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Abstract. Toxic doses of paracetamol are also known to be close to therapeutic doses. This study 
aimed to biochemically investigate the protective effect of ATP against paracetamol-induced oxida-
tive liver injury in rats and to examine the tissues histopathologically. We divided the animals into 
the paracetamol alone (PCT), ATP + paracetamol (PATP), and healthy control (HG) groups. Liver 
tissues were examined biochemically and histopathologically. Malondialdehyde level, AST and 
ALT activity in the PCT group were significantly higher than those in the HG and PATP groups 
(p < 0.001). The glutathione (tGSH) level, superoxide dismutase (SOD) and catalase (CAT) activity 
in the PCT group was significantly lower than that in the HG and PATP groups (p < 0.001), while 
animal SOD activity was significantly different between the PATP and HG groups (p < 0.001). The 
activity of CAT was almost the same. In the group treated with paracetamol alone, lipid deposition, 
necrosis, fibrosis, and grade 3 hydropic degeneration were observed. No histopathological damage 
was observed of the ATP-treated group, except for grade 2 edema. We discovered that ATP reduces 
the oxidative stress caused by paracetamol ingestion and protects against paracetamol-induced liver 
injury at the macroscopic and histological levels.
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Introduction

Paracetamol is an antipyretic and analgesic from the 
group of nonsteroidal anti-inflammatory drugs (NSAIDs) 
(Agrawal and Khazaeni 2022). Although paracetamol has 
a  good safety profile at therapeutic doses, it can cause 
severe liver damage when taken in large quantities (Ye et 
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al. 2018). The hepatotoxic effect of paracetamol is known 
to be because of the formation of the metabolite N-acetyl-
p-benzoquinoneimine (NAPB) in the liver. It is usually 
detoxified by endogenous glutathione (GSH). High doses 
of paracetamol lead to depletion of GSH stores, inadequate 
detoxification of NAPB, and toxicity (More et al. 2017; 
Jiang et al. 2020). In the literature, excessive production of 
reactive oxygen species (ROS) in mitochondria has been 
blamed for the hepatotoxicity of paracetamol (Yan et al. 
2018). Previous studies suggest that ROS, generated during 
paracetamol metabolism, trigger the lipid peroxidation 
(LPO) reaction and subsequently lead to oxidative liver 
damage (Du et al. 2016). Some studies have argued that the 
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toxic effects of paracetamol are related to the depletion of 
adenosine triphosphate (ATP), the energy source of cells 
(Jiang et al. 2015). As described in the literature, energy is 
required to synthesize low molecular weight antioxidants 
(Yi et al. 2010). Superoxide dismutase (SOD) is induced 
by the upregulation of Cu/Zn- SOD protein expression 
(Dvořáková et al. 2006). ATP is known to potentiate Cu/
Zn-SOD expression (Chen et al. 2006). The hydrogen 
peroxide (H2O2) formed in this process stimulates the 
production of antioxidants and enzymes that neutralize 
ROS (Heck et al. 2010), and also a study showed that ATP 
has catalase-like activity, which enables H2O2 consump-
tion (Ying et al. 2019). Under stress, ATP may also be 
involved in the metabolism of lipid peroxidation. Under 
these conditions, free radicals are formed and must be 
scavenged by the enzymatic and non-enzymatic potential 
of cells to maintain normal cell life. ATP may be required 
for the production and maintenance of these enzymes 
and for membrane repair processes (Saquet et al. 2000). 
Therefore, the supply of exogenous ATP provides suffi-
cient usable energy to maintain and enhance antioxidant 
defence systems and to maintain membrane integrity by 
preventing the accumulation of ROS. The energy level 
can regulate the balance between the ROS production 
and the antioxidant system by increasing both enzyme 
activities and the ability to scavenge free radicals (Yi et al. 
2010). Since ATP is a charged molecule that cannot freely 
pass through cell membranes, its protective effects must 
be achieved in ways other than simply supplying energy 
to cells. When ATP is released, it is rapidly converted to 
adenosine by various extracellular enzyme families such 
as ecto-50-nucleotidase, ectonucleoside triphosphate 
diphosphohydrolases, ectonucleotide pyrophosphatase/
phosphodiesterases, and alkaline phosphatases. ATP 
is a  key molecule for extracellular signal transduction 
(Yegutkin 2008; Maldonado et al. 2013). One possible 
mechanism could be the activation of A1 and A3 adenosine 
receptors, which play a role in triggering a cardioprotective 
effect against ischemia-reperfusion injury, a phenomenon 
known as ischemic preconditioning (Kudo et al. 2002; 
Hochhauser et al. 2007). A  recent study reported that 
ATP protects oral mucosal tissues from oxidative damage 
by preventing an increase in malondialdehyde (MDA) 
and decreasing the amount of total glutathione (tGSH) 
(Yıldırım et al. 2020). This also suggests that ATP may help 
treat the hepatotoxicity of paracetamol. No studies in the 
literature have investigated the protective effect of ATP 
against paracetamol hepatotoxicity. Therefore, our study 
aimed to biochemically investigate the protective effect of 
ATP against paracetamol-induced oxidative liver injury in 
rats and to examine the tissues histopathologically.

