survminer; 
version 0.4.9). All statistical analyses were two-sided and the 
differences were considered statistically significant at p-value 
<0.05.

Results

The clinical features. The baseline clinical features 
of the 112 patients are presented in Table 1. Thirty-nine 
(34.82%) patients achieved DCB, and the overall median 
PFS time was 2.8 months. The mean age of the patients was 
59.43 years (±7.98). There were 85 males (75.89%) and 27 
females (24.11%). Fifty (44.64%) patients were diagnosed 
with squamous cell carcinoma (SCC), and 62 (55.36%) 
patients were diagnosed with non-squamous cell carcinoma 
(NSCC). All patients received ICIs monotherapy, including 
32 (28.57%) patients treated with anti-PD-L1 drugs and 80 
(71.43%) patients treated with anti-PD-1 drugs. Thirteen 
(11.61%) patients were treated with first-line ICIs, 85 
(75.89%) patients with second-line ICIs, and 14 (12.50%) 
patients with third-line or above ICIs. A higher proportion 
of patients had stage IV tumors (90, 80.36%) than stage IIIB/
IIIC tumors (22, 19.64%). There were significant differences 
in histologic type, tumor stage, and hemoglobin (p=0.026, 
p=0.005, and p=0.044, respectively).

The PD-L1 status was known in a small percentage of 
patients, including 18 (16.07%) patients with positive status 
and 5 (4.46%) patients with negative status. No statistical 
analysis of PD-L1 status was performed in this study.

Building the random forest models with different input 
data. The recursive elimination method was performed to 
select 10 of the most important features for efficacy from the 
precontrast and postcontrast CT radiomic dataset, respec-
tively (Figure 3).

We further constructed five RF models with different input 
data, including precontrast CT radiomic features, postcon-
trast CT radiomic features, combined radiomic features, 
clinical features, combined radiomic and clinical features. 
The evaluation metrics of these models are shown in Table 2, 
and the ROC curves of each model are shown in Figure 4. 
The results showed that the mean AUC of the two models 
trained using only precontrast or postcontrast features were 
0.88±0.05 and 0.87±0.06, respectively. Of note, the radiomic 
model that was constructed with combined precontrast and 
postcontrast radiomic features showed better predictive 
performance (AUC=0.92±0.04). The clinical model that was 
constructed based on various clinical features had an AUC 
value of 0.89±0.03. Furthermore, when clinical features 
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Table 1. Demographic characteristics, clinical characteristics, and peripheral blood indicators of patients.

Characteristics Total
(N = 112)

DCB
(N = 39)

NDB
(N = 73) p-value

Age, mean (SD) 59.43 (7.98) 59.72 (7.96) 59.27 (8.04) 0.781
Sex, N (%) 0.115

male 85 (75.89) 33 (84.62) 52 (71.23)
female 27 (24.11) 6 (15.38) 21(28.77)

BMI, mean (SD) 22.62 (2.62) 23.22 (3.36) 22.30 (2.08) 0.129
Smoking history, N (%) 0.611

yes 77 (68.75) 28 (71.79) 49 (67.12)
no 35 (31.25) 11 (28.21) 24 (32.88)

COPD, N (%) 0.683
yes 29 (25.89) 11 (28.21) 18 (24.66)
no 83 (74.11) 28 (71.79) 55 (75.34)

ECOG, N (%) 0.465
0 19 (16.96) 8 (20.51) 11 (15.07)
1 93 (83.04) 31 (79.49) 62 (84.93)

Histological type, N (%) 0.026*
SCC 50 (44.64) 23 (58.97) 27 (36.99)
NSCC 62 (55.36) 16 (41.03) 46 (63.01)

Type of ICIs, N (%) 0.950
anti-PD-L1 32 (28.57) 11 (28.21) 21 (28.77)
anti-PD-1 80 (71.43) 28 (71.79) 52 (71.23)

Therapy line, N (%) 0.468
1st 13 (11.61) 6 (15.38) 7 (9.59)
2nd 85 (75.89) 27 (69.23) 58 (79.45)
≥3rd 14 (12.50) 6 (15.38) 8 (10.96)

