doi: 10.4149/gpb_2024013

Differential expression profiles and functional prediction of circular RNAs in lung cancer patients with chronic obstructive pulmonary disease: a pilot study

Xiaoou Li^{1,2}, Yongchun Shen^{1,2}, Jiahan Cheng³, Jun Chen^{1,2}, Zhicheng Yuan^{1,2}, Tao Wang^{1,2}, Lei Chen^{1,2}, Lunxu Liu³ and Fuqiang Wen^{1,2}

¹ Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

² Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

³ Department of Thoracic Surgery, Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

Abstract. Chronic obstructive pulmonary disease (COPD), characterized by clinical sub-phenotypes such as emphysema (E) and chronic bronchitis (CB), is associated with a greater risk of lung cancer (LC). This study aimed to assess the expression patterns of circRNA and their potential functional involvement in LC patients with COPD. A circRNA microarray was used to characterize differentially expressed circRNAs (DEcircRNAs) profiles. A total of 176, 240, 163, and 243 DEcircRNAs were identified in comparisons between CB vs. LC patients (Con), E vs. Con, E vs. CB, and CBE vs. Con, respectively. DEcircRNAs in all comparison groups were primarily associated with immune-related GO terms and were also enriched in immune and inflammatory pathways. In total, 49 DEcircRNAs were significantly correlated with the infiltration of multiple immune cells. Among them, hsa-MROH9_0001 and hsa-RP11-35J10_0013 were positively and negatively correlated with plasma cells and T-cell CD4 memory resting cells, respectively; these two DEcircRNA-sponged miRNAs have good diagnostic performance. WGCNA identified six key circRNAs associated with CB progression. The expression patterns of hsa-MROH9_0001 and circRNA_21729 in E and CB groups were confirmed by RT-qPCR. In conclusion, we reported circRNA profiles and the findings demonstrated that hsa-MROH9_0001 and circRNA_21729 may be potential therapeutic targets for LC with COPD.

Key words: Chronic obstructive pulmonary disease — circRNA profile — Emphysema — Chronic bronchitis — Immune regulation

Electronic supplementary material. The online version of this article (doi: 10.4149/gpb_2024013) contains Supplementary material. **Correspondence to:** Fuqiang Wen, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University. No. 14th Keyuan Road, Gaopeng Ave, Chengdu, Sichuan 610041, China E-mail: wenfuqiang@scu.edu.cn

Lunxu Liu, Department of Thoracic Surgery, Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, West China Hospital. No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China E-mail: lunxu_liu@aliyun.com

© The Authors 2024. This is an **open access** article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Lung cancer (LC) is a leading cause of cancer-associated mortality worldwide (Bray et al. 2018). Approximately more than one million people die from LC annually. Despite remarkable progress in surgery, radiotherapy, chemotherapy, and targeted therapy in recent years, the 5-year survival rate for late-stage LC is less than 15% (Vyse and Huang 2019). Chronic obstructive pulmonary disease (COPD) is a typical chronic inflammatory pulmonary disease that causes airflow obstruction along with abnormal inflammatory responses (bronchiolitis) and alveolar destruction (emphysema) (Parris et al. 2019). In 2016, 251 million cases of COPD were reported globally; approximately 95 million cases occur annually (Vos et al. 2017). Smoking cigarettes is a major risk factor for LC and COPD (Barreiro et al. 2016; Parris et al. 2019). Furthermore, the interaction between environmental risk factors and individual-related factors may facilitate the progress of LC and COPD. Approximately one-third patients with LC suffer from other lung diseases (i.e., COPD and emphysema), and exhibit much worse pulmonary function (Vogelmeier et al. 2017). Recently, the incidence of COPD has increased the risk of LC, and COPD has even been recognized as an independent risk factor (Ruano-Ravina et al. 2016). In addition, patients with LC who have undergone surgery are more susceptible to suffering from pulmonary complications, such as COPD (Licker et al. 2006). Genomewide association studies on links between COPD and LC revealed that noncoding RNAs may be involved in the pathogenesis (Booton and Lindsay 2014; Mestdagh et al. 2015). Therefore, understanding the genetic background of LC complicated with COPD is critical for the development of possible therapeutic targets.

Circular RNAs (circRNAs) are a type of endogenous noncoding RNAs with a closed, continuous loop formed by back splicing with covalently joined linking the 3' and 5' ends (Chen 2016). Research has addressed the critical role of circRNAs in LC and COPD (Vo et al. 2019; Zeng et al. 2019; Zhou et al. 2019). For example, circ_0078767 is downregulated in the tumor tissue of non-small cell carcinoma (NSCLC) and promotes RASSF1A expression via sponging of miR-330-3p, ultimately leading to the inhibition of NSCLC cell proliferation (Chen et al. 2019). Hsa_circ_0016070 is proved to be related to vascular remodeling in pulmonary arterial hypertension by promoting the proliferation of pulmonary artery smooth muscle cells (Zhou et al. 2019). CircARHGAP10 impedes NSCLC progression by facilitating GLUT1 expression as a miR-150-5p sponge (Jin et al. 2019). The expression profile of circRNAs is regulated by cigarette smoke extract in primary human small airway epithelial cells in COPD (Zeng et al. 2019). These studies have shown that circRNAs are an important participant in the pathological progression of LC and COPD. However, no studies have revealed the circRNA expression profile and the potential function and mechanism of circRNAs in LC complicated with COPD. Although high-throughput sequencing currently has played a leading role in the exploration of potential noncoding RNAs, only approximately 0.1% covered the reverse splicing site in RNA-sequencing results; thus, the efficiency of RNA sequencing to detect circRNA was low (Szabo and Salzman 2016). However, the small number of circRNA detected will limit further research on circRNA in diseases or physiological conditions. A study found that single-sample circRNA microarrays detected at least 2.5 times more circRNAs than transcriptome sequencing, suggesting that circRNA microarrays are faster, more abundant, and more sensitive and provide equally reliable results (Li et al. 2019). Therefore, microarrays are an efficient tool for circRNA profiling.

In the present study, the expression profiles of circRNAs in patients with LC complicated with different COPD subphenotypes, including emphysema and chronic bronchitis, were studied using a circRNA microarray. Candidate differentially expressed circRNAs (DEcircRNAs) were validated by RT-qPCR. The potential functions and mechanisms of DEcircRNAs were analyzed *via* bioinformatics.

Materials and Methods

Study population and lung tissue samples

This study was approved by The Biomedical Ethics Committee [No. 2017 approve (270)] of West China Hospital, Sichuan University, in accordance with the Declaration of Helsinki (as revised in 2013). All patients provided written informed consent prior to enrollment in the study. From 2017 to 2019, 18 patients with LC were hospitalized in the West China Hospital, Sichuan University. However, during the statistical process control using principal component analysis (PCA), four samples were outside the 95% confidence interval. Thus, these four outlying samples were eliminated based on the PCA results. Ultimately, 14 samples were analyzed and divided into three groups: 6 patients with LC but without COPD (Con group), 4 patients with LC complicated with emphysema (E group), and 4 patients with LC complicated with chronic bronchitis (CB group). All patients with COPD, including E and CB subphenotypes, were diagnosed using the spirometric criteria of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) (Singh et al. 2019). The LC was diagnosed based on tissue pathological examination findings, and the tissues were collected during diagnostic bronchoscopy or therapeutic surgery (Reck and Rabe 2017). The inclusion criteria were: Patients aged 35-65 years who did not receive any treatment, including surgery, chemotherapy, or radiation, were included. The adjacent cancer lung tissue samples were collected strictly prior to starting the treatment. The clinical characteristics of the subjects are shown in Table 1.

RNA isolation and circRNA microarray analysis

Lung tissue samples collected from a region that was 5 cm beside the cancer were immediately frozen in liquid nitrogen until RNA extraction. For RNA isolation, lung tissue samples were processed using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions, followed by quality evaluation on a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Qualified RNA was subjected to circRNA microarray analysis using the Human circRNA Array V2.0 (8×15K, Aksomics, Shanghai, China) as described previously (Xia et al. 2018). In brief, approximately 1 µg of total RNA was digested using RNase R (RNR0725, Epicentre, USA), and all of these RNAs were then subjected to labeling and hybridization (Aksomics Inc.). Finally, all processed RNA samples were scanned and analyzed to obtain the fluorescence signal using GenePix 4000B (Molecular Devices Corporation, SV, USA).

Raw data were processed and analyzed using R software (R version 3.6.1). Edge R was utilized to normalize the microarray raw data. DEcircRNAs were identified based on absolute fold change of >2 and p < 0.05 using the R package "limma." The heatmaps of DEcircRNAs were visualized using the R package heatmap. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the R package clusterprofiler (https://www.rdocumentation.org/packages/clusterProfiler) (Ma et al. 2022). The raw data have been deposited in the Genome Sequence Archive for Human online database (https://ngdc.cncb.ac.cn/gsa-human/) with reference to accession HRA002550.

