
107

© The Authors 2023. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial 4.0 International License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Stress, depression, and hippocampus: from biochemistry to 
electrophysiology

Alzbeta Idunkova, Lubica Lacinova  and Lucia Dubiel-Hoppanova

Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract. Major depressive disorder is a very common serious mental illness with increasing preva-
lence in the population. Its pathology includes biochemical, morphological, and electrophysiological 
changes in various brain areas. In spite of decades of extensive research pathophysiology of depres-
sion is still not sufficiently understood. When depression occurs just before or during pregnancy, 
it may have a detrimental effect on perinatal and/or postnatal brain development, affecting the off-
spring’s behavior. An important role in the pathology of depression is the hippocampus as a center 
for cognition and memory. Here we review changes in morphology, biochemical, and electrical 
signaling caused by depression in first and second generation identified in various animal models.
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Introduction

Depression is a common mental disorder that affects more 
than 280 million people worldwide. It is characterized by 
persistent low mood and loss of interest in activities we 
once enjoyed (Diseases and Injuries Collaborators 2020). 
Depression significantly limits psychosocial functioning 
and reduces the quality of life. It is also one of the most com-
mon complications during pregnancy, with a prevalence of 
around 20%. Anxiety is a common symptom of depression. 

However, clinical anxiety is also present in nearly two-thirds 
of individuals with major depressive disorder (Goldberg and 
Fawcett 2012). Anxiety symptoms often appear 1 or 2 years 
before the onset of major depression (Malhi et al. 2002).

While the underlying mechanisms are not well under-
stood, some reviews and meta-analyses have demonstrated 
the impact of maternal depression symptoms on child de-
velopment in cognitive, behavioral, social, mood, language, 
and “attachment” manifestations (Kingston et al. 2018; Ahun 
and Cote 2019; Rogers et al. 2020). Maternal depression 
is a  known risk factor and has adverse consequences for 
the offspring, such as preterm birth, low birth weight, and 
intrauterine growth restriction (Accortt et al. 2015; Gelaye 
et al. 2016). Complications of low birth weight and preterm 
birth are reported as the leading cause of death in children 
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under five years of age (Eshete et al. 2019; Silveira et al. 
2019). Children of depressed mothers also have higher rates 
of cognitive, social, and mood disorders later in childhood 
and adolescence (Grundwald and Brunton 2015; Braun et 
al. 2020).

Depression is associated with dysregulation of the hypo-
thalamic-pituitary-adrenal (HPA) axis and the abnormal re-
lease of the stress hormone cortisol (Seth et al. 2016). Cortisol 
can disrupt the flow of oxygen and nutrients, predisposing 
the fetus to intrauterine growth restriction, low birth weight, 
and preterm birth (Meltzer-Brody 2011). Antenatal depres-
sion can disrupt the immune system, leaving the mother 
vulnerable to various infections that can affect fetal growth 
and cause premature birth and other congenital defects. In 
addition, depression can affect the mother’s appetite, which 
affects the mother’s nutritional status. This causes poor fetal 
development, leading to low birth weight and intrauterine 
growth restriction (Grote et al. 2010). Ghimire et al. (2021) 
demonstrated that there is a significant risk of preterm birth 
(35%), low birth weight (86%), and a fourfold increase in 
the risk of intrauterine growth restriction due to antenatal 
depression. 

Changes in fetal response to vibroacoustic stimulation, 
fetal heart rate variability, altered motor activity, and altered 
behavioral reactivity and development have been observed 
in prenatal stress and depression (Hanley and Oberlander 
2012; Graignic-Philippe et al. 2014). Effects of prenatal 
depression observed in infants included altered neonatal 
behavior scores, reduced vagal tone, altered cortisol reactiv-
ity, altered reactivity to pain or stress, altered temperament, 
increased irritability, altered attention, sleep problems, and 
delayed neuromotor development (Hanley and Oberlander 
2012; Suri et al. 2014).

An important role in stress-induced depression is the 
hippocampal-prefrontal pathway, representing a unidirec-
tional projection (Godsil et al. 2013). Hippocampus is a brain 
region essential for learning and memory, abilities known 
to be impaired during the depression. It is also unique in 
its capacity to generate new neurons from neural stem cells 
(Eriksson et al. 1998; van Praag et al. 2002). Defects in hip-
pocampal neurogenesis were identified in animal models of 
depression and patients suffering from a depressive disorder. 
Therefore, the hippocampus is emerging as a brain structure 
significantly contributing to the development of the depres-
sive disorder.