Tumor stage, N (%) 0.005*
IIIB 14 (12.50) 10 (25.64) 4 (5.48)
IIIC 8 (7.14) 1 (2.56) 7 (9.59)
IVA 43 (38.39) 17 (43.59) 26 (35.62)
IVB 47 (41.96) 11 (28.21) 36 (49.32)

Bone metastasis, N (%) 0.196
none 76 (67.86) 29 (74.36) 47 (64.38)
single 11 (9.82) 5 (12.82) 6 (8.22)
multiple 25 (22.32) 5 (12.82) 20 (27.40)

Brain metastasis, N (%) 0.914
none 95 (84.82) 34 (87.18) 61 (83.56)
single 6 (5.36) 2 (5.13) 4 (5.48)
multiple 11 (9.82) 3 (7.69) 8 (10.96)

Liver metastasis, N (%) 0.625
none 98 (87.50) 36 (92.31) 62 (84.93)
single 3 (2.68) 1 (2.56) 2 (2.74)
multiple 11 (9.82) 2 (5.13) 9 (12.33)

Pleural effusion, N (%) 0.283
none 73 (65.18) 28 (71.79) 45 (61.64)
yes 39 (34.82) 11 (28.21) 28 (38.36)

Hemoglobin, mean (SD) 12.30 (1.49) 12.67 (1.45) 12.09 (1.48) 0.044*
Albumin, median (IQR) 4.16 (3.88; 4.35) 4.12 (3.88; 4.38) 4.16 (3.91; 4.34) 0.898
LDH, median (IQR) 224.50 (193; 298.75) 209 (184; 293) 239 (198; 335) 0.110
NLR, median (IQR) 3.24 (2.29; 4.66) 3.44 (2.25; 4.63) 3.14 (2.34; 5.00) 0.995
PLR, median (IQR) 173.00 (129.38; 229.82) 166.15 (131.50; 216.67) 185.63 (128.25; 241.00) 0.330
LMR, median (IQR) 2.41 (1.91; 3.31) 2.25 (1.83; 3.40) 2.50 (2.00; 3.25) 0.561

Note: *p<0.05; Abbreviations: SD-standard deviation; BMI-body mass index; COPD-chronic obstructive pulmonary disease; 
ECOG-Eastern Cooperative Oncology Group; SCC-squamous cell carcinoma; NSCC-non-squamous cell carcinoma; LDH-
lactate dehydrogenase; NLR-neutrophil-to-lymphocyte ratio; PLR-platelet-to-lymphocyte ratio; LMR-lymphocyte-to-monocyte 
ratio; IQR-interquartile range
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Considering that the combination of two types of CT 
radiomic features has the potential to comprehensively 
reflect tumor heterogeneity, we combined precontrast 
and postcontrast CT radiomic features, and the combina-
tion further improved prediction performance. The results 
indicated that the simultaneous application of the two types 
of CT radiomic features was more reliable in predicting 
immunotherapy efficacy. Compared with the study by Wu et 
al. [39], our findings further confirmed the potential advan-
tage of the combined radiomics model to predict the efficacy 
of ICIs monotherapy. The immunotherapy efficacy of cohorts 

with heterogeneous immunotherapy regimens including 
monotherapy and combined therapy may have been affected 
by other treatments in the study by Wu et al. In addition, Wu 
et al. did not combine currently known clinical biomarkers 
with radiomic features.

The efficacy of immunotherapy in tumors is affected by 
a variety of biological factors, which have a complex impact 
on tumor development and immune responses. A previous 
study [40] indicated that the predictive ability of biomarkers 
might be improved by the combination of different 
biomarkers to reduce the assumed risk associated with each 
one. In order to confirm the hypothesis that individual treat-
ment response may be a comprehensive result of the interac-
tion of various factors, we integrated multidimensional data 
including radiomic features, demographic characteristics, 
clinical characteristics, and peripheral blood indicators to 
predict immunotherapy efficacy. The results showed that the 
combination of radiomic and clinical features was better than 
radiomic or clinical features alone.

