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Summary. - High-throughput RNA sequencing (RNA-seq) analysis of samples from Mallotus japonicus,
atraditional medicinal plant, yielded two novel RNA viruses tentatively named Mallotus japonicus virus
A (MjVA) and Mallotus japonicus virus B (MjVB). The MjVA and MjVB genomes encode proteins showing
amino acid sequence similarities to those of poleroviruses (the genus Polerovirus, the family Solemoviridae)
and amalgaviruses (the genus Amalgavirus, the family Amalgaviridae), respectively. The MjVA genome con-
tains seven highly overlapping open reading frames, which are translated to seven proteins through various
translational mechanisms, including -1 programmed ribosomal frameshifting (PRF) at the slippery motif
GGGAAAC, non-AUG translational initiation, and stop codon readthrough. The MjVB genome encodes two
proteins; one of which is translated by +1 PRF mechanism at the slippery motif UUUCGN. The abundance
analysis of virus-derived RNA fragments revealed that MjVA is highly concentrated in plant parts with
well-developed phloem tissues as previously demonstrated in other poleroviruses, which are transmitted
by phloem feeders, such as aphids. MjVB, an amalgavirus generally transmitted by seeds, is distributed in all
samples at low concentrations. Thus, this study demonstrates the effectiveness and usefulness of RNA-seq
analysis of plant samples for the identification of novel RNA viruses and analysis of their tissue distribution.
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ribosomal frameshifting

Introduction

The high-throughput sequencing of genetic materials
acquired from diverse host organisms and environments
has greatly broadened our knowledge on the diversity of
viruses (Shi et al., 2016). The comprehensive analysis of
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Abbreviations: FPKM = fragments per kilobase per million;
MjVA = Mallotus japonicus virus A; MjVB = Mallotus japoni-
cus virus B; NLS = nuclear localization signal; ORF = open
reading frame; PRF = programmed ribosomal frameshifting;
RdRp = RNA-dependent RNA polymerase; SaYV = Sauropus
yellowing virus; SRA = Sequence Read Archive

RNA sequencing (RNA-seq) data obtained primarily for
gene expression studies has also facilitated the detection
and characterization of RNA viruses (Kim et al., 2014;
Edgar et al., 2022). RNA samples isolated from cellular
organisms, especially plants, may contain RNA molecules
derived from RNA viruses. Many novel RNA virus genome
sequences have been identified by analyzing RNA-seq
data from plant samples (Choi et al., 2021, 2022; Shin et
al., 2021, 2022).

Mallotus japonicus is a valuable traditional medicinal
plant widely distributed in East Asia; its tissues, such
as leaves, root, and bark, have been used to treat several
diseases, including stomach disorders, irritable bowel
syndrome, rheumatism, diabetes, and neuralgia (Ari-
sawa, 1994; Wu et al., 2021). High-throughput RNA-seq
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and metabolite profiling of seven tissues of M. japonicus
haverevealed that metabolite accumulations are strongly
correlated with gene expression among analyzed tissues
(Rai et al., 2021).

Poleroviruses are plant pathogenic viruses that cause
quality and yield losses of economically important crop
plants (Distefano et al., 2010; Delfosse et al., 2021). The
genus Polerovirus belongs to the family Solemoviridae,
together with three other genera, namely, Enamovirus, Po-
lemovirus,and Sobemovirus (Sémera et al.,2021). Polerovi-
ruses have a positive-sense single-stranded RNA genome
of 5-6 kb in length and contain seven conserved overla-
pping open reading frames (ORFs), namely, ORFO, ORF],
ORF2, ORF3a, ORF3, ORF4, and ORF5 (LaTourrette et al.,
2021;Igorietal.,2022). These ORFs produce proteins called
PO (ORFO0), P1(ORF1),P1-P2 (fusion of ORFland ORF2), P3a
(ORF3a),P3(ORF3), P3-P5 (fusion of ORF3 and ORF5),and
P4 (ORF4). The P1-P2 fusion protein, which contains an
RNA-dependent RNA polymerase (RdRp) domain, is ge-
nerated by -1programmed ribosomal frameshifting (PRF),
which occurs at the conserved slippery heptanucleotide
sequence GGGAAAC within ORFI (Atkins et al., 2016; Del-
fosse et al., 2021). A pseudoknot structure after this con-
sensus is required for -1 PRF (Csaszar et al., 2001; Atkins
etal.,2016; Delfosse et al.,2021). P3a protein translation is
initiated at anon-AUG start codon (Smirnova et al.,2015).
The P3-P5 fusion protein is produced via the readthrough
translation of the UAG stop codon of ORF3 (Knierim et al.,
2015; LaTourrette et al.,2021). Several aphid species serve
as transmission vectors of most poleroviruses, while
a whitefly species acts as a vector of some poleroviruses
(Ghosh et al., 2019; LaTourrette et al., 2021).

