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ABSTRACT
OBJECTIVE: Recently, older people’s cardiovascular systems have been affected by aging-related changes. 
An electrocardiogram (ECG) provides information about cardiac health. Analyzing ECG signals can help 
doctors and researchers diagnose many deaths. ‎Besides direct ECG analysis, some measurements can be 
extracted from the ECG signals, and ‎one of the most important measurements is heart rate variability (HRV). 
Research and clinical domains can benefi t from HRV measurement and analysis as a potential noninvasive 
tool for assessing autonomic nervous system activity. The HRV describes the variation between an ECG 
signal’s RR intervals over time and the change in that interval over time. An individual’s heart rate (HR) is a 
non-stationary signal, and its variation can indicate a medical condition or impending cardiac disease. Many 
factors, such as stress, gender, disease, and age, infl uence HRV.
METHODS: The data for this study is taken from a standard database, the Fantasia Database, which 
contains 40 subjects, including two groups of 20 young subjects (21‒34 years old) and 20 older subjects 
(68‒85 years old). We used two non-linear methods, Poincare and Recurrence Quantifi cation Analysis (RQA), 
to determine how different age groups affect HRV using Matlab and Kubios software.
RESULTS: By analyzing some features extracted from this non-linear method based on a mathematical 
model and making a comparison, the results indicate that the SD1, SD2, SD1/SD2, and area of an ellipse (S) 
in Poincare will be lower in old people than in young people, but %REC, %DET, Lmean and Lmax will recur 
more often in older people than in younger ones. Poincare Plot and RQA show opposite correlations with 
aging. In addition, Poincaré’s plot showed that young people have a greater range of changes than the elderly.
CONCLUSION: According to the result of this study, heart rate changes can be reduced by aging, and ignoring 
this issue could lead to cardiovascular disease in the future (Tab. 3, Fig. 7, Ref. 55). Text in PDF www.elis.sk
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Introduction

Nowadays, the number of cardiac patients is increasing with 
a warning rate. Heart diseases are the leading cause of death for 
men and women yearly. Each year, 17.9 million people die from 
cardiovascular disease (CVDs), an estimated 31 % of all deaths 
worldwide. According to the world health organization’s (WHO) 
statistician, heart disease is one of the 17 million reasons for death 
(under the age of 70). For example, in 2015, CVDs caused 37 % 
of deaths worldwide. The number of mortalities from CVDs will 
increase to reach 23.3 million by 2030. About 610,000 people die 
of heart disease in the United States every year, that’s 1 in every 
four deaths (1). A healthy heart has a regular characteristic pat-
tern, but any abnormality or damage to the heart will show up dif-
ferently from the normal heart pattern. The research of the Ferrari 
et al. showed that age-dependent parameters affected the heart, the 

blood vessels, and the refl ex control of the cardiovascular system 
(2). Also, other dependent parameters are physiologic aging and 
complexity, such as heart rate (HR) and heart rate variability (HRV) 
process of reduction in elderly subjects (3). Also, this decline is 
evident in non-linear feedback loops on a range of time and length 
scales due to changes in physiologic dynamics (4).

The increasing age may include an increase in body functions 
(2). Aging affects the structures and functions of the cardiovascular 
system and causes change. Even the risk of cardiovascular disease 
increases (5, 6). Also, the other parameters affect the cardiovascu-
lar control system's function, including the HR and blood pressure 
(BP). The CVDs are disorders of the heart and blood vessels and 
include coronary heart disease, cerebrovascular disease, rheumatic 
heart disease, and other conditions. That is considered to be the 
result of increasing age. 

Increasing age causes the blood vessels to lose their elasticity 
and become narrow. By narrowing the arteries, the heart works 
harder to pump blood into the veins. This leads to a decline in 
blood pressure and other cardiovascular problems in the elderly (7).

Biological measurement of age may help a better prediction of 
the age average in the population. It could be an important clini-
cal tool for determining the medical risk related to diseases with 
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advanced age (4, 8). Studies based on approximate non-linear 
dynamics show that biological markers of aging could be many 
older people produce conditions before death, and their biological 
age can be considered different from the period.

The Electrocardiogram signal has been widely used in cardio-
logy to diagnose various heart diseases. Electrocardiography is a 
noninvasive tool, and the ECG signal can be measured to get im-
portant and valuable information about electrical activity related 
to the heart to doctors and researchers (9). This electrical activity 
can be recorded and analyzed by measuring the amplitudes, dura-
tions, and intervals in the ECG signals (10). ECG can show all the 
fl uctuations of the heartbeat. Letters of the alphabet (P, R, Q, S, 
and T) identify the different peaks of the printout, and the doctor 
reads these to indicate problem areas in the heart rate. The highest 
peak of a normal QRS complex is at the peak of the R-wave, and 
the distance between two contiguous R-wave peaks is termed the 
R‒R interval (11‒13). 