Materials and Methods

Animals

For study, 18 male albino Wistar rats weighing 280–
290  g  were obtained from Binali Yıldırım University 
Medical Experimental Application and Research Center. 
Before the experiment, the animals were housed at room 
temperature (22°C) with 12 h of light and 12 h of darkness 
and fed regular animal food. To allow the animals to ac-
climate to the environment, they were kept for one week 
in the laboratory environment where the experiment was 
to be conducted.

Ethical procedures

The protocols and procedures were approved by the local An-
imal Experimentation Ethics Committee (Date: 31.03.2022 
Meeting No: 2022/03).

Chemicals

The chemicals used were supplied by the specified compa-
nies. Thiopental sodium (Pental sodium 1 g/flacon injection 
form, IE Ulagay, Turkey), paracetamol (Parol 500 mg/tablet 
oral form, Atabay Drug Company, Turkey), and ATP (ATP 
10 mg/ml injection form, Zdorovye Narodu, Ukraine).

Experimental groups

The experimental animals were divided into the paraceta-
mol alone (PCT), ATP + paracetamol (PATP), and healthy 
control (HG) groups.

The procedure of the experiment

To perform the experiment, 25 mg/kg of ATP was intraperi-
toneally (ip) injected into the PATP group (n = 6). Distilled 
water as a solvent was injected ip into the PCT (n = 6) and 
HG (n = 6) groups. One hour before administering ATP and 
distilled water, paracetamol was administered orally at a 1000 
mg/kg dose to all rats (except the HG group). This dose of 
paracetamol was shown to cause oxidative liver damage in 
a previous study (Kisaoglu et al. 2014).

Twenty-four hours after paracetamol administration, all 
animals were killed with a high dose of anesthesia (50 mg/
kg thiopental sodium), and their liver tissues were removed. 
Before killing the animals, alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) activities were deter-
mined in blood samples taken from the animals’ tail veins. 
MDA, tGSH, SOD and CAT measurements were made in the 
excised liver tissues. In addition, the tissues were examined 
histopathologically. Biochemical and histopathological re-
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sults of the PATP and HG groups of animals were compared 
with PCT and evaluated.

Biochemical analysis

Preparation of the samples

The tissue samples were placed in Petri dishes after wash-
ing with physiological saline. The tissues were ground into 
powder in the presence of liquid nitrogen. To evaluate SOD 
activity as well as GSH, TBARS, and protein levels, tissue 
samples were homogenized. The supernatants were used for 
SOD, CAT, GSH, MDA, and protein analysis.

MDA analysis

MDA is a naturally occurring product of lipid peroxidation. 
Measurement of thiobarbituric acid reagents (TBARS) is 
a  well-established method for screening and monitoring 
lipid peroxidation. For MDA determination, 250 µl of radio-
immunoprecipitation assay (RIPA) buffer which contains 
50  mM Tris-HCI, pH 7.6, containing 150 mM sodium 
chloride, 1% Tergitol (NP-40), 0.5% sodium deoxycholate, 
and 0.1% sodium dodecyl sulfate (SDS) was used to sonicate 
tissue samples. The homogenate obtained during sonica-
tion was centrifuged at 1,600 × g and 4°C for 10 min. The 
supernatant was used for analysis. Colorimetrically, the 
MDA-TBA adduct formed by the reaction of MDA and TBA 
at high temperatures (90–100°C) and acidic conditions was 
detected at an excitation wavelength of 530–540 nm. MDA 
levels were measured using commercially available enzyme-
linked immunosorbent assay (ELISA) kits for experimental 
animals (part no. 10009055, Cayman Chemical Company).