Immune cell infiltration analysis

To understand the relationship between DEcircRNAs and immune cell infiltration, all mRNAs were processed in CIBERSORTx software (https://cibersortx.stanford.edu/) on the basis of the expression data of the microarray assay, and the profile of immune cell infiltration was obtained (Yuan et al. 2022). The Pearson correlation method was then used to analyze the correlation between immune cells and

Variables	Group			
	$\operatorname{Con}(n=6)$	E (<i>n</i> = 4)	CB $(n = 4)$	
Age (years)	51.33 ± 7.99	57.00 ± 4.74	54.75 ± 9.80	
Gender (male, %)	0 (0%)	4 (100%)	1 (25%)	
BMI (kg/m ²)	22.09 ± 2.24	23.23 ± 1.48	22.29 ± 3.41	
Smoking history (pack-years)		27.5 ± 14.79		
GOLD classification				
Ι	NA	NA	1	
II	NA	3	2	
III	NA	1	NA	
FEV1%	2.67 ± 0.27	1.88 ± 0.56	1.96 ± 0.31	
FEV1/FVC%	85.32 ± 4.49	$57.46 \pm 15.82^{*}$	$60.84 \pm 5.11^{\#}$	
Lung cancer histology				
Squamous cell carcinoma r	NA	3	NA	
Adenocarcinoma	5	2	3	
Other	1	2	1	
Hypertension (%)	NA	25%	25%	
Diabetes Mellitus (%)	NA	NA	NA	

 Table 1. Baseline data of LC patients with COPD subphenotypes

ANOVA followed by Tukey's test. * p < 0.05. vs. Con group; # p < 0.05. vs. E group. Except for one LC patient without COPD and one LC patient with chronic bronchitis, who had a smoking history of 0.1 and 0.25 pack-years, respectively, the other patients had no smoking history. LC, lung cancer; COPD, chronic obstructive pulmonary disease; Con group, patients with LC but without COPD; E group, patients with LC complicated with emphysema; CB group, patients with LC complicated with chronic bronchitis; NA, not available.

DEcircRNAs. The R package heatmap was applied to illustrate the immune cell infiltration levels within each sample (Chen et al. 2022). Also, the expression patterns of candidate DEcircRNAs in different tissues were downloaded from the software CircAtlas 2.0 (http://circatlas.biols.ac.cn/).

Network construction

To construct a putative circRNA-centric network based on the competing endogenous RNA (ceRNA) theory, circRNAs targeting miRNAs were predicted using Miranda and RNAhybrid. The miRNA shared in the two software programs were selected as candidates. The network map was visualized using Cytoscape_v3.6.1. *Weighted gene co-expression network analysis (WGCNA) to establish a co-expression network*

To perform gene hierarchical clustering analysis, WGCNA was conducted using the WGCNA R package 73. The varFilter function in the R genefilter package was used to remove circRNAs with low expression in all samples and genes with stable constant expression in all samples to improve the accuracy of network construction.

RT-qPCR analysis

Total RNA from three groups (5 samples for the Con group and 4 for the E and CB groups) was extracted using TRI

Figure 1. The analysis flowchart of this study. LC, lung cancer; COPD, chronic obstructive pulmonary disease.

Reagent (T9424, Sigma-Aldrich, MO, USA). RNA quality was assessed by agarose gel electrophoresis and NanoDrop[®] ND-1000. cDNA synthesis was performed on the Gene Amp PCR System 9700 (Applied Biosystems, MA, USA) using reverse-transcription primers. Finally, the 2X PCR master mix (Arraystar) was used to conduct PCR on the QuantStudio5 Real-time PCR System (Applied Biosystems). The expressions of circRNAs and miRNAs were normalized by β -actin and U6, respectively. The gene expression was calculated using the $2^{-\Delta\Delta CT}$ method. The primers used in this study were synthesized by Sangon (Shanghai, China) and are shown in Table S1 in Supplementary material.

Statistical analysis

All statistical analyses of the data were performed using GraphPad Prism 9 (GraphPad Software, San Diego, USA). The comparison between the three groups was analyzed by the one-way ANOVA followed by Tukey's test, and p < 0.05 was defined as statistically significant.

Results

Subject demographics

The analysis flowchart is shown in Figure 1. Table 1 provides detailed characteristics of the participants. No differences in age and BMI were observed among LC patients without COPD (Con group), LC patients with emphysema (E group), and LC patients with chronic bronchitis (CB group) (Table 1). Lung function (FEV1% and FEV1/FVC%) of patients in the E group was significantly decreased compared with that of the Con group, and no significant difference was found between the CB and Con groups.

Different expression profiles of circRNAs in patients with LC and COPD subphenotypes

To explore the influence of COPD on the circRNA expression in LC patients, we initially combined CB and E into one (CBE group) and the differential expression profile with the control group was then analyzed. In total, 243 DEcircRNAs (115 upregulated and 128 downregulated circRNAs) with *p*-values <0.05 and |log2fold change| >1 between patients with LC complicated with COPD and patients with LC alone (CBE *vs.* Con) were identified (Fig. 2A,F; Table S2 in Supplementary material). To obtain more information, the DEcircRNAs in the comparisons of CB *vs.* Con and E *vs.* Con were analyzed separately, and 176 (96 upregulated and 80 downregulated) and 240 (130 upregulated and 110 downregulated) DEcircRNAs were discovered, respectively (Fig. 2B,C,F). According to the hierarchical clustering map, a high degree of heterogeneity existed between LC patients with COPD and Con, and similar spectral clustering was observed within the groups. Moreover, the heatmap revealed large expression differences between E and CB subtypes, and 163 DEcircRNAs were identified, including 95 downregulated and 68 upregulated DEcircRNAs, in the comparison between the CB and E groups (Fig. 2D,F). These 163-DEcircRNAs may be the key molecules that distinguished the disease process between the E and CB subtypes. Of note, 14 DEcircRNAs were shared by the CB *vs.* Con, E *vs.* Con, and CBE *vs.* Con groups, as well as by CB *vs.* Con and E *vs.* Con groups (Fig. 2E), suggesting that these 14 DEcircRNAs were simultaneously involved in the pathological process of the E and CB subtypes.

Functional prediction analysis of DEcircRNAs in LC patients with COPD subphenotypes

To predict the potential mechanisms of DEcircRNAs in LC patients with COPD, GO and KEGG analyses were performed. The top 30 enriched GO terms in CB vs. Con were shown in Figure 3A with immune and inflammatory associated terms, such as "antigen processing and presentation of exogenous peptide antigen via MHC class" in the biological process and "phagocytic vesicle membrane" and "lysosomal membrane" in the cellular component. Furthermore, Figure 3B presents the DEcircRNAs in the top 30 GO terms in E vs. Con, which are associated with immune and inflammatory terms, including "interferon-gamma-mediated signaling pathway," "inflammatory response," and "type I interferon signaling pathway" in the biological process, "phagocytic vesicle membrane" in the cellular component, and "peptide antigen binding" in the molecular function.

The KEGG pathway assessment elicited 20 remarkably enriched pathways containing immune and inflammatory pathways, for instance, "Jak–STAT signaling pathway" and "MAPK signaling pathway", "Endocytosis", "Phagosome" and "Lysosome" in CB vs. Con (Fig. 4A); "Antigen processing and presentation", "Rap1 signaling pathway", "Cytokine-cytokine receptor interaction", and "Natural killer cell mediated cytotoxicity" in E vs. Con (Fig. 4B). Additionally, the "Cell adhesion molecules (CAMs)" existed in CB vs. Con and E vs. Con comparison groups and were statistically significant. These results suggest that DEcircRNAs in LC patients may participate in COPD progression by regulating tumor immunity.

Moreover, the predictive functions of DEcircRNAs between the E and CB groups were analyzed, and the results revealed that these DEcircRNAs also were enriched in molecular functions and pathways related to immune regulation, including those mentioned above, "antigen processing and presentation of exogenous peptide antigen *via* MHC class" in the biological process, "phagocytic vesicle membrane" and "lysosomal membrane" in the cellular component, and

Figure 2. Differential expression of circRNAs in LC complicated with COPD. Cluster heatmaps of DEcircRNAs in LC patients complicated with or without COPD: CBE *vs*. Con (**A**); CB *vs*. Con (**B**); E *vs*. Con (**C**); and E *vs*. CB (**D**). Red and blue indicate high and low expression levels, respectively. **E.** Venn plots of common and specific DEcircRNAs between the comparison groups. **F.** Numbers of DEcircRNAs of lung paracancer tissues in different comparison groups. E and CB are two COPD subtypes. CBE indicates patients with LC complicated with COPD. For color figure see online version of the article.

Figure 3. Gene Ontology (GO) analyses of DEcircRNAs in CB vs. Con and E vs. Con groups. Top 30 enriched GO terms in biological process, cellular component, and molecular function for DEcircRNAs in comparisons between CB vs. Con (**A**) and E vs. Con (**B**) group. The x- and y-axes show the enriched GO terms and the –log10 (*p*-value), respectively.

Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEcircRNAs. Top 20 KEGG pathways for DEcircRNAs in comparisons between CB *vs*. Con (**A**) and E *vs*. Con (**B**) groups. The y- and x-axes refer to the KEGG pathway terms and enrichment score, respectively. Node color: *p*-value. Node size: number of genes in the KEGG pathway terms. For color figure see online version of the article.

pathways such as "Natural killer cell mediated cytotoxicity", "Phagosome", "Endocytosis", and "Rap1 signaling pathway" (Fig. 5). These results suggest that DEcircRNAs may mediate the differential differentiation of E and CB subtypes by triggering different immune regulatory pathways.

Immunoinfiltration analysis of DEcircRNAs

The abovementioned findings from the GO and KEGG analyses suggested the possible involvement of DEcircRNAs in immune regulation. Therefore, we used the CIBRESORT database to analyze the association between DEcircRNAs and immune cell infiltration. As shown in Figure 6, 49 DEcircRNAs were correlated to the infiltration of multiple immune cells. For example, circRNA_066 82|Chr12:9091201_9164259_- demonstrated a significant positive correlation with neutrophils or monocytes and a negative correlation with macrophages M2. Among the 14 DEcircRNAs shared by the CB vs. Con, E vs. Con, and CBE vs. Con groups, only 3 DEcircRNAs were predicted to be associated with immune cell infiltration, namely, circRNA_01223|Chr1:66871370_66905375_-, that was negatively correlated with macrophages M2; ci rcRNA 02255|Chr1:171024395 171025420 +, that was positively correlated with plasma cells; and circRNA_04 710|Chr10:102876954_102890678_+ that was positively correlated with neutrophils and plasma cells. Additionally, T-cell CD4 memory resting cells were significantly negatively correlated with multiple DEcircRNAs, including circRNA_06493|Chr11:128480191_128490576_-, ci rcRNA_06451|Chr11:121045674_121053732_+, circ RNA_05712|Chr11:68185781_68190152_-, circRNA_ 05094|Chr11:7796834_7799295_-, circRNA_03236|C hr1:246726892_246740301_+, and circRNA_01459|C hr1:90937485_90982370_-. On the contrary, neutrophils significantly positively correlated with multiple DEcircRNAs, including circRNA_06682|Chr12:9091201_9164259_-, circ RNA_03365|Chr10:7637228_7655675_-, and circRNA_00 574 Chr1:32631827_32634110_-. These results suggest that these DEcircRNAs may be the potential key molecules that mediate tumor immune infiltration of LC and participate in the progression of COPD.

CircRNAs-miRNAs-mRNAs interaction network analysis

To further explore candidate circRNAs involved in COPD progression, the expression profiles of the abovementioned immune infiltration-related DEcircRNAs in different tissues were analyzed using the CircAtlas 2.0 database (http://circatlas.biols.ac.cn), which revealed that only circRNA_02255|Chr1:171024395_171025420_+ (circAltas ID: hsa-MROH9_0001) and circRNA_0509 4|Chr11:7796834_7799295_- (circAltas ID: hsa-RP1135J10_0013) demonstrated specific expression in lung tissue (Fig. 7A). According to the CircAtlas 2.0 database, hsa-RP11-35J10_0013 is almost exclusively present in the lung and is not expressed in other tissues. circRNAs can sponge with miRNAs to exert their regulatory effects; therefore, the possible interactions of hsa-MROH9_0001 and hsa-RP11-35J10_0013 were assessed. As shown in Figure 7B, hsa-MROH9_0001 and hsa-RP11-35J10_0013 were predicted to bind to the miRNA response elements (MREs) on 3 miRNAs and 11 miRNAs, respectively. The small number of predicted miRNAs may be due to the limited capacity of the database, or it may suggest that they are not dependent on the role of miRNA but participate in the regulation of immune infiltration and COPD progression through an unknown mechanism.

Furthermore, to explore whether miRNAs in the network are expressed differently in different patients, the expression profiles of these miRNAs in lung squamous cell carcinoma (LUSC) were evaluated using the CancerMIRNome database (http://bioinfo.jialab-ucr.org/CancerMIRNome/), which is the most comprehensive tumor miRNA expression profile database (Li et al. 2022). The results revealed that the expression levels of hsa-miR-3663-3p, hsa-miR-4640-5p, and hsa-miR-6789-5p were significantly lower in LUSC tumor tissues than in the normal group, whereas the opposite was observed for hsa-miR-4709-3p (Fig. 8). The expression of the remaining miRNAs in the network was not different between the two groups. Interestingly, the receiver operator characteristic (ROC) curve showed that the areas under the curve (AUC) for all four miRNAs were >0.5, and the AUC of hsa-miR-4709-3p was as high as 0.94 (Fig. 8), suggesting that it has good diagnostic performance. As molecular sponges of these four miRNAs, hsa-MROH9_0001 and hsa-RP11-35J10_0013 have the potential to regulate tumor progression.

WGCNA identification of potential key modules

To establish a circRNA co-expression network, all circRNAs identified by microarray were subjected to WGCNA, and a total of 31 modules were identified based on the average linkage hierarchical clustering (Fig. 9A). Module-trait relationships showed that darkmagenta (cor = 0.66, p = 0.01), darkgrey (cor = 0.65, p = 0.01), and skyblue3 (cor = 0.62, p = 0.02) modules were positively correlated with the CB group (Fig. 9B). Darkmagenta, darkgrey, and skyblue3 modules contained 55, 84, and 48 circRNAs, respectively. Moreover, pink (cor = 0.44, p = 0.1), magenta (cor = 0.44, p = 0.1), and black (cor = 0.44, p = 0.1) modules were closely related to the E group (Fig. 9B) but not significantly. Subjectively, we intersected the DEcircR-NAs and circRNAs in modules (darkmagenta, darkgrey, and skyblue3) to try to narrow the scope of circRNAs related to CB progression. As a result, six shared circRNAs were obtained, including circRNA_06901|Chr12:27030158_27032681_+,

Figure 5. Functional analyses of DEcircRNAs between the E and CB groups. **A.** Top 30 enriched GO terms for DEcircRNAs between the E and CB groups. The x- and y-axes show the enriched GO terms and the –log10 (*p*-value), respectively. **B.** Top 20 KEGG pathways for DEcircRNAs. The y- and x-vertical axes refer to the KEGG pathway terms and enrichment score, respectively. Node color: *p*-value. Node size: number of genes in the KEGG pathway terms. For color figure see online version of the article.

Α

circRNA_17389|Chr2:61300951_61301454_-, circRN A_21729|Chr3:49335020_49335596_-, circRNA_318 46|Chr8:118375782_118379700_-, circRNA_31957|C hr8:129903312_129912515_-, and circRNA_03954|C hr10:49482687_49506012_- (Fig. 9C). Therefore, these six circRNAs may be related to CB pathology.

RT-qPCR validation

To further validate the circRNAs identified in clinical samples by microarray analysis, two each from the aforementioned circRNAs and miRNAs were selected for RT-qPCR validation, and the results are shown in Figure 10. The expression patterns of both hsa-MROH9_0001 and circRNA_2 1729|Chr3:49335020_49335596_- in RT-qPCR were partially consistent with the microarray results, with the difference being that circRNA_21279 expression was not statistically different between the Con and CB groups. Therefore, the RT-qPCR results support the reliability of the microarray analysis results. Furthermore, the expression pattern of hsa-miR-6789-5p (sponged by hsa-MROH9_0001; Fig. 7B) was completely opposite to that of hsa-MROH9_0001, suggesting the possible involvement of hsa-MROH9_0001 in disease progression through hsa-miR-6789-5p adsorption. However, the expression of hsa-miR-330-5p (sponged by circRNA_21279 in the database) appears to be similar to that of circRNA_21279 among the three groups, indicating that circRNA_21279 cannot regulate hsa-miR-330-5p involvement in disease progression through the ceRNA mechanism (refers to a mechanism of interaction between RNAs wherein noncoding RNAs competitively bind miRNAs to regulate the expression of the target genes).

Discussion

COPD and LC are associated diseases, and the presence of COPD raises the incidence and risk of death from LC

Figure 7. The expression and network of two candidate DEcircRNAs. **A.** Relative expression levels of hsa-MROH9_0001 and hsa-RP11-35J10_0013 in different tissues. **B.** Network of circRNA-miRNA of hsa-MROH9_0001 and hsa-RP11-35J10_0013. The red diamond indicates that hsa-RP11-35J10_0013 is upregulated in the COPD group, and the blue diamond indicates that hsa-MROH9_0001 is downregulated in the COPD group compared with the control group. The ellipses represent miRNAs. For color figure see online version of the article.