For HRV analysis, the necessity of fi ltering the signals can 
be performed, and this process requires the removal of all non-
sinus-node originating beats. ECG parameters change during age 
and depend on the patient’s age (14, 15). Rupali Sachin Khane 
et al studied increasing changes in ECG patterns with age (16). 
According to this study, the incidence of Q/QS patterns increases 
with age. Campbell et al observed a 15 % prevalence of ST-T wave 
abnormalities, especially T-wave flattening, and that infrequency 
increases with age (15). Several studies have been done on the 
effect of aging on electrocardiographic parameters in humans. 
Recognizing the standard electrocardiographic parameters can 
help evaluate cardiac healthiness or disease (14). The HRV shows 
variations of successive heartbeats, a physiological phenomenon /
of the healthy sinus rhythm (17). Many studies pay more attention 
to the power of the heart rate. Hon and Lee were the fi rst people to 
use HRV to evaluate fetal heart rate patterns preceding fetal death 
in 1965 (18). Many parameters affect HRV, like stress, age, gender, 
certain cardiac diseases, and other pathologic states. 

The HRV analysis represents a noninvasive method for su-
pervising the autonomic nervous system (ANS) control function. 
It is measured by diagnosing variations in beat-to-beat intervals 
sequential heartbeats (R‒R intervals) (19). This interval regulation 
function balances the sympathetic and parasympathetic and causes 
R‒R intervals with two branches of the ANS and polarization and 
depolarization process of the sinus node (20, 21). HRV is related 
to the measurement effects of SNS and PNS activity and other 
physiological regulatory affection on the heart (22, 23). Heartbeat 
regularity mechanism an increase in the parasympathetic activity 
means decreasing HR by the release of acetylcholine. However, 
an increase in HR directly results from an increase in sympathetic 
activity (24). There is confl icting evidence about parasympathetic 
control of cardiac function changes with age (25). Therefore, re-
cognizing the effects of age on cardiac parameters can be helpful 
in preventing many diseases (26).

There are different methods for analyzing HRV. HRV analysis 
is a combination of linear and non-linear methods. The standard 
techniques for analyzing HRV are divided into statistical (time 
domain), power spectral (frequency domain), and non-linear geo-

metrical analysis. The time-domain method calculated the standard 
deviation of R‒R intervals (SDNN), root mean square differences 
of successive R‒R intervals (rMSSD), for a stationary time series 
(SDSD) equals to the root mean square (RMS), and the percentage 
of differences between N‒N intervals by more than 50 ms (pNN-
50). Haber was the fi rst person who introduced a non-linear autore-
gressive (NARMA) model. The non-linear method calculated the 
average value of instability directly by measuring the R‒R interval. 
Aspects of heart rate dynamic information that can’t elicit from 
the linear analysis can be shown by the non-linear analysis (19). 
Even an evaluation of the risk of the disease is available (20‒22).

Even though time and frequency domain methods are related, 
representing the variability is done with different means, and the 
information obtained is not always the same. For this reason, both 
these families of methods are extensively used in clinical prac-
tice, but none has been used as the only standard. This method is 
spectral analysis. The spectral analysis of time series describes the 
techniques and theory of the frequency domain analysis of time 
series. This method interpolates the RR interval at a defi ned rate 
and changes this interval into the frequency domain. Frequency 
domain analysis includes fast Fourier transform (FFT) or AR-based 
power spectral density (PSD) analysis in systematic rhythms, 
representing information on how to divide as a function of fre-
quency. Three main spectral components are distinct in a spectrum 
calculated from short-term recordings peaks: very low frequency 
(VLF) (≤ 0.04 Hz), low frequency (LF) (0.04‒0.15 Hz), and high 
frequency (HF) (0.15–0.4 Hz) components.

The HRV changes with advanced age were fi rst known in the 
1980s (11). For better predicting and knowing how it changes, 
it’s essential to understand the normal range of HRV at different 
ages. Umetani et al (23) showed that in normal subjects, the range 
of HRV (all time-domain measures except the SDNN index) in 
young people is wider than in old people, and the range of HRV 
narrows with aging. Also, Ken Umetani et al showed a signifi cant 
negative correlation between HRV and increasing age. Boettger 
et al (24) worked on analyzing non-linear HRV parameters. There 
is a decreasing autonomic modulation with age increasing, which 
starts in childhood (25). However, increasing age does not cause 
considerable changes in resting heart rate. This reduction has 
been attributed to a decline in efferent vagal tone and reduced 
beta-adrenergic responsiveness (18). In rat models, clear aging 
shows increased and decreased sensitivity to vagal activity (26). 
Age often tends to change after the age of 50 years. The most 
changes (decrease) happen between the second and the third de-
cades. The HRV decreases slowly with age increasing. However, 
HRV changes signifi cantly at > 30 years (23).

