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Abstract. Ferroptosis plays a crucial role in the development of non-alcoholic fatty liver disease 
(NAFLD). In this study, we aimed to use a comprehensive bioinformatics approach and experimental 
validation to identify and verify potential ferroptosis-related genes in NAFLD. We downloaded the 
microarray datasets for screening differentially expressed genes (DEGs) and identified the intersec-
tion of these datasets with ferroptosis-related DEGs from the Ferroptosis database. Subsequently, 
ferroptosis-related DEGs were obtained using SVM analysis; the LASSO algorithm was then used to 
identify six marker genes. Furthermore, the CIBERSORT algorithm was used to estimate the propor-
tion of different types of immune cells. Subsequently, we constructed drug regulatory networks and 
ceRNA regulatory networks. We identified six genes as marker genes for NAFLD, demonstrating 
their robust diagnostic abilities. Subsequent functional enrichment analysis results revealed that these 
marker genes were associated with multiple diseases and play a key role in NAFLD via the regulation 
of immune response and amino acid metabolism, among other pathways. The expression of hepatic 
EGR1, IL-6, SOCS1, and NR4A1 was significantly downregulated in the NAFLD model. Our findings 
provide new insights and molecular clues for understanding and treating NAFLD. Further studies 
are needed to assess the diagnostic potential of these markers for NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is usually diag-
nosed through exclusion criteria, including alcohol use, viral 
infections, and other liver-damaging factors. It manifests 
as an accumulation of excessive fat and is often associated 
with metabolic dysfunctions, including insulin resistance 

and hyperlipidemia (Targher et al. 2021). The majority of 
hepatic lipid metabolism abnormalities stem from imbal-
ances in lipid synthesis and metabolism, resulting in the 
excessive accumulation of lipids and subsequent dysfunction 
of hepatocytes. NAFLD comprises two distinct conditions: 
simple hepatic steatosis and non-alcoholic steatohepatitis 
(NASH). Left untreated, these conditions may advance to cir-
rhosis and liver cancer, underscoring NAFLD’s significance 
as a critical public health issue. This prevalent chronic liver 
disorder affects a quarter of the global population, with its 
incidence escalating annually (Younossi et al. 2018). Accord-
ing to a mathematical model, the epidemic of obesity and 
diabetes is expected to increase the incidence of NAFLD, 
and the death rates from associated illnesses will double 
(Estes et al. 2018). Two concepts, namely “second hit” and 
“multiple hits,” elucidate the pathophysiology of NAFLD. 
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Current comprehension indicates that the onset of NAFLD 
is influenced by genetic and epigenetic factors, mitochon-
drial dysfunction, endoplasmic reticulum stress, and insulin 
resistance (Chen et al. 2020). Nevertheless, the absence of 
sensitive and specific biomarkers for early clinical detection 
and treatment of NAFLD presents a significant challenge. 
Consequently, investigating the mechanisms underlying 
NAFLD is imperative for identifying prospective therapeutic 
targets and devising innovative treatment approaches.

Ferroptosis is a recently discovered form of programmed 
cell death triggered by iron-mediated lipid peroxidation 
(Li J et al. 2020). Hepatocyte lipid accumulation-induced 
programmed cell death can lead to liver tissue damage 
and inflammation (Manne et al. 2018). Ferroptosis could 
significantly activate the inflammatory response in NASH. 
Iron overload is prevalent among NAFLD patients, with 
iron-induced lipid peroxidation playing a substantial role 
in NAFLD pathogenesis (Gao et al. 2021). Malondialdehyde 
and 4-hydroxynonenal, the secondary products of lipid 
peroxidation, have been demonstrated in multiple studies 
to serve as markers of oxidative stress in individuals with 
NAFLD (He et al. 2023). Antioxidants that inhibit lipid 
peroxidation effectively reduce serum aminotransferases 
in patients with NAFLD (Violi and Cangemi, 2010). Fur-
thermore, regulators of iron metabolism show a substantial 
elevation in NAFLD mice induced by the methione-choline 
deficient (MCD) diet. Administration of ferroptosis inhibi-
tors (Ferrostatin-1 and Liproxstain-1) effectively attenuated 
liver injury, inflammation, and fibrosis in MCD diet-fed 
mice (Li X et al. 2020). Hepatic ferroptosis was shown to 
occur before apoptosis in hepatocytes (Tsurusaki et al. 2019; 
Zhang et al. 2021), suggesting that it may be a promising 
therapeutic target for treating or preventing NAFLD. Hence, 
we employed bioinformatics analysis to investigate and 
validate the effectiveness of genes linked to ferroptosis as 
biomarkers for NAFLD, along with their roles in the hepatic 
immune system.

