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Co-expression and interaction network analysis identifies
neutrophil-related genes as the core mediator of atrial fibrillation
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Abstract. Atrial fibrillation (AF) is the most common cardiac arrhythmia and can cause serious
complications. Several studies have shown that neutrophils may influence AF progression. However,
the key genes related to neutrophils in AF have not been fully elucidated. Here, we downloaded mi-
croarray expression data of AF, and screened differentially expressed genes. Key immune cells in AF
were identified by immune cell infiltration analysis. Weighted gene co-expression network analysis
(WGCNA) and protein-protein interaction (PPI) analysis were used to construct gene co-expression
modules and identify hub genes. The association between key genes and neutrophils was then veri-
fied. Our results showed that 303 differentially expressed genes (DEGs) were screened in AF and
sinus rhythm (SR), of which 194 were up-regulated and 109 were down-regulated. DEGs were mainly
enriched in functions and pathways of neutrophil activation and biological functions of neutrophil
activation-mediated immune response. Immune infiltration analysis revealed elevated levels of neu-
trophil infiltration in AE WGCNA analysis revealed that the modules in dark red were associated with
neutrophils. PPI analysis of these modules yielded 10 hub genes. S100A12, FCGR3B and S100A8 are
3 potential key genes related to neutrophils in AF, which are significantly positively correlated with
neutrophils. These genes deserve further investigation and may be potential therapeutic targets for AE.
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Introduction

Atrial fibrillation (AF) refers to the replacement of steady
atrial electrical activity by abnormal fibrillation waves, result-
ing in palpitations, dizziness, shortness of breath and other
symptoms (Brundel et al. 2022). Primary cardiovascular
disease, metabolic syndrome, exercise and heavy drinking
are important risk factors for AF (Lau et al. 2016). More than
590 000 people worldwide have AF (Kornej et al. 2021), and
the prevalence of AF is increasing (Kornej et al. 2020). AF
reduces the quality of life of patients, and may also cause
serious complications such as thromboembolism, heart
failure, and stroke (Carlisle et al. 2019). At present, the main
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treatment methods of AF include radiofrequency ablation,
drug therapy and electrical cardioversion (Jost et al. 2021).
Treatment limitations and high socioeconomic burden of
AF make it a major clinical challenge (Heijman et al. 2018).
However, the complex pathophysiology of AF is not fully
understood. Therefore, it is essential to study the mecha-
nism of its occurrence and excavate the key genes to lay the
foundation for subsequent gene targeted therapy.
Neutrophils represent the most abundant effector cells
of the human immune system and have antibacterial and
pro-inflammatory functions (Skendros et al. 2018). Several
recent studies have shown that neutrophils can exert crucial
effects on the pathophysiology of AF. The formation of neu-
trophil extracellular traps was found to be enhanced in AF
patients with left atrial dilatation (Motek et al. 2023). Xiao
et al. found that neutrophil levels were higher in persistent
AF and that immune cells may interact with specific genes
(Xiao et al. 2021). Clinical data show that an increase in the
neutrophil-to-lymphocyte ratio leads to an increased risk
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of AF (Berkovitch et al. 2019; Wu et al. 2021). Although the
role of neutrophils in AF has received some attention, the key
genes related to neutrophils in AF are not fully understood
and urgently need to be excavated.

The use of bioinformatics analysis to mine disease-related
genes plays an important role and is more intuitive and effec-
tive. Moreover, weighted gene co-expression network analysis
(WGCNA) becomes an important strategy in bioinformatics
applications to identify potential mechanisms and therapeutic
targets of diseases (Langfelder and Horvath 2008). Through
our review of the literature, few researches have investigated
specific gene and functional roles in the regulation of neutro-
phils in AF patients. Here, we aimed to identify potential key
genes related to neutrophils in AF using the Gene Expression
Omnibus (GEO) database by integrating multiple bioinfor-
matics approaches. This study focuses on new findings in the
molecular mechanisms of AF and may be beneficial facilitate
new therapeutic targets to provide effective strategies for the
diagnosis and remedy of AF.