Some studies worked on the relationship between age and heart 
rate based on traditional measurements (time and frequency do-
main analysis). Bonnemeier et al (27) worked on aging affection 
on HRV parameters by recording hour-by-hour in healthy subjects, 
but it limited time-domain HRV parameters. According to linear 
analysis, the previous studies didn’t provide information about the 
dynamic properties of the heartbeat time series. The factors of the 
heartbeat time series are not dependent on traditional parameters 
such as mean and standard deviation and make additional informa-
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tion about the underlying structure of the data (28‒29). Mourot et 
al showed that the relation between linear parameters and HRV is 
weak. But there is a strong correlation between non-linear parame-
ters and HRV (30). This paper explores the possibility of capturing 
the age-related infl uence on HRV changes using non-linear tech-
niques to investigate heart rate variation in young and elder ages. 

Material and method

Data collection
To analyze age’s effect on HRV in this paper, we used data from 

the FANTASIA Physionet website (31). The database includes a 
lot of heart rates for different ages. This database contains two 
groups, F1 and F2. Each has ten young people (21‒34 years old) 
and ten older people (68‒85 years old). Each subgroup includes 
equal numbers of men and women. All the subjects were relax-

ing. During the ECG recording, they watched the movie Fantasia 
(Disney, 1940). Data set to help maintain wakefulness signals 
were collected. ECG was recorded for 120 minutes. The sam-
pling frequency in this database is 250 Hz. The recordings were 
uncalibrated and transferred to a computer, and fi ltered. Figure 1 
shows the age range of people in this paper. Also, Table 1 shows 
the complete characteristics of the participants in this study, in-
cluding age and sex. 

Method
The theory of non-linear dynamics is widely used to analyze 

biosignals, which are non-linear (32). The following are non-linear
methods for studying the effects of aging on cardiovascular dy-
namics. Each data of the subject was analyzed by Kubios soft-
ware. Non-linear parameters like Poincare plot and recurrence 
quantifi cation analysis were used in data analysis. Before using a 
Poincare plot, we used R‒R intervals detection to avoid missing 
R‒R intervals because Poincare is plotted according to R‒R inter-
vals. This paper used Poincare parameters like Standard Deviation 
(SD1, SD2) and calculated the ratio of SD1/SD2 and the area of 
Ellipse (s). In addition, we used RQA parameters like recurrence 
rate (REC) and determinism (DET) and mean line length (Lmean) 
and max line length (Lmax) to show what relationship between 
the variations of heart rate with increasing age. These methods are 
briefl y explained in the following sub-sections.

R‒R interval detection
R-peaks detection is not always precise and can have false or 

missed peaks. Algorithms need to increase detection sensitivity by 
processing the RR intervals were proposed (33‒34). First, detecting 
each parameter of QRS complexes provides the fundamentals for 
almost all automated ECG analysis algorithms using derivative-
based, Pan-Tompkins, wavelet transform-based algorithms. The 
Pan-Tompkins algorithm (35) is commonly used to detect QRS 
complexes in ECG signals. The QRS complex represents the 
ventricular depolarization and the main spike visible in an ECG 
signal. This feature makes it particularly suitable for measuring 
heart rate, the fi rst way to assess the heart health state. In the fi rst 

Fig. 1. Range of age among healthy young and old people.

Sl.No Records Age Sex Sl.No Records Age Sex
1 F1y01 23 F 21 F1o01 77 F
2 F1y02 28 F 22 F1o02 73 F
3 F1y03 34 M 23 F1o03 73 M
4 F1y04 31 M 24 F1o04 81 M
5 F1y05 23 M 25 F1o05 76 M
6 F1y06 30 M 26 F1o06 74 F
7 F1y07 21 M 27 F1o07 68 M
8 F1y08 30 F 28 F1o08 73 F
9 F1y09 32 F 29 F1o09 71 M

10 F1y10 21 F 30 F1o10 71 F
11 F2y01 23 F 31 F2o01 73 F
12 F2y02 23 M 32 F2o02 75 F
13 F2y03 28 F 33 F2o03 85 F
14 F2y04 27 F 34 F2o04 70 F
15 F2y05 25 F 35 F2o05 83 M
16 F2y06 26 M 36 F2o06 70 M
17 F2y07 31 M 37 F2o07 77 M
18 F2y08 21 M 38 F2o08 71 M
19 F2y09 21 F 39 F2o09 77 M
20 F2y10 21 M 40 F2o10 73 F

Tab. 1. Age and sex of all healthy young and old people.

Fig. 2. Typical ECG trace with RR interval labeled.
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derivation of Einthoven of a physiological heart, the QRS complex 
is composed of a downward defl ection (Q wave), a high upward 
defl ection (R wave), and a fi nal downward defl ection (S wave). 
This real-time QRS detection algorithm is based on digital analyses 
of the signal›s slope, amplitude, and width, as shown in Figure 2.