Amalgaviruses are members of the family Amalga-
viridae, which is composed of two approved genera
(Amalgavirus and Zybavirus) and a proposed genus
“Anlovirus” (Krupovic et al.,2015; Depierreux et al., 2016;
Pyleetal.,2017). They are vertically transmitted through
seeds from one generation to the next with or without
causing visible symptoms (Martin et al.,2011). They have
adouble-stranded RNA genome with alength of approxi-
mately 3.5 kb and encode two ORFs, namely, ORF1 and
ORF2 (Park and Hahn, 2017; Park et al., 2018). Although
the ORF1 product or ORFlp has no established function,
it likely participates as a nucleocapsid or replication
factory-like protein (Isogai et al., 2011; Krupovic et al.,
2015). ORF2 encodes RdRp and is translated as the
ORF1+2p fusion protein; this process is mediated by
+1 PRF mechanism occurring at the slippery sequence
UUUCGN, where N is any nucleotide (Nibert et al., 2016;
Goh et al., 2018; Lee et al., 2019).

In the present study, a novel polerovirus and a novel
amalgavirus were identified via the high-throughput
RNA-seq of tissue samples from M. japonicus.

Materials and Methods

RNA-seqdata. Seven samples,including young leaves, mature
leaves, young stems, mature stems, bark, central cylinder, and
inflorescence, of a12-year-old M. japonicus plant were collected
for high-throughput RNA-seq analysis (Raiet al.,2021). RNA-seq
data are available in the Sequence Read Archive (SRA) of the
National Center for Biotechnology Information (NCBI) under
the Acc. Nos. SRR15027072-SRR15027078. Raw M. japonicus
RNA-seq data were filtered to obtain high-quality reads by using
sickle (version 1.33; https://github.com/najoshi/sickle) with
the parameter “-q 30 -155.” High-quality reads were assembled
into contigs by using the SPAdes Genome Assembler (version
3.15.4; http://cab.spbu.ru/software/spades) with the parameter
“-rnaviral,” which is optimized for the generation of RNA viral
genome contigs (Bushmanova et al., 2019).

Identification of viral genome contigs. Putative viral genomes
in the assembled M. japonicus RNA-seq contigs were initially
identified by comparing them with known viral RdRp sequen-
ces via the BLASTX mode of DIAMOND (Buchfink et al., 2021).
Known viral RARp domain sequences were obtained from the
Pfam database (release 35.0; https://pfam.xfam.org; Pfam Acc.
Nos.:PF00602, PF00603, PFO0604, PFO0680, PF00946, PFO0972,
PF00978, PF00998, PF02123, PF03431, PF04196, PF04197,
PF05273,PF05788, PF05919, PF06317, PF06478, PF07925, PFO8467,
and PF12426). Putative viral genome contigs were compared
with all known viral proteins by using the NCBI BLAST server
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to select novel virus
genome sequences.

Annotation and analysis of viral genomes. The ORFs of
a viral genome contig were initially predicted using the ORF
finder web server (https://www.ncbi.nlm.nih.gov/orffinder).
Special features, such as a PRF site, non-AUG start codon, and
stop codon readthrough, were determined by comparing the
nucleotide sequences with those of closely related viruses.
Apseudoknot structure was predicted using the IPknot + + web
server (http://rtips.dna.bio.keio.ac.jp/ipknot++) (Sato et al.,
2011). Signal peptides and transmembrane domains were pre-
dicted using SignalP (version 6.0; https://services.healthtech.
dtu.dk/service.php?SignalP) and DeepTMHMM (version 1.0.12;
https://dtu.biolib.com/DeepTMHMM), respectively (Hallgren et
al.,2022; Teufel et al., 2022). A nuclear localization signal (NLS)
was predicted via NLStradamus (version r.9; http://www.mo-
seslab.csb.utoronto.ca/NLStradamus) (Nguyen Ba et al., 2009).
The BOXSHADE program (version 3.31; https://launchpad.
net/ubuntu/focal/+package/boxshade) was used to visualize
multiple sequence alignments of PRF regions. The WebLogo
web server (version 3; http://weblogo.threeplusone.com) was
used to create sequence logo representation (Schneider and
Stephens, 1990; Crooks et al., 2004).