Neurogenesis and neuroplasticity in stress and depression

One of the most important neuroscience discoveries of 
the last century was the identification of pluripotent stem 
cells in the adult brain from which new neurons can be 
generated. This process is called neurogenesis. Growth and 

adaptability at the level of neurons are more commonly 
called neuroplasticity. Neuroplasticity at the cellular level 
is likely altered by inflammation and HPA axis dysfunction 
caused by environmental stress (Egeland et al. 2015). The 
process of neurogenesis is managed by regulatory proteins 
such as brain-derived neurotrophic factor (BDNF), which 
is reduced in the serum of patients with major depressive 
disorder (Singh et al. 2022). Abnormally low serum BDNF 
concentrations in depressed patients can be restored by anti-
depressant therapy, either pharmacotherapy or psychological 
interventions (Molendijk et al. 2014; Zhou et al. 2017). 

Numerous clinical studies demonstrated lowered serum 
BDNF level during pregnancy (Singh et al. 2022). BDNF 
serum concentration decreased significantly from 1st to 2nd 
trimester, then from 2nd to 3rd trimester, and this decrease 
was fully reversed during weeks 4–11 postpartum (Lom-
matzsch et al. 2006; Christian et al. 2016). Participants in 
clinical studies were also tested for depression symptoms us-
ing standardized tests. Most studies demonstrated a negative 
correlation between BDNF serum concentration and depres-
sion scores (Gazal et al. 2012; Pinheiro et al. 2012; Dhiman 
et al. 2014; Fung et al. 2015; Gao et al. 2016). However, other 
authors reported only a weak correlation (Lommatzsch et al. 
2006) or no association (Akbaba et al. 2018).

A possible association between BDNF level and depres-
sion-like behavior was also found in animal models. Pro-
longed but not short repeated restrain stress during the last 
week of pregnancy significantly decreased BDNF expression 
in rat hippocampi (Maghsoudi et al. 2014). BDNF expres-
sion in the prefrontal cortex was significantly reduced in the 
estrogen withdrawal rat model of postpartum depression (Li 
et al. 2018). In the mouse model exposed to stress during 
the first week of gestation, hippocampal BDNF expression 
was significantly lowered at day 28 postpartum (Vanmierlo 
et al. 2018).

Animal studies report that limiting neurogenesis pre-
vents the action of antidepressants and has been shown to 
lead to depression-like symptoms, particularly in stressful 
situations. Therefore, neurogenesis is thought to facilitate 
resistance to stress, which could underlie the clinical effects 
of antidepressants (Kraus et al. 2017). Postmortem studies 
of depressed patients show a deficit of granule neurons in 
the gyrus dentatus (GD) in untreated subjects compared 
to non-depressed and treated groups. Patients treated for 
depression have significantly more dividing neural pro-
genitor cells compared to the untreated depressed group 
and even the non-depressed group (Gururajan et al. 2016). 
These findings are consistent with mouse studies showing 
that antidepressants can act by increasing neurogenesis in 
the adult brain.

Several animal models of maternal depression have 
been designed and developed in recent decades. Models of 
maternal depression are based on prenatal and/or early life 
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stress (Pereira-Figueiredo et al. 2017). Prenatal stress (PS) 
has direct effects on the processes of neurogenesis, neuronal 
migration, cellular differentiation, and synaptic refinement 
that occur during the prenatal period. The results of maternal 
stress coincide with significant neurodevelopmental changes 
in the fetus. Low to moderate levels of PS can enhance fetal 
maturation and have an adaptive role, but higher persistent 
stress can lead to adverse neurodevelopmental outcomes 
(DiPietro et al. 2006). Evidence of neurodevelopmental 
deficits was observed in rats exposed to maternal PS from 
G14 (14th day of gestation), with developmental differences 
in the amygdala nuclei suggesting that fear-related behaviors 
elicited anxiety-like symptoms (Kraszpulski et al. 2006). PS 
also causes learning deficits associated with inhibiting neu-
rogenesis (Lemaire et al. 2000) and expression of the neural 
cell adhesion molecule PSA-NCAM, which is involved in 
the migration of new neurons (Morley-Fletcher et al. 2011).