Materials and Methods

Microarray data

We downloaded GSE31821, GSE41177, GSE79768 microarray
expression matrices from the GEO database (www.ncbi.nlm.
nih.gov/geo), and extracted the left atrial tissue expression
file. All three datasets used the GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array. The data
sets were combined to avoid the heterogeneity of results
caused by the small number of samples in each data set. These
microarray data were collected and combined using “combat”
method in “sva” package in software R, which can remove
batch effects. A total of 38 human atrial tissue and left atrial
appendage samples from AF patients and sinus rhythm (SR)
subjects were obtained, including 11 control data (SR group)
and 27 experimental data (AF group), as shown in Table 1.

Data processing and identification of differentially expressed
genes (DEGs)

The 3 raw datasets were preprocessed in R package affy,
including background calibration, normalization, and log2
transformation. Differentially expressed genes were identified

Table 1. Microarray data

SR AF
GSE31821 2 4
GSE41177 3 16
GSSE79768 6 7

AF, atrial fibrillation; SR, sinus rhythm.

by “limma” package in software R. This package is a popular
method for computing moderated t-statistics using a com-
bination of the limma:ImFit and limma::eBayes functions.
The selection criteria were |Fold change (FC) | > 1.5, adjusted
p value (adjp) < 0.05. The pheatmap R package was applied to
create heat maps and the limma package was used to create
volcano maps.

Pathway enrichment analysis of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)

The R package clusterProfiler was used for GO and pathway
enrichment analysis. GO functions include cellular composi-
tion (CC), biological process (BPs) and molecular function
(MF). Bar plot, bubble plot and circle plot were generated
using enrichplot, ggplot2 and GOplot, respectively. With
adjusted p < 0.05 related GO terms and KEGG pathways
were considered significantly enriched.

Immune cell infiltration analysis

To explore whether there were difference in immune cell
infiltration between AF and SR samples, we used the R pack-
age CIBERSORT for analysis (Xiao et al. 2021). The filter
condition was set to p < 0.05 filtered samples. The percentage
of each immune cell type was calculated in both samples.
The “vioplot” package was used to visualize the levels of 22
immune cell subtypes between AF and SR. Correlation heat-
maps were performed using the “corrplot” package to reveal
the correlation of the 22 infiltrating immune cell subtypes.

Construction and identification of WGCNA module

WGCNA was used to construct the gene co-expression network.
First, genes with more than 25% variation between samples
in the comprehensive dataset were imported. Outlier samples
were removed to ensure results reliability. Then modules were
detected by hierarchical clustering and dynamic tree cutting
functions. Genes with similar expression patterns were divided
into a module. The correlation between modules and traits
and the association between modules were analyzed. The gene
information in the module was used for subsequent analysis.

Protein-protein interaction (PPI) network analysis of dif-
ferential genes

String database was used to analyze the PPI network of
the two module genes significantly related to the central
granulocyte, and Cytoscape (3.5.1) was used to draw the PPI
co-expression network. The Degree algorithm of Cytoscape
CytoHubbaE plugin was used to screen the top 10 hub genes
in the PPI co-expression network. The R package pheatmap
was used to map the expression of the 10 hub genes.
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Neutrophils-related gene analysis in AF

To explore the association of the 10 hub genes and neutro-
phils, we used limma to calculate the correlation between
the two in AF samples.

Result

Identification of DEGs

The overall flow chart of this study is presented in Figure 1.
A total of 303 DEGs between AF and SR (FC > 1.5, adjp
< 0.05) were screened. Among them, 194 DEGs were up-
regulated and 109 DEGs were down-regulated in AF. The
volcano map and heat map of DEGs are shown in Figure 2A
and B, and it can be observed that there are obvious differ-
ences between the two groups.

Functional enrichment analysis of DEGs

To further investigate the biological functions of DEGs, GO
and KEGG functional enrichment analyses were performed.
GO enrichment showed that the functions of the DEGs were

mainly related to neutrophil activation and biological func-
tions of neutrophil activation-mediated immune response
(Fig. 3A). KEGG enrichment showed that the DEGs were
mainly involved in immune signaling pathways such as
phagosome, Th17 cell differentiation, and intestinal immune
network related to IgA production (Fig. 3B). The above
indicated that AF-related DEGs may function through im-
mune regulation.