Phylogenetic analysis. The genome and protein sequences of
poleroviruses and amalgaviruses were collected by sequence-
similarity and keyword searches of the NCBI sequence data-
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bases. The multiple alignments of viral protein sequences
were generated by using MAFFT (version 7.490; https://mafft.
cbrc.jp/alignment/software) with the parameter “--auto” (Na-
kamura et al., 2018). Multiple sequence alignments were fil-
tered using trimAl (version 1.4.rev22; http://trimal.cgenomics.
org), with the parameter “-automatedl,” to select well-aligned
informative positions optimized to reconstruct a maximum
likelihood phylogenetic tree (Capella-Gutiérrez et al., 2009).
Maximum likelihood trees were inferred using IQ-TREE (ver-
sion 2.1.3; http://www.igtree.org) (Minh et al.,2020). Bootstrap
support values were calculated from 1000 replicates by using
the UFBoot2 method implemented in the IQ-TREE program
(parameter “-B 1000”). Phylogenetic trees were visualized
using MEGA (version 11.0.11; https://www.megasoftware.net)
(Tamura et al., 2021).

Viral read abundance analysis. The abundances of virus-
derived reads in M. japonicus RNA-seq data were calculated
by mapping high-quality reads to viral genome sequences by
using the BWA-MEM algorithm of the BWA Aligner (version
0.7.17-r1194-dirty; https://github.com/1h3/bwa). SAMtools (ver-
sion 1.14; https://github.com/samtools/samtools) was used to
extract RNA-seq reads that mapped to viral genomes (Danecek
etal.,2021). For normalization, fragments per kilobase per mil-
lion (FPKM) values were calculated according to the following
formula: 10° X C/ (N X L), where C is the number of fragments
mapped onto the virus genome, N is the total number of high-
quality fragments, and L is the length of a virus genome.

Results and Discussion
Identification of novel RNA virus genomes

RNA-seq data, a total of 16 gigabases, were generated
from seven samples (young leaves, mature leaves, young
stems, mature stems, bark, central cylinder, and inflo-
rescence) of a 12-year-old M. japonicus plant to study
gene-metabolite networks involving tissue-specific
accumulation of therapeutically important substances
(Raiet al.,2021). When M. japonicus RNA-seq assembled
contigs were compared with representative known RNA
viral RdARp sequences, two contigs, namely, 6217 and
3362 nucleotides (nt) in length, showed strong sequence
similarities to known viral RARp sequences. Subsequent
sequence similarity searches of all known proteins in
the NCBI confirmed that these two contigs were nearly
complete viral genomes of novel RNA viruses. They were
tentatively named Mallotus japonicus virus A (MjVA,
a 6217 nt long contig) and Mallotus japonicus virus
B (MjVB, a 3362 nt long contig). The genome sequences
of MjVA and MjVB were deposited in the NCBI nucleo-
tide database under Acc. Nos. OP122168 and OP122169,
respectively.

MjVA is a novel polerovirus

The MjVA genome was 6217 nt long and predicted to
encode an RdRp and other proteins most closely related
with those of poleroviruses, including carrot red leaf
virus, cotton leafroll dwarf virus, Plantago asiatica virus
A, and Sauropus yellowing virus (SaYV) (Huang et al.,
2005; Distefano et al., 2010; Knierim et al., 2015; Igori et
al.,2022). The MjVA genome was predicted to have seven
ORFs, which are translated to seven proteins, including
PO (ORFO0), P1(ORF1),P1-P2 (fusion of ORF1and ORF2),P3a
(ORF3a),P3(ORF3), P3-P5 (fusion of ORF3 and ORF5),and
P4 (ORF4; Fig. 1a). No additional ORFs, which have been
found in some poleroviruses, were predicted in the MjVA
genome (LaTourrette et al., 2021).

The MjVA ORFO is located at the 116-910 genome posi-
tion, which encodes the 264-amino acid (aa) protein PO. As
in other poleroviruses, most of the MjVA ORFO sequence
overlaps with the ORF1 at the 282-2483 position. The
polerovirus PO protein is a suppressor of RNA silencing
and interferes with the RNA silencing defense mechanism
of the plant hosts (Delfosse et al., 2021).