(Skillrud et al. 1986; Wilson et al. 2008). CircRNAs are endogenous molecules that are abnormally expressed in numerous human diseases, including LC and COPD. (Nicot 2019; Mei et al. 2020). However, the expression profiles and regulatory network of circRNAs in LC complicated with COPD remain unknown. In the present study, we have revealed for the first time that the circRNAs expression patterns are different in LC complicated by various COPD

Figure 8. Expression of miRNAs in the network and ROC analysis in LUSC using the CancerMIRNome database. Hsa-miR-3663-3p, hsa-miR-4640-5p, and hsa-miR-4709-3p were sponged by hsa-RP11-35J10_0013, and hsa-miR-6789-5p was sponged by hsa-MROH9_0001.

subphenotypes, such as E and CB. Specifically, GO and KEGG analyses have suggested an intrinsic link between DEcircRNAs and immune regulation. Further correlation analysis confirmed a significant correlation between large amounts of DEcircRNAs and different immune cell infiltration.

In this study, we speculated that hsa-miR-3663-3p, hsa-miR-4640-5p, and hsa-miR-4709-3p sponged by

hsa-RP11-35J10_0013, and hsa-miR-6789-5p sponged by hsa-MROH9_0001, hsa-RP11-35J10_0013 and hsa-MROH9_0001 have the potential to regulate tumor progression through these miRNAs. Regrettably, we have not found any literature on hsa-RP11-35J10_0013 and hsa-MROH9_0001. Furthermore, the expression of circRNA_21279 (also named hsa_circUSP4_002 (circBank ID), http://www.circbank.cn/index.html) in CB and E was con-

Figure 10. RT-qPCR validation. The circRNA of hsa-MROH9_0001 was selected from the network, and circRNA_21729|C hr3:49335020_49335596_was selected from WGCNA. Hsa-miR-6789-5p sponged by hsa-MROH9_0001, and hsa-miR-330-5p sponged by circRNA_21279. The expression of circRNAs and miRNAs were normalized by β-actin and U6, respectively. The gene expression was calculated using the $2^{-\Delta\Delta CT}$ method. *p<0.05, **p<0.01, ns means no significance.

firmed by RT-qPCR; however, literature on circRNA_21279 was not retrieved from Google Scholar. These unconfirmed circRNAs indicate that the known_circRNAs remain in the minority compared with the huge number of circRNAs, and further exploration and research on circRNAs still has great value.

In our study, we found that the dysregulated circRNAs in LC patients complicating with COPD were associated with immune and inflammatory pathways such as "Th1 and Th2 cell differentiation", "Natural killer cell mediated cytotoxicity", "Jak-STAT signaling pathway" and "Wnt signaling pathway". All these pathways have been previously implicated in LC or COPD pathogenesis. For example, the cytotoxic function of these NK T-like cells was compromised in these patients in some cancer cases (Wang et al. 2008). Activating Wnt/ β -catenin by lithium chloride could have mitigated the decline in lung function and airspace enlargement in mice with emphysema (Kneidinger et al. 2011). Similarly, phosphorylating and activating the JAK-STAT signaling pathway by PART1 contributed to promoting NSCLC cell progression (Zhu et al. 2019). Therefore, we speculated that the change in DEcircRNAs is the consequence of changes in the immune environment.

Moreover, as a chronic inflammatory disease, cellular immune environments in COPD serve as promising diagnostic and therapeutic targets (Henrot et al. 2019; Norman et al. 2019). This implies that molecules that induce changes in the cellular immune environment may be predisposing factors for COPD. As shown in Figure 6, this study predicted a significant association between 49 DEcircRNAs and the infiltration of 18 types of immune cells. For example, neutrophils were positively and negatively correlated with multiple DEcircRNAs. Neutrophils have been proven to be involved in COPD pathogenesis as important infiltrating innate immune cells in the lung (Trivedi et al. 2021). Neutrophilic inflammation is the most predominant inflammatory feature of COPD, and studies have shown that neutrophil infiltration is regulated by circRNA. For instance, abnormal neutrophil infiltration in asymptomatic cases (Ma et al. 2019) and symptomatic cases (Zhao et al. 2017) of moyamoya disease regulated by circRNA has been partially revealed. However, the analysis of neutrophilic inflammation regulated by circRNA in COPD patients is less explored. For the first time, this study predicts that multiple potential circRNAs are involved in neutrophil infiltration in COPD. In future studies, we will further verify if DEcircRNAs are involved in the pathological progression of COPD by regulating neutrophil infiltration via the abovementioned pathways.

Finally, we would like to acknowledge several limitations of this study. First, the three groups included a small number of samples, which may have biased the results. Second, the sex distribution was uneven in each group; thus, given the heterogeneity of the sexes of the samples between the groups, the influence of sex on the results could not be excluded. Third, the number of candidate DEcircRNAs validated by RT-qPCR was very small, which may have biased the results. In summary, this study elucidates the DEcircRNA profiles and possible regulating pathways as well as the relationship between DEcircRNAs and immune cell infiltration in LC patients with different COPD subphenotypes, such as CB or E. Our study demonstrated that circRNAs such as hsa-MROH9_0001 and hsa-RP11-35J10_0013 might participate in the development of LC patients with COPD by regulating inflammation and immune-related pathways. This study provides evidence to guide immunotherapy for LC complicated with COPD and potential targets for immunotherapy in LC complicated with COPD.

Acknowledgement. A pre-print version of this study was deposited on 17 August 2020 (Link: https://www.researchsquare.com/article/ rs-47904/v1). However, the pre-print is completely different from the current manuscript. The preprint only identified DEcircRNAs between the Con and CBE groups, and GO, KEGG and network analyses were done on these DEcircRNAs. The pre-print version did not identify the DEcircRNAs between Con and CB groups, Con and E groups, nor did it undergo immune infiltration analysis, miRNA prediction, ROC analysis, WGCNA, RT-qPCR validation. Therefore, the current manuscript is a more in-depth study of the subject and more informative than the pre-print version.

Conflict of interest. The authors have no conflicts of interest to declare.

Author contributions. (I) Conception and design: Lunxu Liu and Fuqiang Wen; (II) Administrative support: Lunxu Liu and Fuqiang Wen; (III) Provision of study materials or patients: Xiaoou Li, Jiahan Cheng, Zhicheng Yuan, and Jun Chen; (IV) Collection and assembly of data: Xiaoou Li, Yongchun Shen, Lei Chen, Jiahan Cheng; (V) Data analysis and interpretation: Xiaoou Li, Jun Chen, Zhicheng Yuan, Tao Wang and Lei Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Data availability statement. The raw data of circRNA microarray has been deposited to the Genome Sequence Archive for Human online database (https://ngdc.cncb.ac.cn/gsa-human/) referenced accession HRA002550.

Statement of ethics. Our study was approved by The Biomedical Ethics Committee [approval NO. 2017 approve (270)] of West China Hospital, Sichuan University. All patients provided written informed consent prior to enrollment in the study.

Funding sources. The present study was supported by the National Natural Science Foundation of China (Grant No. 81701564) and the 1 3 5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. ZYGD23009).

References

Barreiro E, Bustamante V, Curull V, Gea J, Lopez-Campos JL, Munoz X (2016): Relationships between chronic obstructive pulmonary disease and lung cancer: biological insights. J. Thor. Dis. 8, E1122-E1135 Li et al.

https://doi.org/10.21037/jtd.2016.09.54

Booton R, Lindsay MA (2014): Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest **146**, 193-204

https://doi.org/10.1378/chest.13-2736

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018): Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424 https://doi.org/10.3322/caac.21492
- Chen LL (2016): The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell. Biol. 17, 205-211 https://doi.org/10.1038/nrm.2015.32
- Chen T, Yang Z, Liu C, Wang L, Yang J, Chen L, Li W (2019): Circ_0078767 suppresses non-small-cell lung cancer by protecting RASSF1A expression via sponging miR-330-3p. Cell. Prolif. 52, e12548

https://doi.org/10.1111/cpr.12548

Chen X, Yuan Q, Liu J, Xia S, Shi X, Su Y, Wang Z, Li S, Shang D (2022): Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with in vivo and vitro validation. Front. Immunol. 13, 985911

https://doi.org/10.3389/fimmu.2022.985911

- Henrot P, Prevel R, Berger P, Dupin I (2019): Chemokines in COPD: from implication to therapeutic use. Int. J. Mol. Sci. **20**, 2785 https://doi.org/10.3390/ijms20112785
- Jin M, Shi C, Yang C, Liu J, Huang G (2019): Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 axis. Mol. Ther. Nucleic Acids **18**, 219-231 https://doi.org/10.1016/j.omtn.2019.08.016
- Kneidinger N, Yildirim AO, Callegari J, Takenaka S, Stein MM, Dumitrascu R, Bohla A, Bracke KR, Morty RE, Brusselle GG, et al. (2011): Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. Am. J. Resp. Crit. Care Med. 183, 723-733