Machine learning methods can combine different types 
of features in a non-linear fashion and are able to overcome 

Figure 2. Inclusion and exclusion diagrams. The eligible patients were divided into two groups according to a threshold of progression-free survival 
(PFS) at 6 months. DCB, durable clinical benefit; NDB, no durable benefit.

Table 2. The evaluation metrics of random forest models based on differ-
ent input datasets.
Model AUC Accuracy Specificity Sensitivity
Precontrast model 0.88±0.05 0.80±0.03 0.86±0.10 0.76±0.09
Postcontrast model 0.87±0.06 0.71±0.05 0.87±0.08 0.56±0.11
Radiomic model 0.92±0.04 0.80±0.03 0.84±0.10 0.76±0.09
Clinical model 0.89±0.03 0.81±0.04 0.80±0.04 0.81±0.07
Combined model 0.94±0.02 0.82±0.03 0.86±0.09 0.79±0.12
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Figure 3. Radiomic features selected by recursive feature elimination. A) The top 10 most important radiomic features extracted from precontrast CT 
images. B) The top 10 most important radiomic features extracted from postcontrast CT images.

Figure 4. Receiver operating characteristic (ROC) curves for different classification models. (A) The performance of various classification models based 
on precontrast CT radiomic features, postcontrast CT radiomic features, and combined CT radiomic features of the two, respectively. (B) The perfor-
mance of various classification models based on radiomic features, clinical features, and combined features of the two, respectively.
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the limitations of predictors that rely on a single feature [41]. 
The study by Chowell et al. [41] revealed that the non-linear 
combination of multiple features had different degrees of 
contribution to the overall prediction of response. In our 
study, the top five most important clinical features associated 
with therapeutic efficacy using the RF classifier were BMI, 
LMR, NLR, age, and PLR, which are known to provide infor-
mation on nutrition, immune, and inflammatory status. A 
previous study [42] demonstrated that nutrition status can 
affect tumor development and response to treatment, and 
is closely related to the prognosis of cancer patients. Elderly 
patients tend to develop immunosenescence, which is charac-

terized by a decline in immune capacity with increasing age 
[43]. Inflammation can promote or induce tumor initiation, 
progression, and metastasis by regulating the tumor micro-
environment [42]. An increasing number of studies [16, 33] 
have demonstrated that LMR, NLR, and PLR are biomarkers, 
which reflect the level of systemic inflammation, and can 
represent the balance between promoting tumor response 
and antitumor immune function. Additionally, these poten-
tial prognostic factors are noninvasive, inexpensive, and 
routinely obtained in clinical practice.

Our study had several limitations: Firstly, this was a retro-
spective study with a small sample size in a single center 
and there was no external validation dataset. As it was diffi-
cult to identify a PD-1/PD-L1 monotherapy cohort with 
complete clinical and imaging data at baseline, we failed to 
find homogenization data in multiple centers. However, we 
believe that our findings will motivate more researchers to 
further examine this issue. Secondly, overall survival (OS) 
data were not used in the analysis as the majority of patients 
received subsequent multi-line therapy after immunotherapy. 
Thirdly, recent research [44] showed that several gene altera-
tions (such as EGFR-mutant, ROS1 rearrangement, HER2 
mutation) may affect the efficacy of immunotherapy in 
NSCLC. Unfortunately, we lack sequencing data to analyze 
their role in predicting the efficacy of immunotherapy.

In conclusion, this preliminary exploratory study demon-
strated that CT features combined with multiple biological 
factors were valuable for predicting the efficacy of PD-1/
PD-L1 monotherapy in patients with advanced NSCLC. The 
results are expected to provide a basis for the establishment 
of a multidimensional model based on clinical and labora-
tory indicators in addition to imaging features for subse-
quent researchers.

Figure 5. The goodness of fit of the classification models and interpretability analysis of the combined model. A) Calibration curves for the clinical 
model, radiomic model, and combined model. B) Feature importance weight plot: the top five clinical variables most important for efficacy prediction 
in the combined model.

Figure 6. Kaplan-Meier survival curve. Survival analysis of PFS time 
in the two groups (predicted DCB vs. predicted NDB by the combined 
model).
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Supplementary Figure S2. The heatmap of 767 radiomic features in postcontrast CT.