The MjVA ORF1 (282-2483 genome position) encodes
733 aa P1 protein, which was predicted to have a signal
peptide at the N-terminus, at the 1-18 aa position, and
a transmembrane domain at the 147-148 aa position.
These hydrophobic segments may mediate the attach-
ment of the P1 protein to intracellular membranes as
observed in other polerovirus P1 proteins (Delfosse et
al.,2021).

The MjVA ORF2 (1961-3748 genome position) contains
an RdRp domain, which is required for the viral genome
replication. The polerovirus ORF2is translated as a P1-P2
fusion protein by -1PRF mechanism. Atalowrate,during
ORF1translation, ribosomes may move backward by one
nucleotide at the conserved slippery heptanucleotide
sequence GGGAAAC, which is followed by a pseudoknot
structure (Csaszar et al.,2001; Atkins et al., 2016; Delfosse
et al., 2021). The putative slippery sequence GGGAAAC
was found in the MjVA genome at the 1955-1961 genome
position, which was followed by a possible pseudoknot
structure (Fig. 1b). The C residue located at the 1961 posi-
tion would be the first base of ORF2. Therefore, the MjVA
P1-P2 fusion protein, 1155 aa in length, is produced by
translating a part of ORF1 (282-1961 position) and the
entire ORF2 (1961-3748 position). Nucleotide residues
at the 1968-1972 position (5'-GGCCG-3') and those at the
1979-1983 position (3'-CCGGC-5') might form the first
stem of the pseudoknot structure. The second stem was
predicted to be formed between residues at the 1972-1978
position (5-GCUGG-3') and those at the 1997-1993 posi-
tion (3'-CGACC-5'). Another conserved sequence motif
AAACAA, which is shared among poleroviruses, was
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Genomic organization of Mallotus japonicus virus A (MjVA)

(a) Schematic representation of the MjVA genome is shown. ORFs and protein products are depicted as differentially colored boxes. Thin
red boxes indicate a predicted signal peptide (SP) for P1and P1-P2 proteins; transmembrane domains (TM) of P1, P1-P2, and P3a proteins;
and a nuclear localization signal (NLS) of P3 and P3-P5 proteins. The genomic positions of protein-coding regions are presented in a box
attheright. (b) Predicted pseudoknot structure involving -1 programmed ribosomal frameshifting (PRF) is shown. Residues forming two
stem structures are indicated by blue and magenta, respectively, and are connected by lines in their corresponding colors. (c) Multiple
alignment of sequences surrounding the -1 PRF sites of MjVA and representative poleroviruses is shown. Residues forming stems are
indicated by parenthesis and square brackets. (d) Sequence logo representation of the multiple alignment of the -1 PRF sites is presented.
In (b), (c), and (d), the slippery sequence GGGAAAC and the conserved sequence AAACAA are marked with asterisks and plus signs, re-
spectively. The red asterisk indicates the first nucleotide of ORF2.
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found at the 1985-1990 position within the second loop
of the pseudoknot structure (Delfosse et al., 2021).

Multiple alignment comparison of nucleotide se-
quencesaround the -1PRF site revealed a strong sequence
conservation of slippery heptanucleotide sequences and
pseudoknot-forming regions among poleroviruses (Fig.
1c). The sequence logo representation of the alignment
provided a clear view of the detailed sequence conserva-
tions (Fig.1d). In addition to the slippery heptanucleotide
sequence GGGAAAGC, the G residue next to the motif was
extremely conserved, suggesting that the slippery motifis
the octanucleotide sequence GGGAAACG. The first stemis
formed by highly conserved nucleotide residues of which
deduced consensus sequences are 5'-DGCRG-3'and 3'-VC-
GYC-5', where D represents A, G, or U; Rrepresents A or G;
Vrepresents A, C, or G;and Yrepresents Cor U. The second
stem also showed a moderate sequence conservation
with the most frequent sequences being 5-GCCG-3' and
3'-CGGC-5'. Another conserved motif is found within the
second loop, and the most common sequenceis AAACAA.
However, the exact locations and base-pairing patterns of
pseudoknot structures may vary among poleroviruses.
Nonetheless, these conserved sequence motifs can be
utilized toinfer the general features of polerovirus -1 PRF
sites and predict them from novel polerovirus genome
sequences.