https://doi.org/10.1164/rccm.200910-1560OC

- Li R, Qu H, Wang S, Chater JM, Wang X, Cui Y, Yu L, Zhou R, Jia Q, Traband R, et al. (2022): CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res. **50**, D1139-D1146 https://doi.org/10.1093/nar/gkab784
- Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, et al. (2019): Microarray is an efficient tool for circRNA profiling. Brief. Bioinform. **20**, 1420-1433 https://doi.org/10.1093/bib/bby006
- Licker MJ, Widikker I, Robert J, Frey JG, Spiliopoulos A, Tschopp JM (2006): Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann. Thorac. Surg. 81, 1830-1837 https://doi.org/10.1016/j.athoracsur.2005.11.048
- Ma Q, Li L, Yu B, Jiao L, Han Z, Zhao H, Li G, Ma Y, Luo Y (2019): Circular RNA profiling of neutrophil transcriptome provides insights into asymptomatic Moyamoya disease. Brain Res. **1719**, 104-112

https://doi.org/10.1016/j.brainres.2019.05.033

- Ma Y, Yuan Q, He S, Mao X, Zheng S, Chen C (2022): Characterizing the prognostic and therapeutic value of necroptosis in sarcoma based on necroptosis subtypes. Front. Genet. **13**, 980209 https://doi.org/10.3389/fgene.2022.980209
- Mei D, Tan WSD, Tay Y, Mukhopadhyay A, Wong WSF (2020): Therapeutic RNA strategies for chronic obstructive pulmonary disease. Trends Pharmacol. Sci. **41**, 475-486 https://doi.org/10.1016/j.tips.2020.04.007
- Mestdagh P, Vandesompele J, Brusselle G, Vermaelen K (2015): Non-coding RNAs and respiratory disease. Thorax **70**, 388-390 https://doi.org/10.1136/thoraxjnl-2014-206404
- Nicot C (2019): RNA-Seq reveal the circular RNAs landscape of lung cancer. Mol. Cancer **18**, 183
 - https://doi.org/10.1186/s12943-019-1118-8
- Norman KC, Freeman CM, Bidthanapally NS, Han MK, Martinez FJ, Curtis JL, Arnold KB (2019): Inference of cellular immune environments in sputum and peripheral blood associated with acute exacerbations of COPD. Cell. Mol. Bioeng. **12**, 165-177 https://doi.org/10.1007/s12195-019-00567-2
- Parris BA, O'Farrell HE, Fong KM, Yang IA (2019): Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J. Thorac. Dis. 11, S2155-S2172

https://doi.org/10.21037/jtd.2019.10.54

Reck M, Rabe KF (2017): Precision diagnosis and treatment for advanced non-small-cell lung cancer. New Engl. J. Med. 377, 849-861

https://doi.org/10.1056/NEJMra1703413

Ruano-Ravina A, Mouronte-Roibás C, Fernández-Villar A, Fernández V, Ramos-Hernández C, Botana-Rial M (2016): COPD, emphysema and the onset of lung cancer. A systematic review. Cancer Letters 382, 240-244

https://doi.org/10.1016/j.canlet.2016.09.002

Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Criner GJ, Frith P, Halpin DMG, Han M, et al. (2019): Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur. Resp. J. **53**, 1900164

https://doi.org/10.1183/13993003.00164-2019 Skillrud DM, Offord KP, Miller RD (1986): Higher risk of lung

- cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann. Int. Med. **105**, 503-507 https://doi.org/10.7326/0003-4819-105-4-503
- Szabo L, Salzman J (2016): Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Gen. 17, 679-692 https://doi.org/10.1038/nrg.2016.114
- Trivedi A, Khan MA, Bade G, Talwar A (2021): Orchestration of neutrophil extracellular traps (Nets), a unique innate immune function during chronic obstructive pulmonary disease (COPD) development. Biomedicines 9, 53 https://doi.org/10.3390/biomedicines9010053
- Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al. (2019): The landscape of circular RNA in cancer. Cell **176**, 869-881.e13 https://doi.org/10.1016/j.cell.2018.12.021
- Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, et al. (2017): Global strategy for the diagnosis, management, and pre-

vention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Resp. Crit. Care Med. **195,** 557-582 https://doi.org/10.1164/rccm.201701-0218PP

- Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, et al. (2017): Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet **390**, 1211-1259 https://doi.org/10.1016/S0140-6736(17)32154-2
- Vyse S, Huang PH (2019): Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal. Transduct. Target Ther. **4**, 5

https://doi.org/10.1038/s41392-019-0038-9

Wang H, Yang D, Xu W, Wang Y, Ruan Z, Zhao T, Han J, Wu Y (2008): Tumor-derived soluble MICs impair CD3(+)CD56(+) NKT-like cell cytotoxicity in cancer patients. Immunol. Lett. 120, 65-71

https://doi.org/10.1016/j.imlet.2008.07.001

Wilson DO, Weissfeld JL, Balkan A, Schragin JG, Fuhrman CR, Fisher SN, Wilson J, Leader JK, Siegfried JM, Shapiro SD, et al. (2008): Association of radiographic emphysema and airflow obstruction with lung cancer. Am. J. Resp. Crit. Care Med. 178, 738-744

https://doi.org/10.1164/rccm.200803-435OC

Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, Qu Y, Fan Z (2018): A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity **48**, 688-701.e7

https://doi.org/10.1016/j.immuni.2018.03.016

Yuan Q, Zhang W, Shang W (2022): Identification and validation of a prognostic risk-scoring model based on sphingolipid metabolism-associated cluster in colon adenocarcinoma. Front. Endocrinol. 13, 1045167

https://doi.org/10.3389/fendo.2022.1045167

- Zeng N, Wang T, Chen M, Yuan Z, Qin J, Wu Y, Gao L, Shen Y, Chen L, Wen F (2019): Cigarette smoke extract alters genomewide profiles of circular RNAs and mRNAs in primary human small airway epithelial cells. J. Cell. Mol. Med. **23**, 5532-5541 https://doi.org/10.1111/jcmm.14436
- Zhao M, Gao F, Zhang D, Wang S, Zhang Y, Wang R, Zhao J (2017): Altered expression of circular RNAs in Moyamoya disease. J. Neurol. Sci. **381**, 25-31

https://doi.org/10.1016/j.jns.2017.08.011

Zhou Y, Zheng X, Xu B, Chen L, Wang Q, Deng H, Jiang J (2019): Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem. Biophys. Res. Commun. **508**, 527-535

https://doi.org/10.1016/j.bbrc.2018.11.157

Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, Zhang C, Qi Y, Zhao S (2019): Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med. **8**, 6064-6081 https://doi.org/10.1002/cam4.2494

Received: December 4, 2023

Final version accepted: February 21, 2024

doi: 10.4149/gpb_2024013

Supplementary Material

Differential expression profiles and functional prediction of circular RNAs in lung cancer patients with chronic obstructive pulmonary disease: a pilot study

Xiaoou Li^{1,2}, Yongchun Shen^{1,2}, Jiahan Cheng³, Jun Chen^{1,2}, Zhicheng Yuan^{1,2}, Tao Wang^{1,2}, Lei Chen^{1,2}, Lunxu Liu³ and Fuqiang Wen^{1,2}

¹ Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

² Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

³ Department of Thoracic Surgery, Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China

Supplementary Tables

Gene	Primer
RT-U6	5'CGCTTCACGAATTTGCGTGTCAT3'
RT-hsa-miR-330-5p	5'GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCCTAAG3'
RT-hsa-miR-4709-3p	5'GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCTACAG3'
RT-hsa-miR-6789-5p	5'GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACCCCGCG3'
114	F:5'GCTTCGGCAGCACATATACTAAAAT3'
08	R:5'CGCTTCACGAATTTGCGTGTCAT3'
hea miP 330 5n	GSP:5'GGGTCTCTGGGCCTGTGTC3'
IIsa-IIIIK-350-5p	R:5'GTGCGTGTCGTGGAGTCG3'
hea miP 4709 3n	GSP:5'GGGGTTGAAGAGGAGGTGCT3'
IIsa-IIIIK-4709-3p	R:5'CAGTGCGTGTCGTGGAGT3'
hea miP 6789 5n	GSP:5'GTAGGGGCGTCCCGGGC3'
IIsa-IIIIK-0789-3p	R:5'GTGCGTGTCGTGGAGTCG3'
ß actin	F:5'GTGGCCGAGGACTTTGATTG3'
	R:5'CCTGTAACAACGCATCTCATATT3'
hea MPOHA 0001	F:5'TGATACCTTACGATTCCTGTGG3'
	R:5'GCTACTCTTTTATCATCCTCC3'
circPNA 21729	F:5'ATAACTAGTGTGAGGAGAGGTTGA3'
CIICKINA_21729	R:5'ACTGCCCAGGTGAATGTTTAG3'

Table S1. The primers used in this study

F, forward primers; R, reverse primers; RT, reverse transcription.