Material and Methods

Data sources

In this study, the microarray datasets of NAFLD and normal 
samples were downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). The GSE89632 and GSE63067 
datasets, which contained 31 healthy control liver samples 
and 50 NAFLD liver samples, were obtained from the 
GPL14951 and GPL570 platforms (Arendt et al. 2015; Frades 
et al. 2015), ferroptosis-related genes (FRGs), which include 
369 driver genes, 348 suppressor genes, and 11 marker genes, 
were discovered in the FerrDb database (http://www.zhoun 
an.org/ferrdb) and the detailed genes were shown in Sup-

plementary material (Table S1) (Zhou and Bao 2020). The 
drug-gene interaction database (DGIdb) (https://dgidb.org/) 
was employed for drug-targeting marker gene prediction 
(Wagner et al. 2016).

Data processing and analysis of expression differences

Initially, the probes undergo annotation using the dataset’s 
annotation file. In cases where multiple queries correspond 
to the same gene, the average expression value is adopted 
as the gene expression value following ID transformation. 
GSE89632 and GSE63067 were amalgamated as the train-
ing set for analysis in the main body of this study, and batch 
correction of the dataset was performed using the “SVA” 
package in R software (Leek et al. 2012). PCA plots were used 
to illustrate the batch effect of the normalized dataset. In ad-
dition, the limma package was used for differential analysis 
to identify differentially expressed genes (DEGs) (Table S2) 
based on the screening criteria |logFC| > 1 and р.adj < 0.05 
(Colaprico et al. 2016), and intersected with FRGs to obtain 
differentially expressed ferroptosis genes (DE-FRGs) for 
subsequent analysis.

Functional analyses for the DE-FRGs

Gene ontology (GO) functional enrichment analysis com-
prises three components: biological process (BP), cellular 
component (CC), and molecular function (MF). Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment analysis is widely employed to elucidate biological 
mechanisms and pathways. The “clusterProfiler” R package 
(version 3.16.1) was utilized to conduct GO and KEGG 
pathway enrichment analyses (Yu et al. 2012). Results with 
significant differential enrichment were filtered out using 
p-value < 0.05 and p-adj < 0.01 as a criterion.

Identification of optimal diagnostic gene biomarkers for 
NAFLD

The least absolute shrinkage and selection operator (LASSO) 
with 10-fold cross-validation and support vector machine-
recursive feature elimination (SVM-RFE) were employed 
to discover supplementary gene markers for diagnosing 
NAFLD. The LASSO regression algorithm, a  renowned 
linear prediction technique, predicts outcomes by utilizing 
regression coefficients (Motamedi et al. 2022). SVM-RFE 
is a  machine learning method rooted in support vector 
machines, which identifies optimal core genes through 
iterative elimination of feature vectors generated by the sup-
port vector machine (Zhao et al. 2022). The SVM algorithm 
projects input data into a higher-dimensional feature space 
by mapping a  kernel function, thus facilitating classifica-
tion compared with the original feature space (Uddin et al. 
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2019). Our objective was to ascertain the optimal diagnostic 
gene markers for NAFLD by amalgamating the biomarkers 
acquired from both algorithms. Additionally, we conducted 
receiver operating characteristic (ROC) curve analysis on the 
training set utilizing the “pROC” package (Chai et al. 2023). 
The area under the curve (AUC) was calculated to validate 
the diagnostic effectiveness of the primary gene marker. 
Furthermore, our objective was to build a logistic regression 
model leveraging the predictive capabilities of the GLM 
package in R, incorporating six marker genes. This model 
was utilized to predict sample types within the training set 
and evaluate diagnostic performance using the ROC curve.

Single-gene Gene Set Enrichment Analysis (GSEA) enrichment 
analysis

The R package GSEA tool was utilized to calculate correla-
tions between the six marker genes and all other genes in 
the training set, enabling further exploration of the pathways 
correlated with the marker genes (Subramanian et al. 2005). 
The KEGG signaling pathway set was used as a preset set to 
find its abundance in the gene set. Each marker gene’s specific 
enrichment findings were merged into Table S3.