GSH analysis

GSH values in experimental animals were determined using 
commercially available ELISA kits (part no. 703002, Cayman 
Chemical Company). For GSH determination, tissue sam-
ples were homogenized with 50 mM cold phosphate buffer 
(pH 6–7) containing 1 mM ethylenediaminetetraacetic acid 
and centrifuged at 10,000 × g and 4°C for 15 min. GSH was 
then determined using 5,5-dithiobis-(2-nitro benzoic acid) 
(DTNB) in the supernatant. When the DTNB disulfide sulf-
hydryl groups are reduced, a yellow compound is formed, 
and its absorbance at 412 nm is measured spectrophoto-
metrically.

Determination of SOD activity

SOD was measured using  ELISA kits (part no. 706002, 
Cayman Chemical Company). Tissue samples were ho-

mogenized in 20 mM HEPES buffer, pH 7.2, containing 
1 mM EGTA, 210 mM mannitol, and 70 mM sucrose, and 
centrifuged at 1,500 × g for 5 min at 4°C. For analysis the 
supernatant was used. The Cayman SOD assay uses a tetra-
zolium salt to detect superoxide radicals formed by xanthine 
oxidase and hypoxanthine. One unit of SOD is defined as the 
amount of enzyme required to dismutate 50% of superoxide 
radicals. The absorbance was measured spectrophotometri-
cally at 560 nm.

Determination of CAT activity 

For CAT analysis, tissue was homogenized in 10 ml of buffer 
(50 mM potassium phosphate buffer containing 1 mM EDTA, 
pH 7.2) and centrifuged for 15 min at 10,000 × g and 4°C. 
The supernatant was used to determine the CAT activity. 
The analysis is based on the reaction of CAT with methanol 
in the presence of H2O2. The resulting formaldehyde is 
measured colorimetrically with a chromogen called 4-amino-
3-hydrazino-5-mercapto-1,2,4-triazole. Upon oxidation, the 
chromogen turns from corrosive to purple (Aebi 1984). 

Protein determination

This measurement is based on detecting dye solutions absorb-
ance at 595 nm due to the binding of the acidic solution of 
Coomassie Brilliant Blue G-250 to proteins (Bradford 1976).

Determination of AST and ALT activity

To assess blood AST and ALT spectrophotometrically for 
liver function tests, a  Cobas 8000 autoanalyzer (Roche 
Diagnostics GmBH, Mannheim, Germany) and com-
mercially available kits (Roche Diagnostics) were utilized. 
Anticoagulant-free venous samples of blood were collected 
in tubes. After clotting, serum was centrifuged and kept at 
−80°C before tested.

Histopathological examination

Subject tissues were fixed in 10% formaldehyde solution for 
72 h. Tissues were then placed in a cassette and washed with 
running water for 24 h. They were then dehydrated through 
an increasing series of alcohols (70, 80, 90, and 100%). Liver 
tissue purified in xylene was embedded in kerosene blocks, 
and sections 4–5 μm thick were taken. Using the Olympus 
DP2-SAL software (Olympus® Inc. Tokyo, Japan), sections 
were assessed and photographed after being stained with 
a hematoxylin-eosin double stain. The severity of histopatho-
logical damage of each liver tissue section was scored from 
0 to 3 (0 – normal, 1 – mild damage, 2 – moderate damage, 
and 3 – severe damage). For the study groups histopatho-
logical evaluation was performed by a blinded histologist.
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Statistical analysis

The results obtained from the experiments were expressed 
as “mean value ± standard error of mean” (x ±  SEM). 
A Shapiro-Wilk test was used to test for the normality of 
the distribution for continuous variables. The significance 
of the difference between groups was determined by using 
a one-way ANOVA test. Then, Fisher’s LSD (least signifi-
cant differences) was made as a post-hoc test. All statistical 
operations were performed in the SPSS for Windows, 25.0 
(Armonk, NY: IBM Corp.) and the p < 0.05 value was ac-
cepted significant. 