Some noise accompanies ECG signal recording. So, at the be-
ginning of the HRV analysis it is necessary to eliminate and fi lter 
requirements for removing all non-sinus-node originating beats of 
the ECG. The Pan‒Tompkins algorithm is divided into two differ-
ent stages: preprocessing and decision. In the preprocessing stage, 
the signal is prepared for later detection. Therefore, the ECG signal 
is passed through a band-pass fi lter composed of a low pass and 
a high pass fi lter to highlight the frequency content of this rapid 
heart depolarization for smoothing and removing the background 
noise. After this, a derivative fi lter is a standard technique to get 
the high slopes that normally distinguish the QRS complexes from 
other ECG waves. The derivative procedure suppresses the low-
frequency components of P and T waves and provides a large gain 
to the high-frequency components arising from the high slopes of 
the QRS Complex. Then, the non-linear squaring amplitude is done 
to amplify the QRS contribution, makes the output signal positive, 
and emphasizes large differences resulting; the small differences 
arising from P and T waves are suppressed. Then waveform fea-
ture information is obtained by the moving window integration 
along with the slope of the R wave. Finally, in the decision stage, 
adaptive thresholds are applied to detect and fi nd the R-peak in 
which a maximum level helps detect R-peak. This paper used the 
algorithm for R‒R interval extraction. 

Non-linear phase space
Non-linear phase space is a non-linear graphical representa-

tion of the samples in a multidimensional phase, which plots the 

present sample according to a previous one (36). It is the plot be-
tween consecutive samples of the signals (37).

The Poincare plot is a technique taken from non-linear dynam-
ics that portrays the nature of R‒R interval fl uctuations. It is a plot 
in which each R‒R interval is plotted as a function of the previous 
R‒R interval. Poincare plot analysis is an emerging quantitative-
visual technique whereby the shape of the plot is categorized into 
functional classes that indicate the degree of heart failure in a 
subject (32). The plot provides a summary and detailed beat-to-
beat information on the behavior of the heart (11). The geometry 
of the Poincare plot is essential and can be described by fi tting an 
ellipse to the graph. The ellipse is fi tted onto the so-called line-
of-identity at 45° to the normal axis. The standard deviation of 
the point perpendicular to the line of identity denoted by SD1 
describes short-term variability, which is mainly caused by respi-
ratory sinus arrhythmia (RSA). The standard deviation along the 
line of identity denoted by SD2 describes long-term variability. 
SD1 and SD2 are the standard deviations of the distances of the 
points computed from two lines having the expression y = x and 
y = x + Rz, where Rm is the mean of the distances of the succes-
sive heartbeats, respectively. SD1 is the ellipse’s width (short-term 
variability) (38). SD1 shows a level of rapid changes in R–R in-
tervals. SD1 can be calculated mathematically as formula (1). But 
SD2 is the length of the ellipse (long-term variability) (38). Both 
sympathetic and parasympathetic effects on SD2.SD2 can be cal-
culated as formula (2). The balance between short and long-term 
HRV can be measured by the ratio of SD1 to SD2 in formula (3). 
The area of the ellipse (S) is the area covered by the ellipse. S can 
be calculated as formula (4). Figure 3 shows the Poincaré diagram 
with the SD1 and SD2 parameters.

The variations of the biomedical signal for a short- time can 
be shown by phase space (39). Phase space can be used for ana-
lyzing HRV signals. Phase space shows the correlation between 
successive R‒R intervals (RRi, RRi+1) (40). In HRV analysis by 
Poincare plot, every point in this plot defi nes one of the time series 
elements. Phase space refl ects the non-linear features of the HRV. 

SD1=     (1)

SD2=      (2) 

    
(3)

S = π . SD1. SD2     (4)

A Poincare plot is a very powerful visual technique to assess hid-
den patterns in the dynamics of HRV and to gain more information 
about the entire RR interval time series. It has been used as a quali-
tative tool and a geometrical analysis by calculating HRV with the 
shape of the Poincaré plot (41). This method contains three items: 
A: The standard deviation of the instantaneous beat-to-beat RR 
interval variability (minor axis of the ellipse or SD1). B: The stan-
dard deviation of the continuous long-term RR interval variability 
(major axis of the ellipse or SD2) C: The axis ratio (SD1/SD2) (42).

Fig. 3. Poincare Plot of RR intervals of F1Y08 young subject with its 
standard descriptor SD1 and SD2.
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Recent advances in biological systems theory, HRV analysis, 
and complexity analysis, such as nonlinearity and determinism 
in a biomedical signal, are used as an index for risk stratifi cation 
in many diseases. The non-linear analysis using Poincare plots 
is a geometrical and generally very powerful visual technique to 
assess hidden patterns in the dynamics of HRV and to gain more 
information about the entire RR interval time series. Also, a non-
linear analysis is necessary because some information may be lost 
in linear methods (43, 44).