Single-gene Gene Set Variation Analysis (GSVA) enrichment 
analysis

GSVA represents an unsupervised and nonparametric ap-
proach to gene set enrichment analysis that estimates the 
score attributed to a particular pathway or signature based 
on transcriptomic data (Hänzelmann et al. 2013). In the 
current study, we conducted GSVA analysis for each marker 
gene utilizing the KEGG pathway set as the background 
gene set. We downloaded the “c2.cp.kegg.symbols” file from 
GSVA’s MSigDB database (Qin et al. 2023). Additionally, the 
R package “limma” was employed to assess the differences 
in GSVA scores among samples categorized by high and 
low expression levels of the marker genes. For cases where 
t > 0, activation of the pathway was assumed in the high-
expression group and conversely, if t < 0, initiation of the 
pathway was presumed in the low-expression group.

Immune infiltration analysis

As previous studies have done, the CIBERSORT algorithm 
calculates the proportion of different immune cell types 
based on the expression levels of immune cell-related genes 
(Yu et al. 2023; Zhao et al. 2023). The output of the 22 in-
filtrated immune cells was integrated to generate a matrix 
of immune cell fractions for analysis (Liu et al. 2024). The 
CIBERSORT program package was employed to assess the 
proportion of 22 immune cell types in liver samples from 
the training set in this study. Each sample’s total proportion 

of the 22 immune cell types equaled 1, with p < 0.05 indicat-
ing a significant correlation (Table S4). Bar graphs illustrate 
the distribution of the 22 immune cell types across different 
samples, and the vioplot was utilized to visualize differences 
between NAFLD and normal immune cell groups. A heat 
map depicting the correlation between marker genes and 
the 22 immune cell types was generated using the “corrplot” 
R package (Hu 2020).

Construction of ceRNA network

Targetscan, MiRanda, and MiRDB databases were used 
to predict mRNA-miRNA couples based on six marker 
genes, and only miRNAs predicted by all three databases 
concurrently were kept (John et al. 2004; McGeary et al. 
2019; Chen and Wang 2020). A ceRNA network of mRNA-
miRNA-lncRNA was created by searching the anticipated 
miRNAs in the spongeScan database and screening the 
miRNA-lncRNA pairings (Furió-Tarí et al. 2016). Finally, 
we used Cytoscape software to visualize the ceRNA network 
(Doncheva et al. 2019).

Establishment of the mouse NAFLD model

A total of twenty C57BL/6 mice (males, six weeks old) were 
purchased from Liaoning Changsheng biotechnology Co. Ltd 
(Benxi, China). The mice were housed in a temperature-con-
trolled chamber (22 ± 2°C) with a 12-hour light/dark cycle. 
Twenty male C57BL/6 mice, aged six weeks, were randomly 
assigned to either a high-fat diet (HFD) group or a control 
(CON) group, each consisting of 10 mice. Mice in the CON 
group were fed a standard chow diet for approximately 20 
weeks, with 12% of calories from fat, 29% from protein, 
and 59% from carbohydrates. Mice in the HFD group were 
fed a diet containing 60% fat (d12492, medicience, Jiangsu, 
China) for about 20 weeks before euthanasia and sam-
pling. After 20 weeks, all mice were anesthetized with 2% 
isoflurane, followed by euthanasia via cervical dislocation, 
with efforts made to minimize pain. Tissue samples were 
collected, fixed in 10% formalin for 24 hours, dehydrated, 
and embedded in paraffin. Tissue sections, 4 μm thick, were 
prepared, and hematoxylin and eosin (H&E) staining was 
performed. All methods were carried out in accordance with 
the Animal Care Guidelines of Harbin Medical University 
(2022-DWSYLLCZ-20), and all methods are reported in 
accordance with ARRIVE guidelines for the reporting of 
animal experiments.