Table S2. The 243 differentially expressed circRNAs in adjacent tissues from LC patients with COPD compared with Con

circRNA_id	log2FoldChange	pval	up_down	circbase_id
circRNA_00093 Chr1:8508627_8557523	-1,960773406	0,025001729	Down	hsa_circ_0005829
circRNA_00253 Chr1:16486426_16486661	-1,963736452	0,017855579	Down	-
circRNA_00317 Chr1:20969474_21002808	-2,882471559	0,043239889	Down	hsa_circ_0005604
circRNA_00435 Chr1:26729651_26732792_+	-1,714035672	0,019996766	Down	hsa_circ_0008494
circRNA_00574 Chr1:32631827_32634110	#NÁZOV?	0,029524145	Down	-
circRNA_00832 Chr1:42480461_42498916_+	-3,012814091	0,033324893	Down	-
circRNA_00900 Chr1:46055795_46080750	1,543267436	0,011961295	Up	hsa_circ_0012300
circRNA_00935 Chr1:48305787_48359770	-2,270126464	0,045211903	Down	-
circRNA_01136 Chr1:61899583_61901459_+	-3,029985192	0,044634034	Down	hsa_circ_0012782
circRNA_01223 Chr1:66871370_66905375	#NÁZOV?	0,003218062	Down	-
circRNA_01307 Chr1:77717867_77718641	Inf	0,016212355	Up	hsa_circ_0012992
circRNA_01456 Chr1:90916640_90982370	-2,692255002	0,039583771	Down	-
circRNA_01459 Chr1:90937485_90982370	1,487105799	0,020557279	Up	-
circRNA_01639 Chr1:107148069_107148839_+	-3,650720858	0,013089866	Down	hsa_circ_0013364
circRNA_01971 Chr1:151638888_151668635_+	3,31853154	0,029701628	Up	hsa_circ_0000131
circRNA_01982 Chr1:152332583_152341210_+	#NÁZOV?	0,012620523	Down	-
circRNA_02083 Chr1:155672560_155679512	Inf	0,030826788	Up	hsa_circ_0014604
circRNA_02084 Chr1:155674685_155675096	#NÁZOV?	0,027536876	Down	-
circRNA_02104 Chr1:155771067_155773210	-1,520502701	0,033199265	Down	-
circRNA_02255 Chr1:171024395_171025420_+	-2,80096897	0,001917412	Down	-
circRNA_02440 Chr1:180397516_180430262	2,629919369	0,049952705	Up	hsa_circ_0000164
circRNA_02463 Chr1:184590739_184619630_+	Inf	0,025401438	Up	-
circRNA_03236 Chr1:246726892_246740301_+	Inf	0,034280048	Up	-
circRNA_03346 Chr10:7220411_7285954	Inf	0,018452023	Up	hsa_circ_0017628
circRNA_03365 Chr10:7637228_7655675	#NÁZOV?	0,037123583	Down	-
circRNA_03405 Chr10:11979057_12014184	Inf	0,031255351	Up	hsa_circ_0017713
circRNA_03575 Chr10:20147784_20177409_+	-1,946248271	0,046891975	Down	hsa_circ_0000224
circRNA_03728 Chr10:27935010_27944962	#NÁZOV?	0,028103562	Down	-
circRNA_03769 Chr10:31355144_31387798_+	-1,988455217	0,030751292	Down	hsa_circ_0007045
circRNA_04179 Chr10:70844473_70851210_+	#NÁZOV?	0,034251314	Down	
circRNA_04236 Chr10:73454412_73479517	#NÁZOV?	0,012686803	Down	hsa_circ_0018814
circRNA_04655 Chr10:101797980_101813606	Inf	0,027156256	Up	hsa_circ_0019610
circRNA_04710 Chr10:102876954_102890678_+	#NÁZOV?	0,004832468	Down	-
circRNA_04742 Chr10:104131331_104164300	-3,680917051	0,033445852	Down	-
circRNA_04922 Chr10:124973645_124974398_+	-1,535060934	0,04020426	Down	hsa_circ_0020340
circRNA_05019 Chr11:2347546_2347796	Inf	0,02203345	Up	-
circRNA_05094 Chr11:7796834_7799295	Inf	0,030676203	Up	-
circRNA_05322 Chr11:22203804_22227586_+	#NÁZOV?	0,042591624	Down	hsa_circ_0021506
circRNA_05388 Chr11:33286413_33306009_+	-3,102825178	0,025486393	Down	-
circRNA_05439 Chr11:36393846_36437476_+	Inf	0,034828922	Up	-
circRNA_05712 Chr11:68185781_68190152	3,105979398	0,026677164	Up	-
circRNA_05996 Chr11:85981745_85982003	Inf	0,03883106	Up	hsa_circ_0023904
circRNA_05999 Chr11:85981745_85996929	#NÁZOV?	0,006666901	Down	hsa_circ_0002264
circRNA_06004 Chr11:85996826_86001158	3,307049834	0,039213413	Up	hsa_circ_0002513
circRNA_06023 Chr11:86249471_86252240_+	#NÁZOV?	0,024760002	Down	-
circRNA_06284 Chr11:110435834_110437138_+	#NÁZOV?	0,042014276	Down	-
circRNA_06451 Chr11:121045674_121053732_+	Inf	0,00617914	Up	hsa_circ_0000365
circRNA_06493 Chr11:128480191_128490576	1,87162364	0,018582489	Up	hsa_circ_0002083
circRNA_06682 Chr12:9091201_9164259	#NÁZOV?	0,038188191	Down	-
circRNA_06831 Chr12:22643763_22673660_+	-1,447984272	0,024003047	Down	hsa_circ_0008664

Table S2. (continued)

circRNA id	log2FoldChange	pval	up down	circbase id
	-3 649303529	0.015809573	Down	 hsa_circ_0007918
circRNA_07392 Chr12:66203711_66217235_+	1 069209157	0.025931538	Un	hsa_circ_0008381
circRNA_07409 Chr12:68650400_68654252_+	Inf	0.008794398	Up	hsa_circ_0027464
circRNA_07931 Chr12:109938380_109939247	4 064736058	0.007631496	Un	-
circRNA_08023 Chr12:111865250_111871180_+	Inf	0.027851256	Un	hsa_circ_0004466
circRNA_08107[Chr12:116964697_116988869_+	#NÁZOV?	0.016266984	Down	hsa_circ_0005916
circRNA_08169 Chr12:120782655_120791557	2 26151642	0.021419069	Un	hsa_circ_0004479
circRNA_08178 Chr12:121221913_121223043_+	Inf	0.049073925	Un	hsa_circ_0028945
circRNA_08378 Chr12:133191489_133192003_+	-2.943461334	0.032011499	Down	hsa_circ_0029596
circRNA_08473 Chr13:24294739_24297735_+	Inf	0.023763711	Up	-
circRNA_08482[Chr13:24484653_24503777	Inf	0.034071815	Up	hsa_circ_0029767
circRNA_08625 Chr13:37040405_37051583	1,563331361	0.024052189	Up	hsa_circ_0000475
circRNA_08748 Chr13:45151687_45207505_+	1,566249759	0.042234707	Up	hsa_circ_0007259
circRNA_08945 Chr13:72773684_72778380	Inf	0.04698362	Up	
circRNA_08963 Chr13:75326197_75349302	Inf	0.034913195	Up	hsa_circ_0002917
circRNA_09051 Chr13:95161189_95170628	1.823471637	0.023116305	Up	hsa_circ_0006659
circRNA_09117 Chr13:99842996_99843523	#NÁZOV?	0.037561956	Down	-
circRNA_09273 Chr14:23033368_23033674	2.583319589	0.018085722	Up	hsa_circ_0008758
circRNA 09639 Chr14:49831299 49834449 -	Inf	0.040802042	Up	hsa_circ_0008076
circRNA_09773 Chr14:55350381_55355222_+	Inf	0.04575966	Up	-
circRNA_09932 Chr14:65561337_65629606_+	3,797437619	0.027587813	Up	-
circRNA_09940 Chr14:66965191_67058786_+	#NÁZOV?	0.010316561	Down	hsa_circ_0032254
circRNA_09998 Chr14:71045133_71057724_+	1.628797066	0.04319544	Up	hsa_circ_0001997
circRNA 10027 Chr14:73077369 73083551 +	#NÁZOV?	0.015044789	Down	hsa_circ_0007053
circRNA 10042 Chr14:73147795 73198129 +	#NÁZOV?	0,045583665	Down	hsa circ 0002289
circRNA 10490 Chr14:105742341 105769986 -	3,182713016	0.020582636	Up	hsa_circ_0000578
circRNA 10794 Chr15:42871445 42878684 -	#NÁZOV?	0,026397293	Down	-
circRNA 10870 Chr15:44550876 44551522 +	Inf	0,009599372	Up	-
circRNA 10925 Chr15:49235851 49283718 +	2,244443365	0,040301477	Up	hsa circ 0035188
circRNA 11311 Chr15:64859894 64865228 +	Inf	0,019089747	Up	hsa circ 0007152
circRNA 11724 Chr15:80978766 80982182 -	-2,339498828	0,026933691	Down	hsa circ 0002255
circRNA 12099 Chr16:3791981 3793626 -	#NÁZOV?	0,037409204	Down	
circRNA 12288 Chr16:16014491 16016621 +	-1,615315773	0,0131411	Down	hsa circ 0038085
circRNA_12355 Chr16:19642396_19652090_+	Inf	0,042102303	Up	hsa_circ_0006730
circRNA_12527 Chr16:30496097_30496566_+	-1,114725756	0,020428473	Down	
circRNA_12535 Chr16:30704064_30704315_+	3,08411494	0,046484334	Up	hsa_circ_0039076
circRNA_12641 Chr16:53255600_53274302_+	-1,801828662	0,02922592	Down	hsa_circ_0039366
circRNA_12746 Chr16:65810040_65812776	2,682171292	0,039584499	Up	-
circRNA_12796 Chr16:68121987_68158068_+	Inf	0,034109051	Up	hsa_circ_0039927
circRNA_12915 Chr16:71115696_71186918	#NÁZOV?	0,04091397	Down	-
circRNA_12968 Chr16:74915870_74916259	-1,373488345	0,023499147	Down	hsa_circ_0004910
circRNA_13199 Chr17:3705098_3705645	Inf	0,00476046	Up	-
circRNA_13514 Chr17:28122603_28172618_+	1,294907691	0,040354585	Up	hsa_circ_0002103
circRNA_13624 Chr17:31155983_31169997_+	-1,457916749	0,041528127	Down	hsa_circ_0007542
circRNA_13664 Chr17:32171043_32176213_+	#NÁZOV?	0,007611394	Down	hsa_circ_0008604
circRNA_13721 Chr17:36182524_36195912	4,605760742	0,036430527	Up	-
circRNA_14234 Chr17:61015751_61040892_+	#NÁZOV?	0,043877297	Down	hsa_circ_0044999
circRNA_14522 Chr17:76007060_76010543	2,618298581	0,046217602	Up	-
circRNA_14540 Chr17:76767386_76776541_+	-3,250398461	0,04089262	Down	hsa_circ_0045842
circRNA_14785 Chr18:9367488_9388140_+	#NÁZOV?	0,03133147	Down	-