Neutrophils are the potential core immune cells in AF

We further analyzed the differences of immune cell subsets
between AF and SR samples. The percentage of the 22 im-
mune cells in each sample is shown in bars (Fig. 4A). T cells
CD8, macrophages and neutrophils accounted for a large
percentage, compared with other immune cells (Fig. 4A).
Differences in immune cell infiltration showed that the
abundance of T cells gamma delta (y§ T cells, p = 0.022)
and neutrophils (p = 0.038) was significantly increased in
AF samples compared with SR group (Fig. 4B). However, the
levels of T cells CD8, T cells regulatory (Tregs), macrophages
M2 and mast cells activated were lower in AF samples than
those in SR samples (p < 0.05, Fig. 4B). The correlation of the
22 immune cells showed a positive correlation between y§

Downloading three datasets (GSE31821, GSE41177, GSE79768)
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Integrating microarray expression matrices of
human atrial tissue and left atrial appendage samples

v
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Identifying differentially expressed genes
(DEGs) using limma package

Immune cell infiltration analysis to identifying
immune cell types related to AF

l

l

303 DEGs based on the cut-off criteria of
[Fold change (FC) | > 1.5, adjPval < 0.05

Uncovering co-expression module by weighted
gene co-expression network analysis

l

GO and KEGG functional enrichment
analysis for DEGs

Construction of protein-protein interaction
regulatory network

J

Screening gene in the most significant module
(10 hub genes)

l

Identifying correlation between hub genes
and neutrophils in AF

Figure 1. Flow chart of this study. AF, atrial fibrillation; SR, sinus rhythm.
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Figure 2. Volcano map (A) and heat map (B) of differentially expressed genes (DEGs) of AF and SR Atrial tissue and left atrial append-
age samples. Red and green dots in the volcano plot represent up-regulated and down-regulated DEGs, respectively. Each row of the
heat map represents a DEG and each column represents a sample. Red and blue indicate up-regulated and down-regulated DEGs. For

abbreviations, see Figure 1; and for color figure, see online version.

T cells and neutrophils (r = 0.31) and a negative correlation
between neutrophils and macrophages MO (r = —0.38) (Fig.
4C). Therefore, neutrophils may be potential core immune
cells associated with AF.

Modular characteristic of genes related to neutrophils in AF

We used WGCNA to determine neutrophil associated
gene co-expression modules in AE We performed a cluster
analysis in which all samples were in the cluster and within
the cutoff threshold (height < 1), so no outliers need to be
removed. In our study, we chose p = 8 (scale-free R? = 0.85)
as the soft threshold to ensure scale-free networks (Fig. 5A).
The threshold was set to 0.25 to merge similar modules in
the cluster tree, resulting in five modules with similar co-
expression features of genes, as shown in Figure 5B. The cor-
relation heat map showed that the module eigengene (ME)
module_green (r = 0.72, p < 0.001) and module_turquoise
(r=0.51, p = 0.001) of neutrophils were both significantly
and positively correlated with neutrophils (Fig. 5C). DEGs in
the previous GO function were mainly related to immunity
mediated by central granulocyte activation, so we selected
the gene in green and turquoise modules which associated
with neutrophils for further analysis (Table S1 in Supple-
mentary material).

Identification of hub gene involved in neutrophils regulation

The correlation between gene modules of neutrophils and
immune cell types was analyzed. The DEGs in the above

modules with significant correlations were imported into
the STRING online tool to evaluate the interactions. The
results showed that 82 nodes and 157 edges were identi-
fied from the PPI network (Fig. 6A). CytoHubba from
Cytoscope was then used to identify and select hub genes
through five ranking algorithms. The top 10 hub genes
included APOE, C1QC, CSF1R, CTNNBI1, FCGR3B,
HSP90ABI1, S100A12, S100A8, SOD1, and TYROBP (Fig.
6B). These genes were considered as potential key genes
for further analysis. The heat map showed the difference in
the expression of 10 hub genes between AF and SR groups,
with the hub genes being more significantly up-regulated
in AF (Fig. 6C).