Structure of hippocampus

The hippocampus, a paired functional system located within 
the temporal lobe, is a phylogenetically old cortical structure 
(“archicortex”) (Vida 2010). It consists of anatomically dis-
tinct subregions: GD and cornu ammonis (CA). The interface 
between them is a region called the hilus (El Falougy et al. 
2008). The CA region consists of three subregions (CA1, 
CA2, CA3) divided according to the density, size, and 
branching of pyramidal cell axons and dendrites (Vida 2010; 
Witter 2010). Currently, the existence of a fourth area, CA4, 
is still debatable. Some studies report this area as a separate 
part between the CA3 and GD areas (Zaidel et al. 1997). In 
others, it is mentioned only as another name for the hilus area 
(Scharfman and Myers 2012). A common feature of all hip-
pocampus regions, except for the hilum, is a highly laminar 
structure. The principal cells of the CA regions form a layer 
called the stratum pyramidale. In GD, this layer is called the 
granular cell layer. Other areas are stratum lucidum (only in 
the CA3 area), stratum radiatum, and stratum lacunosum, 
which is often connected to the stratum moleculare and thus 
forms the stratum lacunosum-moleculare (Spruston and 
McBain 2007). The primary cells forming the hippocampus 
are the pyramidal neurons of the CA regions, granular neu-
rons of the dentate gyrus, and the mossy fibers of the hilum, 
each group forming a  largely homogeneous population. 
Pyramidal neurons of the CA1 region are some of the best-
studied neurons in the brain. A pyramidal or elliptical shape 
of the soma, a large apical dendrite and several small basal 
dendrites characterize them. Pyramidal cell axons usually 
originate from the base of the soma but may also originate 
from the proximal basal or apical dendrite (Maccaferri et al. 
2000). Altered hippocampal CA1 is an emerging marker of 
depression (Zierhut et al. 2013; Roddy et al. 2019). A global 
study has found that the hippocampus, the brain region re-

sponsible for memory and emotion, shrinks in people with 
recurrent and poorly treated depression. 

Hippocampal neurogenesis

The hippocampus is one of the brain structures that is highly 
vulnerable to early-life stress (Hoeijmakers et al. 2017). 
Animal studies pointed out that neurogenesis, in which new 
neurons are generated in the hippocampal GD throughout 
life, occurs more during early life and adolescence than in 
adulthood (Kozareva et al. 2019; Moreno-Jimenez et al. 
2019). Hippocampal neurogenesis is essential in learning 
and spatial memory (Terranova et al. 2019) and is involved 
in anxiety, forgetting stress response, and antidepressant 
effects (Santarelli et al. 2003; David et al. 2009). Accumulat-
ing evidence suggests that the hippocampus is functionally 
segregated along its longitudinal axis into dorsal and ventral 
regions, with the dorsal region playing a  more dominant 
role in spatial learning and memory. In contrast, the ventral 
region is more dominant in regulating anxiety and stress 
response (Bannerman et al. 2004; Fanselow and Dong 2010). 
There is also emerging evidence that neurogenesis in the 
ventral hippocampus (VH) is more sensitive to stress regu-
lation than neurogenesis in the dorsal hippocampus (DH) 
(O’Leary and Cryan 2014; Levone et al. 2021) . In a study by 
Coe et al. (2003), pregnant rhesus macaque monkeys were 
exposed to PS (during early and late pregnancy) by being 
moved to a dark room for 90 min for five days per week and 
intermittently awakened by an acoustic startle protocol. This 
reduced hippocampal volume and inhibition of maternal 
hippocampal neurogenesis in the GD. In addition, it was 
proven that prenatally stressed mothers showed impaired 
long-term potentiation (LTP). This was demonstrated in 
the Morris water maze (MWM) and facilitated long-term 
depression in the CA1 hippocampal region (Yang et al. 2006). 
Based on the fact that the transition to motherhood itself in 
the absence of stress affects hippocampal plasticity (Kinsley 
et al. 2006; Leuner et al. 2007; Pawluski and Galea 2007; 
Pawluski et al. 2010), neurogenesis was observed depending 
on the number of litters. During the post-pregnancy period, 
primiparous rats had reduced dendritic complexity in CA1 
and CA3 pyramidal neurons and lower levels of hippocampal 
neurogenesis compared to nulliparous or multiparous fe-
males (Pawluski and Galea 2007). Van den Hove et al. (2005) 
failed to find a relationship between PS and neurogenesis in 
the GD of stressed rats, but cell proliferation measurements 
concerning PS differed. They suggested that the neurodevel-
opmental variability in rats in response to maternal stress is 
due to genetic influences that explain why some individuals 
are negatively affected by PS and others remain resistant or 
even benefit from it.