The MjVA ORF3a is located at the 3815-3952 genome
position, encoding a 45 aa P3a protein, with a CUG codon
asthe predicted start codon. All known polerovirus ORF3a
start with anon-AUG codon. When 36 known polerovirus
genome sequences with annotated ORF3a were analyzed,
the most frequent ORF3a start codon was AUA with 20
cases, followed by ACG, 6; AUU, 5; AUG, 2; CUG, 2; and GUG,
1. The MjVA P3a was predicted to have a transmembrane
domain at the 6-26 aa position, which may be required for
its plasma membrane localization (Smirnova et al., 2015;
Delfosse et al., 2021).

The MjVA ORE3 is located at the 3933-4601 genome
positionand encodes 222 aa P3 protein. ORF3 starts within
ORF3a and two ORFs share 20 nucleotides in different
reading frames. The polerovirus P3 protein is the coat
protein that encapsidates genomic RNA molecules (Del-
fosse et al., 2021). An arginine-enriched basic region was
found inthe MjVA P3 protein at the 16-68 aa position, with
two arginine-rich segments at 16-27 (RRRRNRRRRQRR)
and 55-64 (RRRRRRNRRR) positions. This segment was
predicted to be an NLS, which may be responsible for the
nuclear localization of MjVA P3 (Haupt et al., 2005).

The stop codon of polerovirus ORF3 is not 100% effi-
cient,and in some instances, ribosomes continue to trans-
late the succeeding ORF5 by incorporating a glutamine,
tyrosine, or histidine residue instead of terminating the
process; as aresult, the P3-P5 fusion protein is produced

(Xu et al., 2018). The P3-P5 fusion protein is a minor coat
protein assembled into viral particles (Peter et al., 2008).
The MjVA ORF5islocated at the 4602-6074 genome posi-
tion after ORF3. The readthrough translation of the MjVA
ORF3 stop codon results in 713 aa P3-P5 fusion protein
translated from the 3933-6074 genome position. All the
36 known poleroviruses and MjVA have UAG as the ORF3
stop codon.

The MjVA ORF4 is entirely embedded within ORF3 in
different reading frame and separated from ORF3a by
only twonucleotides, spanning at the 3955-4428 genome
position. The tightly packed organization of ORF3a, ORE3,
and ORF4 is a common feature of known poleroviruses
(LaTourrette et al., 2021). The MjVA ORF4 encodes 157 aa
P4 protein, which participates in cell-to-cell movement
through plasmodesmata and systemic long-distance
movement via phloem sieve elements (Delfosse et al.,
2021).

The phylogenetic relationship of MjVA and known
poleroviruses was investigated using the P1-P2 fusion
protein sequences (Fig. 2). A maximum likelihood phy-
logenetic tree was inferred from P1-P2 fusion protein
sequences of MjVA, 72 poleroviruses, and 5 enamovi-
ruses (the genus Enamovirus, the family Solemoviridae).
It revealed that MjVA is a distinct member of the genus
Polerovirus. The closest known member was SaYV, which
formed a subclade with MjVA with a bootstrap value of
93% (Knierim et al., 2015). The MjVA and SaYV P1-P2 pro-
teins showed 46% pairwise aa sequence identity over 989
aligned residues.

MjVBis anovel amalgavirus

The second virus identified in M. japonicus RNA-seq
data was MjVB with a genome of 3362 nt. Sequence data-
base searches revealed that the MjVB genome contained
an RdRp domain similar to those of amalgaviruses,
including Cleome droserifolia amalgavirus 1 (CdAV1),
Gevuina avellana amalgavirus 1, Medicago sativa amalga-
virus1(MsAV1),and Vicia cryptic virus M (VCV-M) (Nibert
etal.,2016;Zhanget al.,2020). The MjVB genome sequence
has two ORFs, namely, ORF1 and ORF2, whose organiza-
tion is universally observed in all known amalgaviruses
(Fig.3a) (Park and Hahn, 2017; Park et al., 2018). These two
ORFs are translated to two proteins known as ORFlp and
ORF1+2p fusion proteins.

The MjVB ORFlis located at the 78-1289 genome posi-
tion and encodes 403 aa ORFlp protein. The function of
amalgavirus ORFlp is yet to be established although it
may serve as a nucleocapsid or replication factory-like
protein (Isogai et al., 2011; Krupovic et al., 2015).