Quantitative RT-PCR analysis

Total RNA was extracted from homogenized tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Subse-
quently, 1  μg of total RNA was reverse transcribed using 
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Figure 1. PCA plots illustrating batch effects between the data sets before (A) and after (B) normalization. C. After batch correction, 
we identified the DEGs in the training set, and in the volcano plot, up-regulated genes are shown in red and down-regulated genes are 
shown in green. D. DEGs were intersected with ferroptosis-related genes to obtain 9 ferroptosis-related differential genes (DE-FRGs). 
E. Heat map showing the expression pattern of NAFLD DE-FRGs in the sample. F. The correlation of 9 NAFLD DE-FRGs. They are all 
positively correlated with each other. (See online version for color figure.)
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PrimeScript reverse transcriptase (Takara, Kusatsu, Japan), 
and 2*SYBR Green qPCR (Vazyme, Nanjing, China) was 
then performed for gene expression analysis. The reaction 
system was 10 μl, with 2 * SYBR Green qPCR 5 μl and prim-
ers (each) 0.2 μl. The PCR conditions were 95°C for 30 s, 
followed by 45 cycles of 95°C for 10 s, 60°C for 30 s. The 
primer sequences are listed in Table S5.

Statistical analysis

The experimental data were analyzed using GraphPad Prism 
9.0. Results are expressed as mean ± standard deviation 
(SD). Student’s t-test was employed to compare differences 
between the two groups, with significance set at p < 0.05.

Results

Identification of potential DE-FRGs in NAFLD

The GSE89632 and GSE63067 datasets were merged, nor-
malized, and subjected to batch correction. In Figure 1A, 
principal component analysis (PCA) results before batch cor-
rection are presented for the two datasets, each represented 
by different colors. The plot indicates complete separation 
between the two datasets without overlap. Figure 1B displays 
PCA results after batch correction, revealing the successful 
elimination of the batch effect, thus enabling the combina-
tion of the two datasets for further analysis. According to 
the screening conditions of |logFC| > 1 and р.adj < 0.05, 
122 DEGs were significantly differentially expressed in 
NAFLD tissues compared to normal tissues, which were 28 
up-regulated genes and 94 down-regulated genes. Among 
them, nine genes exhibited differential expression in NAFLD 
tissues compared to normal tissues and were identified as 
ferroptosis-related genes, all of which were downregulated 
(Fig. 1D). The expression patterns of DEGs and DE-FRGs 
in the samples were illustrated in the volcano plot and the 
clustering heatmap, respectively (Fig. 1C,E). Figure 1F 
displays the interactions between these genes. Strong posi-
tive correlations were observed between IL-6 and PTGS2, 
NR4A1, PROK2, IL-1B, and SOCS1. Furthermore, PTGS2 
and PROK2 exhibited a significant positive correlation with 
IL-1B. Although the associations between EGR1, JUN, 
ZFP36, and other DE-FRGs were notable, the correlations 
were not particularly high.

Functional analyses for the DE-FRGs

GO and KEGG enrichment studies clarified the biological 
processes and pathways connected to NAFLD DE-FRGs. 
The results showed that BP enrichment analysis indicated 
that DE-FRGS was significantly associated with “response 

to lipopolysaccharide,” “response to molecule of bacterial 
origin,” and “fat cell differentiation.” CC enrichment was 
associated with “cytoplasmic ribonucleoprotein granule,” 
“ribonucleoprotein granule.” Moreover, MF was associated 
with “DNA-binding transcription activator activity, RNA 
polymerase II-specific” and “DNA-binding transcription 
activator activity” (Fig. 2A,B). In particular, KEGG analysis 
showed significant enrichment in several immune-related 
pathways (IL-17 signaling pathway, C-type lectin receptor 
signaling pathway, TNF signaling pathway) (Fig. 2C,D).

Six DE-FRGs were identified as diagnostic genes for NAFLD

To evaluate the diagnostic potential of DE-FRGs and dis-
tinguish between individuals with NAFLD and healthy 
controls, the machine learning algorithms LASSO and 
SVM-RFE were employed to identify significant DE-FRGs. 
Following core gene filtration, 10-fold cross-validation of 
LASSO identified six genetic markers, as shown in Figures 
3A and B. Subsequently, after identifying nine DE-FRGs, 
SVM-RFE determined the optimal combination of feature 
genes for NAFLD diagnosis (Fig. 3C). The intersection of 
marker genes from LASSO and SVM-RFE models led to 
the selection of six marker genes (EGR1, IL-6, JUN, NR4A1, 
SOCS1, and ZFP36) as diagnostic genes for NAFLD for 
further investigation (Fig. 3D).