Recurrence plot (RP) 
A recurrence plot (RP) is an advanced method of non-linear 

data analysis in a multidimensional phase. This method allows the 
recognition of system properties, which are useful for discover-
ing hidden relations in highly complicated data periodicities and 
the non-stationary signal in the time domain, which is not easily 
found by linear and conventional techniques. Non-linear techniques 
usually approach Recurrence plots (RPs). RP is a basic feature of 
deterministic dynamical systems and is typical for non-linear or 
chaotic systems. RPs are used in non-linear dynamic analysis, and 
their quantifi cation measures are based on the Poincare recurrence 
theorem (45). It is used to quantify the Recurrence plot of the ECG 
signal. RP is a visualization (or a graph) of a square matrix, in which 
the matrix elements correspond to those times at which a state of a 
dynamical system recurs (columns and rows correspond then to a 
certain pair of times). Technically, the RP reveals all the times when 
the phase space trajectory of the dynamical system visits roughly the 
same area in the phase space. These graphical tools were elaborated 
for the fi rst time by Eckmann et al, which can visualize the periodic 
nature of a trajectory through   a phase space (46). Often, the 
phase space has a limited dimension (two or three), which allows it 
to be pictured since higher-dimensional phase spaces can just be vi-
sualized by projection into the two or three-dimensional sub-spaces,
which displays the recurrences of states. However, Eckmann’s tool 
for making a recurrence plot enables us to investigate certain as-
pects of the m-dimensional phase space trajectory through a two-
dimensional representation. A recurrence is a situation happening 
when the distance between two states xi , xj ,is less than the threshold 
ε value. Let xi be the ith point on the orbit in m-dimensional space. 
Whenever xj is suffi ciently close to xi , a dot is placed at (i, j). The 
plots are symmetric along the diagonal i = j because if xi is close 
to xj , then xj is close to xi. Thus, the recurrence plot is an array of 
dots in an N ×N square. It can also be viewed as an N ×N matrix of 
black and white dots in time-related space. Here black dot means 
recurrence has occurred (47). This representation is called RP. 
Such an RP can be mathematically expressed as a formula (5). 

,
   (5)

Where
‒ N is the number of considered states xi  
‒ εi is a threshold distance
‒  The neighborhood measure a norm 
‒  The unit step function and the Heaviside function.
‒ M is the embedding dimension.

Recurrence Quantifi cation Analysis (RQA) is useful in analy-
zing dynamic systems from a time series. RPs were introduced to 
visually distinguish different dynamical behaviors in time series 
since periodic orbits and chaotic and random behaviors generate 
distinct structures in the RPs (48). Measures based on diagonal 
structures can fi nd chaos-order transitions, and measures based on 
vertical or horizontal structures can fi nd chaos-chaos transitions. 
These measures can be computed in windows along the main dia-
gonal. This allows us to study their time dependence and can be 
used to detect transitions. Another possibility is to quantify the 
patterns, like parallel lines of RPs for each diagonal parallel to the 
main diagonal separately. This approach enables the study of time 
delays and unstable periodic orbits and, by applying to cross-recur-
rence plots, the assessment of similarities between processes (49).

Recurrence quantifi cation analysis
The recurrence plot is a graphical “RQA plot” method based 

on the time delay method in a multidimensional space(50). RQA 
is the visual and non-linear data analysis of the RPs, which quan-
tifi es the number and duration of recurrences of a dynamical sys-
tem presented by its state space trajectory. It is subjective and can 
lead to different interpretations. RQA uses pattern recognition 
algorithms to quantify the recurrence features depicted in RPs, 
which is more objective than the visual inspection of the graphs. 
RQA is an advanced tool that allows the study of chaos and com-
plexity of a dynamical system with few parameters. It measures 
the dynamicity and subtle rhythmicity in the HR signal. Because 
graphical tools may be diffi cult to Figure out, RQA was developed 
to provide quantifi cation of important aspects revealed by the plot. 
As RP, this methodology is independent of limiting constraints, 
like the data set size, and does not require stationarity, linearity, 
and any usual assumptions on the probability distribution of data. 
For these reasons RQA, as the RP, seems very useful for charac-
terizing state changes.

Describe the analysis of the quantifying recurrences in the RPs 
leads to the generation of fi ve variables, including the following: 
recurrence rate (REC), determinism (DET), maximum length of 
the diagonal lines (Lmax), Mean diagonal line length (Lmean).

%REC

Indicates measure percent of recurrent points or global recur-
rence existing in the recurrent plot (RP); recall that a point (i, j) is 
recurrent if the distance between the vectors y(i) and y(j) is less 
than the threshold; in other words, %REC is the ratio of the num-
ber of recurrent states measured concerning all possible states. 

The percentage of recurrence points in an RP is defined as:

REC =                                                          (6)

Here Ri, j is the representation of the recurrence plot
N – Number of points Ri, j on the phase space trajectory
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%DET

Determinism describes the percentage of recurrent points 
forming line segments parallel to the main diagonal. The presence 
of these lines reveals the existence of a deterministic structure.