Results

Biochemical results

As seen in Figure 1, MDA levels in the PCT group were 
significantly higher than those in the HG and PATP groups 
(p < 0.001). Similarly, a significant difference between the 
PATP and HG groups was calculated (p < 0.001). In addi-
tion, the tGSH content in the liver tissue of the animals in 
the PCT group was significantly lower than that in the HG 
and PATP groups (p < 0.001). Although the tGSH content 
was close to that of HG and PATP, a significant difference 
was found between them (p < 0.002).

Figure 1. MDA and tGSH determina-
tion of study groups. Data are means 
± SEM. * p < 0.001 vs. HG, and PATP; 
** p < 0.001 vs. HG; *** p = 0.002 vs. 
HG. MDA, malondialdehyde; tGSH, 
total glutathione; HG, healthy group; 
PCT, paracetamol group; PATP, par-
acetamol + ATP group.

As shown in Figure 2, SOD and CAT activity in the liver tis-
sues of animals in the PCT group were significantly lower than 
those in the HG and PATP groups (p < 0.001). While animal 
SOD activity was significantly different between the PATP and 
HG groups (p < 0.001), the activity CAT was almost the same.

The blood activities of AST and ALT were significantly 
higher in the PCT group than in the HG and PATP groups 
(p < 0.001) (Fig. 3). However, animal blood ALT activities 
were close between the PATP and HG groups (p >0.05), and 
the AST activities were significantly different (p < 0.001).

Histopathological findings

As shown in Figure 4A, no histopathological damage was 
observed in the liver tissue of the healthy group. In the group 
treated with paracetamol alone, lipid deposition, necrosis, 
fibrosis, and grade 3 hydropic degeneration were observed 
(Fig. 4B). No histopathological damage was observed in 
the ATP-treated group, except for grade 2 edema (Fig. 4C).

Discussion

In this study, we investigated the effects of ATP on prevent-
ing paracetamol-induced liver injury, which had not been 
previously investigated in the literature, and found that ATP 
was of great benefit in inhibiting the increase in paracetamol-

Figure 2. SOD and CAT activity of 
study groups. Data are means ± SEM. 
* p < 0.001 vs. HG, and PATP; ** p < 
0.001 vs. HG; α p > 0.05 vs. HG. SOD; 
superoxide dismutase, CAT; catalase. 
For more abbreviations, see Figure 1.
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induced oxidative stress. By macroscopic and histological 
examination of liver tissue, we found that ATP reduced liver 
damage associated with paracetamol ingestion.

Paracetamol is probably the most commonly used and 
best-tolerated analgesic (Ramachandran and Jaeschke 2019). 
It is commonly used regardless of sex, age, or geographic loca-
tion. Even the US FDA states that paracetamol is available over 
the counter, alone, or in combination with other substances 
(FDA 2022). The wide availability of this potent drug often 
leads to unintentional overdoses or abuse. Because of its ready 
availability and concomitant abuse, its name has become syn-
onymous with hepatotoxicity and sudden liver failure (Moore 
and Scheiman 2018). 46% of cases of acute liver failure in the 
United States, 40% in the United Kingdom, and 70% of all cases 
in Europe are caused by paracetamol. The problem is com-
pounded because in the United States alone, paracetamol is 
responsible for around 500 deaths each year, as well as 100,000 
calls to poison control centers, 50,000 emergency department 
visits, and 10,000 hospitalizations (Lee 2017). This problem has 

been addressed at two US FDA Advisory Committee meetings 
in the past 15 years, which adds to the concern.

Since the liver is the organ that plays a central role in the 
detoxification of paracetamol and hepatocytes are directly 
damaged at high doses, it is not surprising that toxicity is 
so common. Although liver cells can self-renew after injury, 
extensive cell death can trigger the inflammatory response. 
One way to prevent potential liver damage is to limit inflam-
mation in the liver. At this stage, ATP plays an important 
role (Amaral et al. 2013).