Correlation analysis between hub genes and neutrophils in
AF

We further investigated the association of the 10 hub genes
with neutrophils. The results showed that S100A12 (r = 0.41,
p=0.0003), FCGR3B (r = 0.47, p < 0.0001) and S100A8 (r =
0.41, p = 0.001) were significantly positively correlated with
neutrophil abundance, while gene C1QC (r = -0.16, p =
0.04) was significantly negatively correlated with neutrophil
abundance (Fig. 7). Both neutrophil (Fig. 4B) and hub genes
including CIQC (Fig. 6C) were up-regulated in AF, but CIQC
showed the negatively correlation with neutrophil, which
was inconsistent with their both up-regulated expression, so
it could be excluded. This suggests that SI00A12, FCGR3B
and S100A8 may be three potential key genes related to
neutrophils in AE
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Discussion

AF is the most common cardiac arrhythmia in clinical prac-
tice. Multiple evidences suggest that AF may be associated
with immune and inflammatory responses (Hu et al. 2015;
Liu et al. 2018). Among them, the role of neutrophils in AF
has attracted particular attention. In this study, we integrated
the microarray expression matrices of 27 AF and 11 SR
samples from three GEO datasets and identified significant
pathways associated with AF risk. The relationship between
neutrophils and AF was illustrated by immune cell infiltra-
tion analysis. WGCNA and PPI were used to screen the hub
genes associated with neutrophils in AF. Three potential
key genes associated with neutrophil, S100A12, FCGR3B
and S100A8, were finally identified. These genes may play
important functions in AE.

Neutrophils are important inflammatory cells, and
their elevated activation is associated with various cardio-

vascular diseases (Gaul et al. 2017). Previous studies have
confirmed the efficacy of neutrophil-to-lymphocyte ratio
as a predictor or prognostic indicator of AF (Gibson et al.
2010; Guo et al. 2014). It has been found that the excess
of neutrophil degranulation protein in the atrium of AF
patients may promote myocardial cell remodeling and be
more susceptible to fibrosis and thrombosis (Kawasaki et
al. 2021). Wu et al. (2022) also found that atrial samples
from AF group contained higher y8 T cells and neutrophils
compared with SR by immune infiltration analysis, which
is consistent with our results. Gan et al. (2023) found that
neutrophils are dysregulated in AF, and immune cell disease
(including neutrophils) caused by 7 hub immune-related
genes may be a common pathogenesis of AF in dilated
cardiomyopathy. Yan et al. (2021) published findings from
the WGCNA analysis that involved specific datasets related
to AF, GSE115574. The analysis revealed that among 22
kinds of immune cells, M1 macrophages exhibited the
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highest correlation coeflicient with AF (Yan et al. 2021).
This has certain similarities to our study, suggesting that
the relevant hub genes related to neutrophils may influence
the mechanism of AF occurrence.

S100A12 is a protein-coding gene (Garcia et al. 2013).
In humans, SI00A12 is mainly expressed and secreted by
neutrophils (Bagheri 2017). SI00A12 expression on neu-
trophils induces pro-inflammatory responses by binding
to the receptor for advanced glycation end products and
subsequent activation of intracellular signal transduction
pathways (Nazari et al. 2017). In addition, studies have
shown that S1I00A12 may drive neutrophil infiltration by
inducing inflammatory response and ultimately lead to re-
modeling of the atrium (Xiao et al. 2021). Therefore, these
results imply that S100A12 may mediate AF by regulating
the inflammatory response of neutrophils. However, no
specific experimental study has been found to confirm that
S100A12 promotes AF, which is worthy of further explo-
ration. S100A8, structurally similar to S100A12, is a low
molecular weight calcium and zinc binding protein (Xu et
al. 2012). S100A8 can induce chemotactic and adhesion of
neutrophils, and mediate intracellular inflammatory signal
transduction (Xu et al. 2012). Neutrophil-derived S100A8
has been found to enhance granulopoiesis after myocardial
infarction (Sreejit et al. 2020). In addition, S100A8 could
induce neutrophil activation and regulate CD11b expres-
sion and neutrophil recruitment in chronic pulmonary
tuberculosis (Scott et al. 2020; Sprenkeler et al. 2022).
Therefore, these studies combined with our results suggest

T T 1
0.10 0.15 0.20

Neutrophils

Figure 7. Association of four hub
genes (S100A12, S100A8, FCGR3B
and C1QC) with neutrophils.

that SI00A8 can activate neutrophils, thereby contributing
to the development of AE