The determinism from the diagonal line in the RP is defined as:

DET =
 

                                                        (7)

Here P (l) is the histogram of the lengths l of the diagonal lines. 
lmin is the length of the minimum diagonal line. 
N – Number of points on the phase space trajectory

Lmax

Maximum diagonal lines (Maxline) represent the length value 
of the longest line diagonal, the two segments that remain with a 
similar pattern are determined by the time during which two seg-
ments evolve in parallel on a trajectory in the RP. Eckmann et al 

(51) and Trulla et al (52), have stated that this quantity is propor-
tional to the inverse of the largest positive Lyapunov exponent. 
A periodic signal produces long line segments, while short lines 
indicate chaos. 

The length of the longest diagonal line in the RP is defined as:

Lmax = max ( )                                        (8)

Here Nl represents the number of diagonal lines in the RP.

Lmeann

Mean diagonal line length is an indicator of the mean fore-
casting time of the system. This parameter measures the inverse 
of the divergence of the system.

The average length of the diagonal lines is defined as: 

Lmean = 
                                                          

(9)

Fig. 4. Block diagram of Pan–Tompkins algorithm and detection processing.
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Statistical analysis 
Non-linear regressions were performed using the Matlab and 

Kubios software to determine the effect of age on SD1 and SD2, 
and the ratio SD1 to SD2 and S as Poincare parameters and Lmean 

and Lmax and DET and REC as Recurrence parameters were re-
ported for all extracted features in Table 1. The results are presented

as mean ± standard deviation. All these pa-
rameters for both young and old groups are 
compared with each other in box plots. The 
Block diagram of the proposed method is 
shown in Figure 4.

Result

Poincare plot analysis
First, we test the Poincare Plot Analy-

sis that has been done on the R‒R inter-
vals, which are taken from ECG signals 
to show the variation of HRV behavior ef-
fect on young and old people in the Fan-
tasia database. Poincare Plot analysis has 
provided us with both the quantitative and 
qualitative analysis of ECG signals using 
the non-linear methodology. The Poincare 
plot analysis statistics values are shown in 
Table 2. Also, the variation between the 
statistics of old and young groups can be 
seen in boxplots, which are plotted based 
on Poincare parameters represented sepa-
rately for left- and right-sided seizures in 
young and old, as shown in Figure 5. The 
results are summarized in Table 2 and Table 
3 (Poincare plot quantifi cation measures for 
young), we found evidence of mean and 
standard deviation along a line of identity 
(SD1) for the young group with an average 
range of 54.49 ms and SD1 for the elderly 
group is with an average range of 37.88 ms 
(Fig. 5a). The standard deviation perpendi-
cular to the line of Identity (SD2) for young 
and elderly groups is 118.14 ms and 74.70 
ms, respectively (Fig. 5b); the mean SD1/
SD2 ratio for young and elderly groups is 
0.47 ms and 0.51 ms, respectively (Fig. 5c)
and overall variability represented by el-
lipse area ( S ) for young and elderly groups 
28.78 ms2 and S10.33 ms2 (Fig. 5d). There 
is a reduction of % in SD1, % in SD2, % 
in SD1/SD2, and % in the ellipse area in 
the elderly group compared to the young 
group. These results indicate for all parame-
ters higher variability in younger subjects. 
Refl ect approximately % higher variability 
in the old age group. 

Recurrence quantifi cation analysis
Next, we test the Recurrence Quantifi cation Analysis on the 

same R‒R intervals used in Poincare Plot Analysis as another 
method to show the variation of HRV behavior effect on young 
and old subjects. Recurrence Quantifi cation Analysis has pro-
vided us with the quantitative analysis of ECG signals using 

Record
No. SD1 SD2 SD1/SD2 S*10‒3 Lmean Lmax DET REC

F1y01 58.3 101.6 0.57 18.61 9.77 117 97.12 28.44
F1y02 49.3 128.9 0.38 19.96 15.33 221 98.57 43.59
F1y03 22.1 81.2 0.27 5.64 11.99 735 98.87 35.20
F1y04 83.3 135.9 0.61 35.56 9.20 106 96.40 30.42
F1y05 39.6 114.5 0.35 14.24 14.94 248 99.04 44.55
F1y06 50.4 127.0 0.40 20.11 12.75 431 99.00 39.21
F1y07 91.0 239.9 0.38 68.58 9.72 157 98.06 29.19
F1y08 33.8 109.6 0.31 11.64 12.48 546 98.97 38.65
F1y09 29.6 112.8 0.26 10.49 14.35 533 99.20 40.20
F1y10 39.6 104.6 0.38 13.01 11.75 266 98.37 35.44
F2y01 40.0 75.2 0.53 94.50 10.25 150 97.56 30.65
F2y02 77.8 185.9 0.42 45.44 10.76 232 98.16 31.43
F2y03 20.2 56.3 0.36 3.57 12.21 273 97.61 36.10
F2y04 29.6 75.9 0.39 7.06 21.62 769 99.46 53.21
F2y05 32.1 66.4 0.48 6.70 34.30 769 99.22 51.44
F2y06 21.8 81.0 0.27 5.55 12.16 909 98.82 37.44
F2y07 56.6 127.2 0.44 22.62 9.07 138 96.84 27.86
F2y08 75.3 124.3 0.61 29.40 10.16 110 96.76 28.52
F2y09 185.0 196.5 0.94 114.20 14.81 112 99.23 44.79
F2y10 550.0 545.1 1.01 9418.70 70.10 345 99.13 51.35
mean±STD 54.49 118.14  0.47 28.78 13.56 358.35 98.32 37.88
STD 38.26 46.92 0.20 531.2 5.83 260.88 0.95  8.11 
Record
No. SD1 SD2 SD1/SD2 S*10‒3 Lmean Lmax DET REC