Animal structural studies confirmed in depressed humans 
found that hippocampal volume diminishes in severely de-
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pressed compared to non-depressed humans (Schmaal et al. 
2017). Some studies have linked the degree of hippocampal 
volume loss to the duration of untreated lifetime depression 
(Cole et al. 2011; Kempton et al. 2011). Postmortem stud-
ies have shown that the GD volume in untreated depressed 
patients is approximately half that of non-depressed controls 
and treated depressed patients (Boldrini et al. 2013, 2018). 
The therapeutic effect of antidepressants in rodent animal 
models was directly related to increased neurogenesis 
(Santarelli et al. 2003; Hill et al. 2015). Antidepressants like 
fluoxetine, imipramine (Santarelli et al. 2003) and lithium 
(Chen et al. 2000) were shown to increase adult neurogen-
esis in rodents GD, each acting by a different mechanism. 
Adult hippocampal neurogenesis was also demonstrated in 
young to adult humans (Boldrini et al. 2018). Whether the 
depression-dependent reduction of hippocampal volume 
can be reversed by pharmacological treatment and whether 
this is necessary for antidepressant response in humans 
remains to be seen in further clinical trials.

Functional neuroimaging provides information on brain 
networks involved in critical processes such as emotion regu-
lation, rumination (lack of sleep), inability to experience the 
pleasure of reward, and self-awareness. Studies examining 
these networks in depressive disorders have found that the 
amygdala generally has increased activity and connectivity. 
Other structures, such as the subgenual anterior cingulate, 
are hyperactive. The insula and dorsal lateral prefrontal 
cortex are hypoactive in depressed individuals (Hamilton 
et al. 2012; Pizzagalli 2014). Different types of treatment, 
such as drugs, psychotherapies, and stimulation therapies, 
have different effects. Research linking pre-existing brain 
abnormalities to the selection of optimal therapies is an area 
of current research.

HPA axis in stress and pregnancy

Long-term or chronic exposure to stress can have adverse 
effects and lead to dysregulation of the HPA axis (Tsigos 
and Chrousos 2002). The coordinated action of hormones 
produced by the mother, the placenta, and the fetus regulates 
the neurodevelopmental processes of the fetus and helps the 
formation of the brain (Baud and Berkane 2019).

An essential role play steroid hormone from the gluco-
corticoid group, cortisol in humans and/or corticosterone in 
rodents. A negative feedback loop mechanism controls the 
cortisol synthesis and secretion. After stimulation, the hypo-
thalamus secretes corticotropin-releasing hormone (CRH), 
which stimulates the pituitary gland to synthesize and secrete 
adrenocorticotropic hormone (ACTH). The latter stimulates 
the adrenal glands to synthesize and secrete cortisol, inhibit-
ing the secretion of both CRH and ACTH. Cortisol secretion 
increases during stress (De Kloet et al. 1998).

Effects of stress-induced increases in cortisol include 
activation and regulation of the cardiovascular and immune 
systems, utilization of energy stores and gluconeogenesis, 
inhibition of reproductive and growth functions, and en-
hancement of memory and attention processes (de Kloet et 
al. 1998, 2005; Xiong and Zhang 2013). High levels of circu-
lating cortisol inhibit further HPA activity at the level of the 
hypothalamus, pituitary gland, and hippocampus (De Kloet 
et al. 1998; Smith and Vale 2006). Under normal conditions, 
this negative feedback loop terminates the stress response. 
Increased maternal cortisol is beneficial in the short term 
because it promotes the maturation of fetal organs and 
improves neurodevelopment. However, excessive maternal 
cortisol during early to mid-gestation negatively affects the 
fetus (Davis et al. 2005, 2007; Davis and Sandman 2010). 

The primary regulator of the HPA axis is CRH. HPA 
responses during pregnancy are characterized by the pla-
centa, which synthesizes placental CRH (pCRH) as early as 
seven weeks of gestation. pCRH exhibits distinct responses 
to glucocorticoids and is bidirectionally released into the 
maternal and fetal compartments during pregnancy (Smith 
and Vale 2006).

CRH is a key modulator of neurogenesis, and genetic dis-
ruption of CRH/CRH-R (R-receptor) impairs hippocampal 
neurogenesis. CRH has a neuroprotective role (Koutmani et 
al. 2013, 2019). However, intrauterine exposure to excessive 
CRH can affect fetal neurodevelopment and lead to brain 
changes such as reductions in cortical volume, neuronal 
density in limbic brain regions, and changes in neuronal 
circuits, synaptic plasticity, neurotransmission, and in GPCR 
(G protein-coupled receptors) signaling (Fig. 1). This leads 
to cognitive and emotional deficits that persist into later life 
(Curran et al. 2017; Sandman et al. 2018).