Although N-acetyl cysteine, which has been shown to 
restore cellular GSH reserves in the liver, is now used to treat 
paracetamol-induced liver injury. When oxidative stress 
occurs, free radicals are formed in the cell (McCord 2000). 
These chemicals cause changes in the cell, such as protein 
degradation and deterioration of DNA structure, leading 
to apoptosis and tissue destruction (Raha and Robinson 
2001). Glutathione, an endogenous tripeptide that exists 
in two forms, GSH and oxidized glutathione (GSSG), plays 

Figure 4. A. Normal histopathological appearance (H&E) of the 
liver tissue of HG (A), PCT (B) and PATP (C) group. Lipid deposi-
tion (dashed thin arrow), necrosis (arrowhead), fibrosis (curved 
arrow) and hydropic degeneration (thick arrow) appearance were 
recorded in PCT group. Edema (star) appearance in PATP group. 
For abbreviations, see Figure 1.

Figure 3. ALT and AST activity in 
the blood in study groups. Data are 
means ±  SEM. *  p  < 0.001 vs. HG, 
and PATP; ** p < 0.001 vs. HG; + p > 
0.05 vs. HG; **  p  = 0.002 vs. HG. 
ALT, alanine aminotransferase; AST, 
aspartate aminotransferase. For more 
abbreviations, see Figure 1.

A

C

B
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an essential role in removing these radicals (Meister and 
Anderson 1983). Excessive paracetamol is thought to induce 
lipid peroxidation via GSH depletion. The NAPB metabolite 
of paracetamol may act as a mediator for hepatotoxic ef-
fect. ATP hydrolysis is required for glutathione synthesis. 
If the metabolism of acetaminophen is examined, 50% is 
conjugated to glutathione, 40% is conjugated to sulfate, and 
5% is oxidized to NAPB. With toxic exposure to acetami-
nophen, excess acetaminophen is metabolized to NAPB. It is 
a toxic substance that is reduced by glutathione to nontoxic 
mercaptan and cysteine compounds and then excreted by 
the kidneys. When an overdose of acetaminophen depletes 
glutathione stores and reaches less than 30% of normal, 
NAPB levels increase and bind to hepatic macromolecules, 
causing liver necrosis and rendering the condition irrevers-
ible (Kuffner et al. 2001, 2007). Endogenous GSH detoxifies 
this harmful toxin. However, when paracetamol is taken in 
dangerous amounts, an excess of NAPB is produced that 
cannot be adequately detoxified by GSH. The synthesis of 
NAPB to an extent that exceeds the detoxification capacity 
of GSH leads to liver damage (Xu et al. 2018).

To maintain oxidative balance, the liver uses a variety of 
antioxidant molecules, including GSH. When the amount 
of oxidizing free radicals in the cell increases, the enzyme 
glutathione reductase catalyzes the conversion of GSSG to 
GSH, which is needed to reduce these radicals (Xu et al. 2018). 
These toxic reactions are mainly seen in hepatocytes. Hepatic 
ATP depletion is thought to occur with acetaminophen poi-
soning, and mitochondrial membrane damage is thought 
to be the leading cause of decreased ATP production. These 
findings from the literature are consistent with our own. In the 
current study, GSH levels in the PCT group were significantly 
lower than in the HG and PATP groups. The high glutathione 
levels in the PATP group are thought to be because of ATP, 
which is the energy donor in the synthesis of antioxidants.

The amount of MDA was lower in the PATP group than 
in the PCT group. Research has shown that MDA levels 
increase with oxidative damage to the liver (Demiryilmaz 
et al. 2012). An increase in the level of MDA in a  tissue 
indicates an increase in oxygen free radicals in that tissue. 
Lipid peroxidation is accelerated by an increase in free oxy-
gen radicals. MDA is a byproduct of lipid peroxidation that 
causes cross-linking of cell membrane molecules, resulting 
in cell damage (Karihtala and Soini 2007; Valko et al. 2007).