The amalgavirus ORF2 has an RdRp domain and is
translated as the ORF1+2p fusion protein by +1 PRF
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Fig.2

Phylogenetic analysis of Mallotus japonicus virus A (MjVA)

Polerovirus

Enamovirus

The P1-P2 fusion protein sequences of MjVA, 72 poleroviruses, and 5 enamoviruses were used to prepare a maximum likelihood phylo-
genetic tree. Note that MjVA and Sauropus yellowing virus form a clade with a bootstrap value of 93%. Bootstrap values, calculated from
1,000 replicates, were shown at the nodes. The Enamovirus clade was used as an outgroup.
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mechanism (Nibert et al., 2016; Goh et al., 2018; Lee et
al., 2019). The probable slippery sequence UUUCGG was
found in the MjVB genome at the 972-979 genome posi-
tion. The Cresidue located at 975 is skipped during ORF1
translation, which results in ORF2 translation. Therefore,
the MjVB ORF1+2p fusion protein, 1070 aa in length, is
produced by the fusion of a part of ORF1(78-974 position)
and the whole ORF2 (976-3291 position).

Multiple alignment comparison of the amalgavirus
+1 PRF site sequences confirmed the strong conserva-
tion of slippery hexanucleotide sequences (Fig. 3b). The
sequence logo of the alignment showed that the slippery
consensus UUUCGN was efficiently conserved (Fig. 3c).
The most common nucleotide for the N position was
the Uresidue. The Cresidue located at three nucleotides
downstream of the slippery hexanucleotide site also
showed an increased frequency, suggesting its possible
role during +1 PRF.

The phylogenetic position of MjVB was investigated
using the ORF1+2p protein sequences of MjVB and known
amalgaviruses. The MjVB ORF1+2p protein showed
similar sequence identities with those from many known
amalgaviruses with approximately 45% aa identity over

(a)

ORF1
5 3

ORF1p: 78-1289

translation ORF1+2p: 78-974,976-3291

| ORF1p |

A

™~ 41 frameshifting at UUUCGG

about 1,000 aligned residues. This observation implied
that MjVB was a novel amalgavirus with no strong affi-
nity to any known amalgaviruses. Amaximum likelihood
phylogenetictreeinferred from multiply aligned ORF1+2p
protein sequences confirmed this speculation (Fig. 4).
The MjVB formed a clade with the subclade consisting of
VCV-M, MsAV], and CdAV1. However, its bootstrap value
was only 54%, indicating that the relatedness of MjVB
and these three amalgaviruses was poorly supported.
Therefore, MjVB is a distinct amalgavirus that evolved
independently for a long time.

Abundance and distribution of MjVA and MjVB in M.
japonicus tissues

High-quality RNA-seq reads were mapped to MjVA and
MjVB genome sequences to study the abundance and
distribution of the viruses within M. japonicus tissue
samples. For each sample, the mapped fragments were
counted for MjVA or MjVB, and FPKM values were cal-
culated for normalization (Table 1). The mapping results
revealed a clear differential distribution between MjVA
and MjVB.

(b))

0P122169
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NC_ 040432
BK010357
NC_040433
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NC_040777
OMT751927
NC_040592
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Mallotus japonicus virus B
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Allium cepa amalgavirus 2
Anthoxanthum odoratum amalgavirus 1
Anthoxanthum odoratum amalgavirus 2
JAC Camellia oleifera amalgavirus 1
Cistus incanus RNA virus 1

Cleome droserifolia amalgavirus 1
Cucumis melo amalgavirus 1
Erigeron breviscapus amalgavirus 1
Erigeron breviscapus amalgavirus 2
Festuca pratensis amalgavirus 1
Festuca pratensis amalgavirus 2
Festuca pratensis amalgavirus 3
Gevuina avellana amalgavirus 1
Lily amalgavirus 1

Medicago sativa amalgavirus 1
Neurachne minor latent virus
Phalaenopsis equestris amalgavirus 1
Physcomitrium patens amalgavirus 1
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Rubber dandelion latent virus 1
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Vicia cryptic virus M

Zostera marina amalgavirus 1
Zostera marina amalgavirus 2
Zygosaccharomyces bailii virus 2
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Fig.3