Full-term infants of mothers with lower levels of CRH 
at 25 weeks of gestation showed lower levels of childhood 
anxiety compared to infants exposed to elevated levels of 
the stress hormone (Davis et al. 2005). Experimental ani-
mal models have demonstrated in offspring CRH-induced 
changes in dendritic branching, specifically reduced branch-
ing of cortical neurons (Curran et al. 2017); altered synaptic 
plasticity, impaired myelin formation, and reduced density 
of dendritic processes in the hippocampal region (Hermes 
et al. 2020; Shang et al. 2021).

The hippocampus and the HPA are functionally linked. 
Therefore stress-induced changes in the HPA axis could 
mediate changes in the developing hippocampus in the 
offspring (Pervanidou and Chrousos 2018). Recent studies 
have shown that maternal adversity causes, among other 
things, the activation of brain CRH-R1 and the regulation 
of neuronal connectivity and developmental trajectories of 
the immature hippocampus (Chen et al. 2004). This leads 
to the structural remodeling of hippocampal CA3 neurons 
with a significant reduction in apical dendrite complexity 
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and spine density (Wang et al. 2011; Liao et al. 2014; Liu et 
al. 2016).

Increased inflammation as an effect of maternal 
depression

Several forms of psychological stress are associated with in-
creased inflammatory processes during pregnancy. Depres-
sion may aggravate the proinflammatory state in pregnancy 
(Leff-Gelman et al. 2016) and link maternal depression 
with child development (Glover 2015; Van den Bergh et al. 
2020). Preclinical studies show the effects of these mater-
nal processes on offspring neurobehavioral development, 
and increasing evidence also shows effects on neural and 
behavioral phenotypes relevant to psychiatric disorders in 
humans. Many other aspects of stress-sensitive maternal-
placental-fetal (MPF) biology, including the HPA, oxidative 
stress, serotonin signaling, and epigenetic mechanisms, also 
affect fetal brain development (Buss et al. 2012; Entringer 
et al. 2015). Significantly, the inflammatory process inter-
acts with other aspects of MPF biology through multiple 
mechanisms. Knowing the mechanisms of the inflammatory 
processes is very important for a better understanding of the 
potentially harmful effects of maternal psychological stress 
during pregnancy on the brain development of the offspring.

Increased inflammation is a key pathway through which 
increased maternal psychological stress during pregnancy 
affects fetal brain development and the risk of adverse neu-
rodevelopmental outcomes. Maternal inflammation during 
pregnancy is associated with an increased risk of mental 
disorders in the offspring, including schizophrenia, autism, 
and attention-deficit/hyperactivity disorder (Instanes et 
al. 2017; Meyer 2019). Stress-induced changes in immune 
functioning are thought to occur through interactions be-
tween the immune system and the HPA axis. Cortisol, the 
end product of the HPA axis, regulates immune function 
(Cohen et al. 2012). However, chronic activation of the HPA 
axis in response to stress can lead to impaired glucocorticoid 
regulation of immune function, and thereby contribute to 
increased inflammation (Cohen et al. 2012).

Cytokines are essential for fetal brain development, 
including signaling cell differentiation, axonal growth 
and synaptogenesis (Boulanger 2009; Deverman and Pat-
terson 2009). An increase in proinflammatory cytokines 
in maternal blood is accompanied by increased levels 
in placental tissues, amniotic fluid, and the fetal brain 
(Gayle et al. 2004; Meyer et al. 2006). This demonstrates 
that maternal inflammation influences the inflammatory 
environment of the fetus. The effects of increased maternal 
inflammation during pregnancy on the neurodevelopment 
of the offspring include altered gene expression in the fetal 
brain (Garbett et al. 2012), reduced total brain volume 

(da Silveira et al. 2017), reduced volume of the prefrontal 
cortex, hippocampus (Piontkewitz et al. 2012; Crum et 
al. 2017), anterior cingulate cortex, amygdala, striatum, 
nucleus accumbens, and lateral ventricles, and increased 
volume of thalamus, ventral mesencephalon, and brain-
stem (Crum et al. 2017). Persistent effects on offspring 
behavior consistent with human psychopathology are also 
observed (Martin et al. 2008; Sullivan et al. 2011; Sasaki et 
al. 2013). The effects can be eliminated by antibodies that 
inactivate specific proinflammatory cytokines (Smith et 
al. 2007; Wu et al. 2017).