Table S2. (continued)

circRNA_id	log2FoldChange	pval	up_down	circbase_id
	1,595238154	0,009880624	Up	hsa circ 0008190
circRNA 15009[Chr18:31846716_31849739	#NÁZOV?	0.034639057	Down	-
circRNA 15082 Chr18:42015476 42029441 +	-3,475459521	0,00177534	Down	hsa circ 0002560
circRNA 15154 Chr18:49363161 49379758 -	1,196033473	0,008013407	Up	hsa circ 0000849
circRNA 15208 Chr18:55350359 55351003 -	3,376499703	0,026452698	Up	hsa circ 0004223
circRNA 15423 Chr19:1271329 1272051 +	-1,583674129	0,036235364	Down	hsa_circ_0007715
circRNA_15545 Chr19:9337796_9339319_+	#NÁZOV?	0,047894085	Down	hsa_circ_0000888
circRNA_15610 Chr19:10795372_10798572_+	2,282135118	0,004719393	Up	hsa_circ_0049335
circRNA_15679 Chr19:12244581_12250368	#NÁZOV?	0,045404668	Down	
circRNA_15782 Chr19:17259289_17260022	Inf	0,006939103	Up	hsa_circ_0049965
circRNA_15841 Chr19:20117781_20121346_+	-3,810779721	0,015571693	Down	-
circRNA_15877 Chr19:22072809_22073564_+	1,863901554	0,015570228	Up	hsa_circ_0050301
circRNA_16009 Chr19:36145806_36146312_+	1,880824535	0,033896031	Up	hsa_circ_0002356
circRNA_16173 Chr19:46320443_46329478_+	#NÁZOV?	0,049871919	Down	-
circRNA_16722 Chr2:29131258_29135666_+	Inf	0,011772919	Up	hsa_circ_0006348
circRNA_16772 Chr2:32174063_32184338_+	-2,114359209	0,006226684	Down	hsa_circ_0005695
circRNA_16855 Chr2:33300451_33301644_+	#NÁZOV?	0,024826787	Down	hsa_circ_0002247
circRNA_17531 Chr2:66464109_66548019_+	-2,610388928	0,044039873	Down	hsa_circ_0008158
circRNA_17608 Chr2:70160625_70181997	-2,051608006	0,045335988	Down	hsa_circ_0004975
circRNA_17660 Chr2:72718103_72731245	-2,371957277	0,046649548	Down	-
circRNA_17878 Chr2:99194751_99195756_+	Inf	0,014911486	Up	hsa_circ_0008609
circRNA_17914 Chr2:101257791_101266879_+	#NÁZOV?	0,031662264	Down	-
circRNA_17965 Chr2:109329224_109347949_+	Inf	0,006688989	Up	hsa_circ_0003523
circRNA_18316 Chr2:152147162_152148300	-2,804808815	0,042269543	Down	-
circRNA_18475 Chr2:168138088_168182090	#NÁZOV?	0,040922941	Down	hsa_circ_0002029
circRNA_18504 Chr2:169872236_169875949_+	#NÁZOV?	0,012874042	Down	hsa_circ_0056971
circRNA_18668 Chr2:181539092_181549708	#NÁZOV?	0,016588874	Down	-
circRNA_18950 Chr2:201565729_201575326	-2,066473376	0,038745872	Down	hsa_circ_0057768
circRNA_19114 Chr2:206149020_206153682	Inf	0,042548117	Up	-
circRNA_19486 Chr2:241325993_241343093_+	Inf	0,045393383	Up	hsa_circ_0059053
circRNA_19552 Chr20:2947982_2975241_+	Inf	0,02488485	Up	-
circRNA_19587 Chr20:3912458_3918796_+	Inf	0,038872955	Up	-
circRNA_19684 Chr20:17956933_17961326	-2,96492895	0,028785176	Down	-
circRNA_19784 Chr20:33619517_33628435_+	3,136916902	0,043609311	Up	hsa_circ_0059862
circRNA_19887 Chr20:35858302_35871829_+	-1,597038901	0,010319576	Down	hsa_circ_0003322
circRNA_19920 Chr20:36935029_36941111	Inf	0,043996352	Up	-
circRNA_19939 Chr20:38040435_38066256_+	2,543710406	0,042366939	Up	hsa_circ_0008006
circRNA_20074 Chr20:49090742_49094963_+	-3,377446163	0,021124717	Down	hsa_circ_0060762
circRNA_20229 Chr21:15777904_15833548_+	#NÁZOV?	0,032006879	Down	-
circRNA_20320 Chr21:33421480_33432871_+	Inf	0,020134989	Up	hsa_circ_0002113
circRNA_20412 Chr21:37420299_37428908_+	Inf	0,002585597	Up	-
circRNA_20493 Chr21:45118564_45134832_+	#NÁZOV?	0,002410345	Down	hsa_circ_0061997
circRNA_20701 Chr22:28694032_28695873	2,868927358	0,043082717	Up	hsa_circ_0004811
circRNA_20828 Chr22:37687910_37688992_+	Inf	0,045637252	Up	hsa_circ_0004543
circRNA_21068 Chr3:3068983_3070311	-2,532893106	0,046246624	Down	-
circRNA_21071 Chr3:3137260_3144710_+	1,300114314	0,016463564	Up	-
circRNA_21185 Chr3:12496518_12503784_+	#NÁZOV?	0,043283843	Down	hsa_circ_0006673
circRNA_21407 Chr3:32733423_32737490_+	3,974655814	0,003735025	Up	-
circRNA_21422 Chr3:33516023_33538942	-3,674153353	0,015378814	Down	-
circRNA_21858 Chr3:56669700_56673725	1,110003054	0,043908582	Up	hsa_circ_0001316

Table S2.	(continued)	