FCGR3B belongs to the FCGR gene cluster, and its en-
coded protein is a low-affinity receptor for the Fc region
of gamma immunoglobulin (IgG) (McKinney et al. 2012).
FCGR3B is a newly identified gene involved in neutrophil
regulation. Relevant researches have suggested that FCGR3B
can affect cardiovascular inflammatory diseases. Reduced
expression of FCGR3B, which may lead to impaired clear-
ance of immune complexes, has been identified as a risk
factor for lupus nephritis (Zheng et al. 2017). In addition,
genetic polymorphisms of FCGR3B were found to predict
the risk of recurrence of eosinophilic granulomatosis with
polyangiitis. The mechanism is that FCGR3B deficiency may
delay the clearance of immune complexes by neutrophils and
leads to the formation of a pro-inflammatory state (Alberici
etal. 2020). The role of FCGR3B in the specific mechanisms
of neutrophil involvement in AF has not yet been seen. But
combining these studies and our results, we speculate that
FCGR3B influences AF by mediating the clearance of im-
mune complexes by neutrophils.

In the current study, we have discussed the involvement
of 3 potential key genes (§100A12, FCGR3B and S100A8)
related to neutrophils in AF, suggesting that they may provide
new strategies for AF treatment as potential therapeutic tar-
gets. At the same time, there are some limitations of the study
that deserve further exploration. Firstly, the development of
AF is caused by a variety of factors, and several important
factors such as region, age, and genetic history are difficult
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to be taken into account. In addition, we only focused on
a few important enrichment results and related genes, and
further interactions between immune cells and DEGs should
be concerned for immune infiltration. Finally, the potential
key genes need to be further validated in experimental stud-
ies to determine their mechanisms in AE

Conclusion

In this study, we screened 303 DEGs in AE, which were
mainly enriched in neutrophil-mediated immune-related
pathways. We used immune cell infiltration to identify
neutrophils as potential core immune cells in AE WGCNA
combined with PPI and correlation analysis finally identi-
fied 3 potential key genes of neutrophil regulation, SI00A12,
FCGR3B and S100A8. These genes deserve further investiga-
tion and may provide targets for the development of novel
therapeutic strategies for AE.
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Supplementary Table

Table S1. Gene in green and turquoise modules

Module_green Module_turquoise
LOC100652824 GLIPR2
FRZB PILRA
FCGR3B ID1
SELL CNGA1
CMTM2 TRNP1
CXCR2 LOC100131303
S100A12 LINC00520
PROK2 PLEK2
CLC COTL1
FCN1 TUFT1
VNN2 TSC22D3
BCL2A1 ADAMTSS8
MGAM KIAA0430
S100A8 EPB41L2
ANG
ARHGEF3
LOC101926918
CC2D2B
CLEC10A
HFE2
PPIL1
MSS51
HSP90AB1
NLGN4X
GDI2
COL15A1
IL1IR1
KDR
DRAP1
IGFBP3
RP11-399019.9
SLC35G3
PPIB
MRPS6
TXNIP

(continued)



Linsdell

Table S1. (continued)

Module_green Module_turquoise
BAI2
PINIP1
APOE
GLUL
FBLNS5
ZBED9
FBXW12
CADPS2
SCN1B
LIX1L
UBE2M
PSMC3
CSDC2
PDK4
ETNPPL
HLA-DPB1
DUSP4
LINCO01018
FMO2
TYROBP
PTPRZ1
VIM
IGFBP6
AMOTL2
HSPE1L
IBA57-AS1
TWIST1
ALX3
LOC100131180
S100A4
C1QC
CFD
LINC00326
GPR1
CTNNBI1
MAP3K1
NCF2
RP11-90C4.2
SLC16A9
RP11-157B13.7
CYB5R3
RPA2
SLC26A9
TSPAN15
ENPP5
UsO1
RP11-382B18.4
RNF128
GNB2

(continued)



Trivalent anion block of CFTR

Table S1. (continued)

Module_green Module_turquoise

BANF1
PLA2G7
CIQA
HLA-DPA1
ECHS1
LYVE1
RABAC1
VKORCIL1
SUCO
MRPL54
GPI
KRTAP17-1
TRIM22
ITGAV
TMEM256
ACSBG2
SRPX
CSRP3
ARLG6IP5
LINC00622
FAM96B
BOD1

SMS
FCER1G
TOB1
EPHX1
AMFR
NOV

RAI2
NNT-AS1
SECI11A
COX16
NEB
NDUFAF3
LINC00261
COXS8A
SNX7
MIR100HG
SOD1
CAPNS1
CHCHD2
FIS1

HAT1
CD9%9
AP3S1
OST4
MPC2
LCN2
CSF1R
EIF3G