F1o01 18.8 66.6 0.28 3.93 21.49 911 99.71 49.45
F1o02 42.9 59.1 0.73 7.96 58.77 696 99.90 80.48
F1o03 23.0 51.0 0.45 3.68 17.92 530 99.43 49.19
F1o04 32.8 123.0 0.27 12.67 14.84 391 99.42 41.04
F1o05 12.5 57.5 0.22 2.26 17.78 917 99.72 46.36
F1o06 29.0 29.1 0.50 2.65 28.85 508 98.84 65.93
F1o07 46.7 69.1 0.68 10.14 19.98 260 99.38 55.83
F1o08 25.3 64.0 0.39 5.09 17.97 394 98.99 47.84
F1o09 103.5 146.8 0.70 47.73 12.88 204 98.95 42.01
F1o10 19.7 79.6 0.25 4.93 17.95 917 99.63 46.05
F2o01 93.3 116.5 0.80 34.15 20.10 347 98.88 51.23
F2o02 61.2 74.2 0.82 14.27 32.22 424 99.75 72.19
F2o03 34.0 54.0 0.63 5.77 19.70 313 98.83 50.16
F2o04 21.5 53.6 0.40 3.62 11.81 416 97.86 36.76
F2o05 33.7 60.0 0.56 6.35 33.58 418 99.91 69.30
F2o06 34.8 109.4 0.32 11.96 13.00 487 98.98 38.31
F2o07 21.7 57.2 0.38 3.90 13.82 505 98.98 41.36
F2o08 208.7 236.6 0.88 155.13 27.27 306 99.29 46.89
F2o09 33.0 78.9 0.42 8.18 22.85 738 99.77 57.26
F2o10 32.4 69.7 0.46 7.09 28.49 502 99.78 61.44
mean±STD 37.88 74.70 0.51 10.33 20.46 509.20 99.30 52.45
STD 24.12 29.19 0.21 11.55  6.62 217.05 0.51 11.97

Tab. 2. Mean and STD and Poincare and Recurrence Quantifi cation parameters for young 
and old groups.

Sbject SD1 SD2 SD1/SD2 S Lmean Lmax DET REC
Young(F1Y01) 58.3 101.6 0.57 18.61 9.77 117 97.12 28.44
old (F1O01) 18.8 66.6 0.28 3.93 21.49 911 99.71 49.45

Tab. 3. Comparison of the results of Poincaré parameters and RQA parameters.
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the non-linear methodology. The RQA statistics values of both 
groups are showed in Table 1. Also, the variation between the 
statistics of old and young groups can be seen in boxplots, which 
are plotted based on recurrence parameters represented separately 
for left- and right-sided seizures in young and old as shown in 
Figure 6. The results are summarized in Table 2. Table 2 shows 
the Poincaré plots measure for both age groups. Table 2 de-
scribes the meaning of diagonal line length (Lmean (for the young 
group, with an average range of 13.56, and Lmean for the elderly 
group, with an average range of 22.25 (Fig. 6a). The average of 
Maximum diagonal lines (Lmax) for young and elderly groups is 
358.35 and 509.20, respectively (Fig. 6b). The mean value of 
Determinism (DET) for young and elderly groups is 98.32 and 
99.30, respectively (Fig. 6c). Also, the mean value of recurrent 
points (REC) for young and elderly groups is 37.88 and 52.45, 
respectively (Fig. 6d). 

In Table 3, it is obvious that Lmean, Lmax, DET, and REC in young 
persons have smaller values than in older ones. These results indi-
cate for all parameters higher variability in older subjects. Refl ect 
approximately % higher variability in the old age group.

Comparison of Poincare plot and RQA
Finally, we compare these two analyses with non-linear tech-

niques, which are shown in Table 3. Table 2 shows two subjects 
from old and young groups for comparison between Poincare 
Plot and RQA analysis. By making the comparison, it has been 
observed that in the case of patient persons, the Poincare value of 
SD1, SD2, SD1/SD2, and the area of the ellipse (S) in old sub-
jects will be less than in young ones, but the recurrence value of 
% REC, %DET, Lmean and Lmax in old subjects will be higher than 
young ones. It meant that there is an opposite correlation between 
Poincare Plot and RQA to aging. Also, obtaining information about 

a b

c d

Fig. 5. (a) standard deviation along the line of identity (SD1); (b) standard deviation along the line of identity (SD2); (c) SD1/SD2 ratio; 
(d) ellipse area (S).
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all subjects of male and female gender with age change between 
the old and young subject Poincaré plots according to Figure 7 
that Poincaré cloud is spread over a wider area for the young age 
group as compared to the elderly, which shows more power in the 
young group. Old subjects have smaller values of SD1 and SD2 
and area ellipses than young subjects. 