Preclinical models provide evidence that inflammatory 
factors influence the development of fetal neurotransmitter 
systems critical for behavioral regulation, including seroton-
ergic (Hsueh et al. 2017), dopaminergic (Bronson and Bale 
2014; Luchicchi et al. 2016), and glutamatergic (Rahman et 
al. 2017) systems. In addition to directly affecting fetal brain 
development, exposure to inflammation in utero is thought to 
trigger an inflammatory process in the fetal brain (Manjeese 
et al. 2021; Singh et al. 2021), which can alter brain develop-
ment through the activation of glial cells (Reus et al. 2015), 
increased oxidative stress (Hassan et al. 2016), and aberrant 
neuronal development.

Neuroinflammation may cause defects in the expression 
of ion channels in the hippocampus, thus causing defective 
synaptic plasticity related to memory and/or emotional 
deficits. Intravenous injection of proinflammatory cytokine 
interleukine-1β (IL-1β) induced depression-like behavior 
in rats (Gui et al. 2016), while intracerebroventricular ap-
plication of IL-1 receptor agonist relieved it (Norman et 
al. 2010). Overproduction of IL-1β and/or another proin-
flammatory cytokine, tumor necrosis factor (TNF-α) were 
shown to impair long-term potentiation in the hippocampus 
(Katsuki et al. 1990; Pickering et al. 2005). Upregulation of 
TNF-α reduced dendritic length and spine densities in CA1 
pyramidal neurons in mice hippocampus (Liu et al. 2017), 
thus contributing to attenuated hippocampal excitability.

Stress, depression, and neuronal excitability 

While extensive research has focused on understanding the 
behavioral correlates of stress during pregnancy, little has 
focused on neuronal excitability. Behavioral and biochemi-
cal changes in the brain are manifested, among other things, 
by changes in excitability in relevant brain areas. Therefore, 
a detailed analysis of neuronal excitability is of great impor-
tance when investigating the effects of stress and/or depres-
sion in both the first and second generations. Experimental 
objects such as the primary hippocampal neuron culture 
and/or the acute hippocampal slices allow this investigation. 
Acute hippocampal slices are most often obtained from the 
brains of young or adult rodents and will enable the analy-
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sis of alteration in excitability in both stressed animals and 
their offspring. Primary cultures of hippocampal neurons 
are prepared from the brain of late embryonic or newborn 
rodents and can be maintained in vitro for 2–3 weeks ( Nagerl 
et al. 2004; Galimberti et al. 2006), allowing analysis of early 
changes in offspring brains. 

Resting membrane potential and voltage-dependent potassium 
channels

The resting membrane potential of an excitable cell (Vrest) is 
its basic property and facilitates or attenuates the propaga-
tion of action potentials (APs) in excitable tissues. A major 
determinant of Vrest is potassium conductance. Several types 
of potassium channels contribute to setting Vrest, along with 
nonspecific cation channels that can transport both K+ and 
Na+ ions (Nishitani et al. 2019). These channels also con-
tribute to the membrane repolarization required for firing 
the recurrent AP, so their altered function may underlie 
changes in both Vrest and activation of the depolarization-
activated AP. It has been shown that stress can change the 
activity of Kv7 (KCNQ) and Kv1 potassium channels. Acute 
restraint stress reduced the activity of Kv7 channels (Zhou 
et al. 2017) and increased the firing activity of neurons in 
the hypothalamic paraventricular nucleus of rats. Chronic 

stress associated with the onset of major depressive disorder 
altered the expression of Kv1 channels in mice (Miyata et al. 
2016). The possible alteration of resting membrane potential 
was not investigated in these experiments.