circRNA_id	log2FoldChange	pval	up_down	circbase_id
circRNA_21996 Chr3:67400731_67409034	-3,365353491	0,043259257	Down	hsa_circ_0005688
circRNA_22115 Chr3:89340916_89342090_+	Inf	0,044130508	Up	hsa_circ_0066598
circRNA_22136 Chr3:98768430_98773983_+	-3,813709765	0,038696107	Down	hsa_circ_0066608
circRNA_22158 Chr3:100732508_100736716_+	3,300346193	0,041725268	Up	hsa_circ_0008839
circRNA_22170 Chr3:100885536_100902686	Inf	0,028469559	Up	-
circRNA_22228 Chr3:108647943_108672656_+	Inf	0,014935972	Up	-
circRNA_22247 Chr3:111945268_111962312_+	#NÁZOV?	0,024311433	Down	hsa_circ_0005128
circRNA_22254 Chr3:112537735_112550262	#NÁZOV?	0,014814306	Down	hsa_circ_0066801
circRNA_22656 Chr3:138570318_138571356	-1,142328229	0,015957344	Down	hsa_circ_0002468
circRNA_22833 Chr3:151581539_151600951	-2,240357893	0,001949546	Down	-
circRNA_22839 Chr3:152414941_152432920_+	1,076688193	0,035202152	Up	hsa_circ_0001349
circRNA_22952 Chr3:167554650_167633532	-3,804976112	0,030536275	Down	-
circRNA_23011 Chr3:170145423_170178938	Inf	0,02205356	Up	hsa_circ_0005228
circRNA_23193 Chr3:183866625_183868060	#NÁZOV?	0,036764446	Down	-
circRNA_23350 Chr3:195708134_195708841_+	-3,035160365	0,047250255	Down	-
circRNA_23540 Chr4:3154293_3157199_+	3,618138845	0,048509023	Up	-
circRNA_23905 Chr4:42485496_42524847	#NÁZOV?	0,047238096	Down	hsa_circ_0069608
circRNA_23910 Chr4:42503450_42543986	-1,613334117	0,036358705	Down	hsa_circ_0069613
circRNA_24076 Chr4:61497121_61497348_+	#NÁZOV?	0,014964177	Down	hsa_circ_0069859
circRNA_24171 Chr4:76996425_77030970_+	-1,807760029	0,029021346	Down	hsa_circ_0070057
circRNA_24374 Chr4:88061906_88065879_+	-2,2771479	0,013825928	Down	hsa_circ_0004577
circRNA_24947 Chr4:150467673_150491035	-1,817440564	0,006771479	Down	hsa_circ_0006867
circRNA_25346 Chr5:21491321_21495182_+	#NÁZOV?	0,010648408	Down	hsa_circ_0072023
circRNA_25534 Chr5:43161249_43161931_+	-1,399417052	0,033426566	Down	hsa_circ_0072380
circRNA_25535 Chr5:43292474_43297166	Inf	0,005153199	Up	hsa_circ_0008621
circRNA_25556 Chr5:50399107_50428227	#NÁZOV?	0,037182404	Down	-
circRNA_25596 Chr5:55322327_55328811_+	#NÁZOV?	0,011500357	Down	-
circRNA_25638 Chr5:56856600_56865977_+	Inf	0,017886413	Up	-
circRNA_25847 Chr5:73840480_73840760_+	-1,017526954	0,012936535	Down	hsa_circ_0005777
circRNA_25909 Chr5:77463095_77464809	-1,587785595	0,004512621	Down	hsa_circ_0001498
circRNA_25915 Chr5:78089393_78129307	-2,60065613	0,031627233	Down	hsa_circ_0008164
circRNA_25940 Chr5:79619612_79620083_+	#NÁZOV?	0,007347862	Down	-
circRNA_25987 Chr5:80775694_80813741_+	-3,925952626	0,038421818	Down	-
circRNA_26090 Chr5:94868333_94912976	Inf	0,043644803	Up	hsa_circ_0005540
circRNA_26217 Chr5:110605109_110627880	#NÁZOV?	0,003533146	Down	-
circRNA_26418 Chr5:132927121_132934941	-1,747419978	0,035359818	Down	hsa_circ_0073904
circRNA_26430 Chr5:133959494_133960020	-3,627729044	0,001120215	Down	-
circRNA_26524 Chr5:138377720_138381590_+	#NÁZOV?	0,022865376	Down	hsa_circ_0074111
circRNA_26544 Chr5:138810038_138827718_+	-1,204204068	0,023551975	Down	hsa_circ_0007440
circRNA_26570 Chr5:140167365_140167802_+	#NÁZOV?	0,002823481	Down	hsa_circ_0002423
circRNA_26704 Chr5:154026399_154034967	-2,911825293	0,024556703	Down	-
circRNA_26714 Chr5:154790325_154795319_+	#NÁZOV?	0,011664502	Down	hsa_circ_0007069
circRNA_27065 Chr6:10935058_10956242_+	#NÁZOV?	0,014988384	Down	hsa_circ_0075625
circRNA_27279 Chr6:29945234_30009177_+	Inf	0,018024156	Up	-
circRNA_27326 Chr6:32521905_32581838	Inf	2,42E-05	Up	-
circRNA_27537 Chr6:47283938_47286595	1,21914664	0,034323971	Up	hsa_circ_0001610
circRNA_27661 Chr6:61975887_62047994	2,039028466	0,002614826	Up	-
circRNA_27743 Chr6:73635382_73638499	Inf	0,04030096	Up	-
circRNA_27795 Chr6:75828540_75835956_+	#NÁZOV?	0,048035194	Down	-
circRNA_28124 Chr6:109419187_109436199	-1,487068169	0,036622145	Down	

Table S2. (continued)

circRNA_id	log2FoldChange	pval	up_down	circbase_id
circRNA_28318 Chr6:129049918_129059896_+	#NÁZOV?	0,047768461	Down	-
circRNA_28476 Chr6:138473306_138496371	3,714613589	0,036786744	Up	hsa_circ_0006835
circRNA_28553 Chr6:144513909_144516948_+	Inf	0,01159945	Up	-
circRNA_28594 Chr6:145893215_145894977	2,827312093	0,04531995	Up	hsa_circ_0078139
circRNA_28792 Chr6:158429736_158431663_+	-2,551606984	0,039315701	Down	hsa_circ_0001660
circRNA_28842 Chr6:163455279_163535125_+	-1,381725842	0,037151898	Down	-
circRNA_28868 Chr6:167870383_167902386_+	Inf	0,04578509	Up	-
circRNA_28964 Chr7:5901657_5910116_+	-1,407497125	0,04377317	Down	hsa_circ_0004703
circRNA_29241 Chr7:30778432_30782212_+	-2,531909881	0,047664603	Down	hsa_circ_0079733
circRNA_29440 Chr7:44674411_44675268_+	1,481228758	0,029005512	Up	hsa_circ_0005004
circRNA_29441 Chr7:44674411_44676149_+	Inf	0,018222552	Up	hsa_circ_0001701
circRNA_29482 Chr7:50703821_50705323	Inf	0,016724169	Up	hsa_circ_0080212
circRNA_29705 Chr7:77274482_77280653_+	-2,558098581	0,015388506	Down	-
circRNA_29770 Chr7:77749424_77750064_+	#NÁZOV?	0,04151907	Down	-
circRNA_29789 Chr7:80646088_80674147_+	Inf	0,016658779	Up	-
circRNA_29893 Chr7:92294889_92333720_+	-3,85358711	0,028250761	Down	hsa_circ_0002497
circRNA_30300 Chr7:128641203_128648982_+	1,970022879	0,013419207	Up	hsa_circ_0005921
circRNA_30483 Chr7:140334429_140337349	#NÁZOV?	0,016348076	Down	hsa_circ_0001757
circRNA_31142 Chr8:42861745_42887871	Inf	0,023969269	Up	hsa_circ_0084135
circRNA_31404 Chr8:67266006_67277457	-1,758556462	0,041987284	Down	-
circRNA_31715 Chr8:99575658_99585517_+	1,87563842	0,03145296	Up	-
circRNA_31797 Chr8:107284682_107303367	#NÁZOV?	0,035504748	Down	-
circRNA_32011 Chr8:132836540_132844318_+	-1,678322995	0,034681777	Down	hsa_circ_0085644
circRNA_32310 Chr9:17226203_17236588_+	-2,492403242	0,046723086	Down	-
circRNA_32395 Chr9:20923660_20933132_+	2,825249515	0,005734514	Up	hsa_circ_0005646
circRNA_32416 Chr9:27009020_27029104_+	Inf	0,029465537	Up	-
circRNA_32493 Chr9:33960826_33963791	-1,440603725	0,046908485	Down	hsa_circ_0001849
circRNA_33158 Chr9:112574057_112575251_+	Inf	0,012012797	Up	hsa_circ_0002925
circRNA 33275 Chr9:124301936 124313985 +	2,624241778	0,037873433	Up	hsa circ 0088485
circRNA 33468 Chr9:132296887 132311856 -	3,619978336	0,006106579	Up	hsa_circ_0089282
circRNA 33753 ChrX:43683513 43712796 +	#NÁZOV?	0,032588593	Down	
circRNA 33775 ChrX:47846105 47895940 +	1,262367835	0,019141302	Up	hsa circ 0006364
circRNA 33896 ChrX:75098942 75114834 -	Inf	0.043115623	Up	hsa circ 0007675
circRNA 34065 ChrX:118542725 118546116 +	-1,841516161	0.023797682	Down	-
circRNA 34256 ChrY:2953909 2961646 +	Inf	4,28E-07	Up	hsa circ 0001953
circRNA 34258 ChrY:2961074 2961646 +	Inf	0.014913628	Up	hsa circ 0007907
circRNA 34260 ChrY:3079284 3102194 +	Inf	0.000624758	Up	-
circRNA 34286 ChrY:12909360 12913062 +	Inf	0,000438336	Up	hsa circ 0008297
circRNA 34288 ChrY:12912963 12914649 +	Inf	0,041128167	Up	hsa circ 0005757
circRNA 34305 ChrY:18927076 18933475 -	Inf	0,035387346	Up	-
circRNA 34310 ChrY:19041370 19045288 -	Inf	0,017491661	Up	hsa circ 0009023
circRNA 34315 ChrY:19587210 19587507 +	Inf	2,11E-06	Up	hsa circ 0009024
circRNA_34319 ChrY·20507352_20521300_	Inf	0.008026565	Un	