Discussion

Many parameters affect HRV, like stress, age, gender, certain 
cardiac diseases, and other pathologic states. Therefore, recogniz-
ing the effects of age on cardiac parameters can be useful in pre-
venting many diseases. Age effects on both linear and non-linear 
parameters of HRV. 

It’s obvious that HRV analysis, according to non-linear me-
thods, elicits valuable information for the physiological interpreta-
tion of HRV. This study used non-linear indexes (SD1, SD2, SD1/

SD2, S, Lmean, Lmax, DET, and REC) examined in a population of 
40 healthy subjects between the age of 21 and 85 yr. We found a 
decrease in the variable of the Poincare plot and an increase in the 
variable of the recurrence plot with advancing age.

Many studies worked on the correlation between non-linear 
and linear parameters of HRV and aging. For example, Frank 
Beckers et al (50) worked on the relation between non-linear pa-
rameters like Approximate entropy (ApEn) and detrended fl uc-
tuations analysis (DFA) a1 and Detrended fl uctuations analysis 
(DFA) a2 and aging. They studied healthy groups that included 
135 women and 141men between the age of 18 and 71 years 
during 24 hours. Their study approved a relation between these 
non-linear indexes of HRV and aging. But this correlation is sig-
nifi cant during the day. And the relation with age disappeared in 
some indexes during the night, especially in the male population. 
The other problem in this study is that these non-linear indexes 
are more pronounced in the female population. Pikkuja¨msa¨ et 

a b

c d

Fig. 6. (a) mean diagonal line length (Lmean); (b) Maximum diagonal lines (Lmax); (c) Determinism (DET); (d) recurrent points (REC).
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al (53) worked on non-linear indexes (ApEn and DFA a1) but 
couldn’t fi nd a relation with age, and the range of age that they 
studied was very limited (40–59 yr). KEN UMETANI et al (54) 
worked on non-linear parameters of HRV and aging. One of these 
parameters that they studied was the standard deviation. This 
study showed that HRV decreased with advancing age, but this 
change is gradual, and this decrease was not very clear by the 
tenth decade. In frequency domain analysis, Krishan Pal Singh 
Yadav et al (55) showed that the peak frequencies, low frequency 
(LF), and high frequency (HF) are not much affected by aging. 
They compared Poincaré plots and Frequency−Domains (LF, HF, 
LF/HF) and showed a difference between young and elderly sub-
jects in Poincaré plots’ parameters (SD1, SD2, SD1*SD2), but the 
ratio LF/HF is the same for both age groups. This study used Re-
currence Quantifi cation Analysis and Poincare plot as non-linear 
methods for extracting HRV features. We found a decrease in the 
variable of the Poincare plot and an increase in the variable of the 
recurrence plot with advancing age. Poincare Analysis is easy to 
implement and interpret in comparison to RQA. The quantity of 
subjects in this study is not too much.

Study limitations

The number of subjects is not evenly distributed between 
the various genders and the nine decades. Women 40 to 49 years 
old are oveR‒Represented, and old men 70-year-old are under-
represented. To solve this, each group should have an adequate 
gender number of subjects. Second is the defi nition of a “healthy 
subject.”Just pay attention to the terms of medical history. It was 
needed that subjects did not take any medications except for non-

steroidal anti-infl ammatory agents and oral contraceptives. The 
third is that subjects didn’t do special activities during the ECG 
recording and were relaxed and just watching, so there weren’t 
any possible information differences between the young and the 
elderly population.

Forth is that this paper used non-linear methods, but linear 
methods are more advantageous and more suitable when shorter 
data sets are used. The interpretation of spectral components is 
more intuitive and easier to understand.

Conclusion

Investigate the plots and the results; extracted features from 
the lagged Poincare plot of RR intervals and Recurrence Quanti-
fi cation Analysis parameters can evaluate and differentiate young 
and elderly subjects’ impact of age on HRV Parameters. And also, 
it is concluded that age is an important factor to be considered for 
the prognosis and diagnosis of HRV.

This study showed that HRV (by all measures) decreases with 
aging. These parameters can be used as early indicators of cardio-
vascular disease and other disease detection. There is a consider-
able change in the degree of nonlinearity with aging. It can also 
be concluded that the results indicated by both techniques are the 
same, but Poincare Analysis is more convenient to implement and 
interpret than RQA. In the future, these methods can be used to 
develop a biomarker for understanding advancing personal health 
care to prevent disease and telemedicine ‒ the involvement of the 
autonomic nervous system in generating non-linear fl uctuations 
in healthy human subjects.

Fig. 7. (a) Poincare Plot for F1o01 elderly subject; (b) Poincare Plot for F1Y01 young subject.

a b
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