Hippocampal HCN channels in stress and depression

Other channels highly expressed in the hippocampus and 
contributing to Vrest maintenance are hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels (Mon-
teggia et al. 2000), permeable to both K+ and Na+ ions. In 
the hippocampal CA1 region, HCN1 is the primary type 
of HCN channels expressed with a gradient of increasing 
channel density along the CA1 somatodendritic region 
(Lorincz et al. 2002; Notomi and Shigemoto 2004). As they 
are active at a resting membrane potential, they contribute 
to the electrical properties of the neuronal membrane, such 
as input resistance (Rinp), AP generation, and resonance 
frequency (Hu et al. 2002; Shah et al. 2004; Narayanan and 
Johnston 2007). Several studies suggest that HCN channels 
play a role in depression and contribute to the mechanism 
of antidepressant effects (Fig. 2). Reduction of the functional 
Ih current mediated by HCN channels in the brain produces 
antidepressant-like effects (Lewis et al. 2011). Mice in which 
the pore-forming or accessory subunits of HCN chan-
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Figure 2. Cellular pathways connecting 
antidepressant effect, BDNF synthesis, 
and HCN activation in the hippocampus. 
Antidepressants increase the levels of 
monoamines such as serotonin (5-HT) 
and norepinephrine (NE) in the synaptic 
cleft. They act on their respective recep-
tors to stimulate cAMP and protein 
kinase  A  (PKA), resulting in cAMP 
response element binding (CREB), tran-
scription factor phosphorylation, and 
higher BDNF production. The produc-
tion of BDNF will be enhanced by the 
pharmacological inhibition of N-methyl-
aspartate (NMDA) receptors or the 
reduction of HCN channels activity. The 
reduction of HCN channels activity also 
stimulates the kinase mTOR. Molecular 
mechanisms by which the reduced func-
tion of HCN channel enhances BDNF 
synthesis and phosphorylation of mTOR 
remain to be elucidated.
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nels (HCN1, HCN2, and TRIP8b) were deleted exhibited 
antidepressant-like behavior (Lewis et al. 2011; Kim et al. 
2012). However, the physiological role of HCN channels 
in the hippocampus in developing anxiety and depression 
is not clarified in detail. Kim and collaborators (Kim et al. 
2012, 2018) found that chronic, but not acute stress, leads to 
increases in the expression of perisomatic HCN1 channels 
and the amplitude of Ih currents, that correlates temporally 
with the development of depression- and anxiety-like symp-
toms in rats. Furthermore, these changes were restricted to 
the dorsal hippocampus region only. Interestingly, the ex-
pression of the HCN1 channel is negatively correlated with 
the expression of BDNF (Hou et al. 2018). In line with this 
finding, chronic stress causing depression-like behavior also 
decreased BDNF expression in the hippocampus (Gronli et 
al. 2006) and, vice versa, knock-down of expression of BDNF 
in the hippocampus induced depression-like behavior (Taliaz 
et al. 2010). 

Regulation of Ca2+ fluxes in depression

Abnormal increases in intracellular calcium levels were 
found in platelets and lymphocytes from depressed patients 
(Dubovsky et al. 1992; Emamghoreishi et al. 1997). Several 
pathways lead to an increased intracellular calcium concen-
tration. Chronic stress induces hypersecretion of glucocor-
ticoids, resulting in an increased calcium current through 
L-type voltage-gated Ca2+ channels (Karst et al. 2000; Zhao 
et al. 2009). Chronic restraint stress-induced depressive-like 
behavior was accompanied by an enhanced CaV1.2 channel 
expression (Moreno et al. 2020). The increase in mRNA 
and protein levels in the hippocampus and L-type calcium 
current amplitude in CA1 neurons was observed. Calcium 
influx through L-type calcium channels may activate several 
intracellular signaling pathways. In an investigated depres-
sion model, enhanced activity of the L-type calcium channel 
selectively activates the calmodulin-NFAT axis, leading to 
enhanced Fas ligand expression, which may lead to apoptotic 
neuronal death (Moreno et al. 2020). 

Activation of calcium release from intracellular stores 
and/or inhibition of calcium reuptake by the sarcoplas-
mic/endoplasmic reticulum Ca2+-ATPase (SERCA) also 
increases intracellular calcium concentration. Elevated 
intracellular calcium level induces a perisomatic increase 
in Ih current in CA1 neurons previously observed in the 
animal depression model (Narayanan et al. 2010; Clemens 
and Johnston 2014). This perisomatic increase in Ih current 
was partially mediated by an increase in intracellular cal-
cium and activation of inositol 1,4,5-triphosphate receptors 
(IP3Rs) and store-operated channels (SOC) (Narayanan 
et al. 2010; Ashhad et al. 2015). Vice versa, inhibition of 
SERCA induced depression-like behavior in rats (Kim et 
al. 2018).

Early changes in hippocampal excitability caused by prena-
tal stress

Prolonged exposure to stress before or during pregnancy is 
a well-established model for studying the effects of maternal 
depression on the offspring. Primary culture of hippocampal 
neurons prepared from late embryonic or newborn pups 
enables investigation of alterations developed in utero.

In the primary culture of hippocampal neurons prepared 
from offspring of rats exposed to pregestational stress result-
ing in depression-like behavior, depolarization of the Vrest 
was found in the early days of neuronal culture. Still, it did 
disappear as neurons gradually matured (Bogi et al. 2019). 
In the same model, suppressed depolarization-activated AP 
firing and increased spontaneous hippocampal cell activity 
were found in newborns exposed to pregestational stress.