Genomic organization of Mallotus japonicus virus B (MjVB)
(a) Schematic representation of the MjVB genome is depicted. ORFs and protein products are represented by shaded boxes. The genomic
positions of protein-coding regions are shown in a box. (b) Multiple alignment of the +1 programmed ribosomal frameshifting (PRF) site
sequences of MjVB and representative amalgaviruses is presented. (c) Sequence logo representation of the multiple alignment of the +1
PRF sites is shown. In (b) and (c), the slippery sequence UUUCGN is marked with asterisks. The red asterisk indicates the nucleotide that

is skipped by +1 PRF during translation.
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NC_040690 Salvia hispanica RNA virus 1
NC_040590 Phalaenopsis equestris amalgavirus 1
OM782323 Lily amalgavirus 1
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R
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Fig. &4

Phylogenetic analysis of Mallotus japonicus virus A (MjVB)
The ORF1+2p fusion protein sequences of MjVB, 36 amalgaviruses, and Antonospora locustae virus 1 (AnloV1) were used to construct
amaximum likelihood phylogenetic tree. Bootstrap values, calculated from 1000 replicates, were shown at the nodes. AnloV1, a member

of the proposed genus “Anlovirus,” was set as an outgroup.

MjVA was highly abundant in mature stem and bark
samples with FPKM values of 1570.4 and 363.9, respec-
tively. In case of the mature stem sample, almost 1% of all
RNA-seq fragments originated from the MjVA genome. In
other samples, the abundance of MjVA was relatively low
(FPKM, 0.3-17.8). Conversely, the abundance of MjVB was
low in all samples (FPKM, 3.1-10.7).

The differential distribution of MjVA and MjVB among
M.japonicus samples might be due to their differences in
transmission methods. Poleroviruses arerestricted toand
highly concentrated in the phloem tissues of host plants
and transmitted by insects (mainly aphids) (Ghosh et al.,
2019; LaTourrette et al., 2021). This finding explains the
extreme abundance of MjVA in mature stems and bark,

Table 1. Virus-derived fragments in M. japonicus samples

Sample SRA? Total® MjvA Mjve FPKM¢
mapped® FPKM¢ mapped®
young leaves SRR15027072 11262755 88 12 412 10.7
mature leaves SRR15027073 11757514 189 2.6 151 3.9
young stems SRR15027074 9670936 1074 17.8 169 5.0
mature stems SRR15027075 7260764 70964 1570.4 174 7.2
bark SRR15027076 7838141 17808 363.9 251 9.3
central cylinder SRR15027077 10221296 24 0.3 113 31
inflorescence SRR15027078 11530427 139 1.9 284 73

aSequence Read Archive Acc. No.;"Number of total high-quality fragments; “Number of mapped fragments; ‘Fragments per kilobase per

million.
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which have well-developed phloem tissues compared
with that of other samples. In this study, the bark sample
was obtained by dissecting amature stem sampleinto the
bark, which included phloem tissues, and a central cy-
linder, which lacked the phloem tissues. Therefore, MjVA
fragments were abundant in the bark sample but scarce
inthe central cylinder sample. High MjVA concentrations
in M. japonicus phloem tissues might ensure their trans-
mission via phloem feeders, such as aphids, although no
active insect-infestation was observed when the samples
were collected.

Amalgaviruses are vertically transmitted from one
generation to the next through seeds and generally donot
develop any disease symptoms in host plants (Martin et
al.,2011). The probable seed-borne transmission of MjVB
may ensure its systemic distribution, including inflores-
cences, which form gametes and eventually seeds. There-
fore, the low-concentration systemic presence of MjVB
may bearesult of its prolonged adaptation to M. japonicus.

Conclusion

The high-throughput RNA-seq analysis of seven
M. japonicus samples yielded two novel RNA viruses:
polerovirus MjVA and amalgavirus MjVB. The MjVA ge-
nome encodes seven proteins from highly overlapping
ORFsthrough various translational mechanisms, includ-
ing -1 PREF, translation initiation at a non-AUG codon,
and stop codon readthrough. The MjVB genome has two
overlapping ORFs producing two proteins; one of which is
translated by +1 PRF mechanism. Sequence comparisons
and phylogenetic analyses confirmed that MjVA and MjVB
are novel members of the genera Polerovirus and Amal-
gavirus, respectively. MjVA concentrations were higher
in plant parts with well-developed phloem tissues than
in other parts, while MjVB concentrations were low in all
tissues. Thus, this study demonstrates the effectiveness
of RNA-seq analysis for the identification of novel viruses
and their distribution in plant samples.
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