Most energy-consuming processes during liver regenera-
tion, including cell mitotic and biosynthetic activity, requires 
energy in the form of ATP. Protein and lipid production, 
growth factor production, signal transduction, and mitosis 
during regeneration require ATP. In the regeneration zone, 
decreased blood flow and oxygenation lead to ischemia that 
can disrupt the balance between energy production and con-
sumption. It can lead to depletion of energy-rich phosphate 
ATP, which limits the energy supply to cells and potentially 

impairs healing (Chien 2010). Paracetamol toxicity has been 
shown to lead to mitochondrial ATP reduction in hepatocytes 
(Masubuchi et al. 2005; Shi et al. 2018). Injection of ATP into 
rabbits’ ischemic ear wounds induced early angiogenesis in 
the wound bed, resulting in faster wound closure and in-
creased formation and reepithelialization than in untreated 
rabbits (Wang et al. 2009). A  recent study concluded that 
administration of exogenous ATP elicits a protective effect on 
ischemic skeletal muscle (Maldonado et al. 2013). Adminis-
tration of exogenous ATP counteracts ischemia and reduces 
necrosis in tissues (Dvoriantchikova et al. 2010). These data 
suggest that intracellular ATP distribution promotes wound 
healing in normal and diabetic wounds and provides a poten-
tial therapeutic approach for chronically nonhealing wounds. 
Although the methods by which intracellular ATP distribu-
tion supports wound healing are not fully explained, ATP is 
an essential component of the healing process. 

Endogenous antioxidants, such as CAT and SOD, are en-
zymes that reduce the rate of lipid peroxidation. SOD protects 
cells from the damaging effects of superoxide radicals, while 
CAT directly neutralizes H2O2 produced during oxidative 
stress (Niwa et al. 1990). It is more effective in situations 
with high H2O2 concentrations (Halliwell 1974). GSH con-
centration, SOD, and CAT activities were higher, and MDA 
levels were lower in HG and PATP than in PCT. Significant 
oxidative stress occurs in the livers of rats given paracetamol, 
according to the literature and our experimental results. AST 
and ALT were much higher in PCT blood samples than in HG 
and PATP blood samples. AST and ALT are the most com-
monly used diagnostic methods to evaluate liver function. 
When the liver is damaged, then activities of these enzymes 
are increased in the blood (Yabe et al. 2001). This is caused 
on by an increase in cell membrane permeability or ami-
notransferase levels (Giannini et al. 2005). ATP attenuates the 
increase in ALT, AST, and oxidative stress parameters caused 
by paracetamol in liver injury (Demiryilmaz et al. 2012).

Cell proliferation, intracellular and transmembrane ion 
flow, immunomodulation, and thrombosis are just a few of 
the many cellular and tissue processes that are influenced 
by purinergic receptors for extracellular nucleotides and 
nucleosides (Burnstock et al. 1970). The purinergic recep-
tor system in mammals is made up of G protein-coupled P1 
receptors A1, A2A, A2B, and A3 for extracellular adenosine, 
ATP-gated ion channel P2X1–7 receptors, and G protein-
coupled P2Y1,2,4,6,11,12,13 and 14 receptors for extracel-
lular ATP (eATP) (Burnstock 2018; Woods et al. 2021). ATP 
and adenosine are key modulators of the immune system. 
While ATP is an immunostimulant, adenosine has an im-
munosuppressive effect. Therefore, the balance between 
the two is crucial for the proper functioning of the immune 
system. Extracellular signals provided by ATP and adenosine 
are detected and transmitted by P2 and P1 receptors, respec-
tively, found on all types of immune cells, thus purinergic 
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signaling affects all aspects of immunity and inflammation 
(Cekic and Linden 2016; Richa 2022). An in vitro study found 
that during hepatic necrosis, hypersensitivity to extracellular 
ATP occurs due to purinergic receptor expression, which 
increases necrosis (Amaral et al. 2013).

Conclusion

The results reported here suggest that ATP, an energy donor in 
antioxidant synthesis, may aid in the treatment of liver toxici-
ties in which oxidative stress plays an important pathogenic 
role. We discovered that ATP reduces the oxidative stress by 
increasing GSH levels, SOD activities, CAT activities, decreas-
ing MDA levels and protects against paracetamol-induced 
liver injury at the macroscopic and histological levels. We 
expect this study to provide more helpful information for 
therapeutic trials to reduce paracetamol-induced liver injury.

Conflict of interest. We have no conflict of interest to declare.
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