Cultured hippocampal neurons from pups born to moth-
ers exposed to stress during pregnancy did not differ in Vrest, 
Rinp, and AP properties like the AP threshold, overshoot, 
duration, or after-potentials compared to cultures from non-
stressed mothers (Grigoryan and Segal 2013a). While there 
was no difference in the excitatory postsynaptic currents, 
the rate of spontaneous miniature inhibitory postsynaptic 
current was lowered in prenatally stressed pups (Grigoryan 
and Segal 2013a). Further, these authors also reported more 
developed dendritic networks in cultured neurons from 
prenatally stressed pups.

Later changes in the excitability of hippocampal neurons 
caused by prenatal stress

Acutely prepared slices from the hippocampus allow us to 
analyze neuronal excitability at the age of several days to 
several weeks. The significant advantage is the possibility 
of precise visual identification of individual types of hip-
pocampal neurons.

Reduction of inhibitory tone caused by prenatal stress 
observed in the primary culture of neonatal hippocampal 
neurons was confirmed in slices prepared from 2–3 weeks 
old male offspring by measurement of population spikes in 
the CA1 region (Grigoryan and Segal 2013a). In 4-5 weeks 
old rats, exposure to prenatal stress did not affect pair-pulse 
facilitation of field excitatory postsynaptic potentials (fEP-
SPs) but significantly reduced long-term potentiation (LTP) 
(Yaka et al. 2007). A similar reduction of LTP, accompained 
by promoted induction of long-term depression (LTD), was 
observed by Yeh and colleagues (Yeh et al. 2012) in 5-week-
old rats exposed to prenatal stress, but the effect disappeared 
at eight weeks of age. In a different prenatal stress model, the 
impairments of hippocampal LTP persisted up to 8 weeks 
of age (Yang et al. 2007). Reduced NMDA-dependent hip-
pocampal  LTP was  also reported for 7–8-week-old prena-
tally stressed male mice (Son et al. 2006).
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It is well known that noradrenergic stimulation plays 
a key role in the regulation of excitability, attention, cognitive 
function, and stress responses. One of the underlying regula-
tory pathways involves the facilitation of LTP via adrenergic 
receptors in the hippocampus (Izumi and Zorumski 1999). 
This mechanism is specific to the dorsal (DH) and ventral 
(VH) sections of the hippocampus (Grigoryan and Segal 
2016). In control rats 4–5 weeks of age isoproterenol acti-
vated LTP in DH but not in VH. The effect was the opposite 
in prenatally stressed rats: isoproterenol activated LTP in VH 
but not in DH (Grigoryan and Segal 2013b).

Another signaling pathway affected by prenatal stress is 
the BDNF pathway. Conversion from pro-BDNF to mature 
BDNF is impaired in prenatally stressed rats (Yeh et al. 2012), 
and BDNF signaling is reduced in these animals (Neeley 
et al. 2011). This can affect the maturation of GABAergic 
neurons. It has been reported that the expression of GABAe-
rgic neurons is reduced in the hippocampus of prenatally 
stressed rats (Vaid et al. 1997). This reduction in inhibition 
was manifested as a reduction in the spike population during 
the paired-pulse depression, which could be distinct from 
a similarly insignificant change in EPSP slope, an indicator 
of excitatory synaptic function. A reduction in inhibition 
may underlie the increased efficacy of isoproterenol in VH 
in prenatally stressed rats reported by Grigoryan and Segal 
(2013b).

Conclusion

The hippocampus is a region of the brain that has recently 
received much attention in research on mood disorders and 
may play a central role in depressive disorders. Animal mod-
els of depression allow us to analyze the underlying organic 
changes in detail. In addition to pathological changes in 
biochemical and electrical signaling underlying behavioral 
changes in animal models of depression, maternal depression 
models allow investigation of altered offspring brain activity 
at multiple systemic levels. The behavioral changes observed 
in the offspring may not only be caused by the depression 
of the mother’s  altered behavior but also by biochemical 
changes in the offspring’s brain that occur during pregnancy 
and are also manifested by altered neuronal excitability in 
the hippocampus. These changes are extremely complex, as 
demonstrated by the altered expression of 6.1% of 9505 valid 
genes, including those encoding for voltage- and ligand-
gated ion channels, in prenatally stressed rats (Bogoch et al. 
2007). A detailed description of modified pathways may offer 
useful hints for the design of improved therapeutic strategies.
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