Logistic regression models were developed using the 
R package GLM based on the aforementioned six character-
istic genes. The ROC curves demonstrated that these models, 
utilizing the six marker genes, effectively discriminated 
between standard and NAFLD samples (AUC = 0.946; Fig. 
3E). Additionally, ROC curves were constructed for these 
six marker genes to evaluate their capability in distinguish-
ing between samples with NAFLD and those without it. As 
illustrated in Figure 3F, the AUCs of all six genes exceeded 
0.8, indicating their high diagnostic accuracy. These find-
ings suggest that the logistic regression model surpasses 
individual marker genes in terms of accuracy and specificity 
when differentiating NAFLD samples from control samples.

Marker genes were intimately connected to several NAFLD-
related pathways

We conducted a single-gene GSEA-KEGG pathway analysis 
to further investigate the potential role of marker genes in 
distinguishing NAFLD samples from control samples. Figure 
S1 displays the top six pathways enriched for each marker 
gene. After comprehensive research, we found that these 
genes are involved in ribosomes, cell cycle, immune response 
(T-cell receptor signaling pathway, extracellular matrix-
receptor interaction, and B-cell receptor signaling pathway), 
amino acid synthesis and metabolism (calcium, leucine, and 
isoleucine degradation, tyrosine metabolism, and amino acid 
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biosynthesis), and various disease pathways (type 2 diabe-
tes, hypertrophic cardiomyopathy, dilated cardiomyopathy, 
tumors, and renal cell carcinoma) were abundant. Addition-
ally, we observed that these marker genes were enriched in 
the “P53 signaling pathway,” “MAPK signaling pathway,” 
“NOD-like receptor signaling pathway,” “chemokine sign-
aling pathway,” “JAK-STAT signaling pathway,” “Toll-like 
receptor signaling pathway,” and “Wnt signaling pathways. 

We used GSVA to compare the activation pathways 
across groups with high and low expression levels based 
on the degree of expression of each marker gene. As shown 
in Figure S2, the low expression of EGR1 may be involved 
in the pathogenesis of NAFLD through immune response 
(extracellular matrix receptor interaction), “hematopoietic 
cell signaling,” and “cytokine interaction.” In contrast, its 
high expression is associated only with the “protein export” 
pathway. Upregulation of IL-6 activates pathways related to 
the cell cycle, amino acid metabolism, and DNA produc-
tion, whereas its downregulation activates “hypertrophic 
cardiomyopathy,” “right ventricular arrhythmogenic,” and 
“myocardial contraction.” In addition to EGR1 and IL-6, 
JUN, NR4A1, and SOCS1 were associated with the NOD-like 
receptor signaling pathway in the pathogenesis of NAFLD. 
Furthermore, low expression of IL-6, JUN, NR4A1, SOCS1, 
and ZFP36 was all directly related to the “JAK-STAT signal-
ing pathway.”

Immune landscape analysis

The immunological microenvironment and NAFLD are 
inextricably linked (Van Herck et al. 2019). Thus, using the 
CIBERSORT method, we investigated the variations in the 
immune microenvironment between NAFLD and normal 
samples. The results showed that the top three classes of 
immune cells in NAFLD tissues were M2 macrophages, γδ 
T cells, and resting-memory CD4 T cells, which accounted 
for approximately 50% of the immune cell infiltration in 
NAFLD (Fig. 4A). We observed that the infiltration of neu-
trophils, plasma cells, activated dendritic cells, activated 
mast cells, and naive B cells was considerably reduced in 
NAFLD tissues compared to normal tissues. Conversely, the 
infiltration of M1 and M2 macrophages, resting dendritic 
cells, and resting mast cells was significantly increased in 
NAFLD tissue (Fig. 4B).

Finally, we aimed to further study the relationship be-
tween our discovered marker genes and immune cells. To this 
end, we investigated the correlation between the expression 
of the six marker genes and the presence of 22 resistant cell 
types, as shown in Figure 4C. Regarding the expression of 
IL-6, NR4A1, SOCS1, and ZFP36, activated mast cells and 
resting mast cells had positive and negative correlations, 
respectively. Additionally, we found that the expression of 
IL-6 was positively and negatively associated with activated 

dendritic cells and M2 macrophages, respectively. Fur-
thermore, SOCS1 was positively correlated with activated 
dendritic cells and monocytes but negatively correlated 
with γδ T cells. ZFP36 was negatively correlated with resting 
dendritic cells but positively correlated with monocytes and 
activated Mast cells. Finally, we observed that NR4A1 was 
positively correlated with monocytes. 

Prediction of marker gene-targeted drugs

We utilized the DGIdb database to identify additional 
potential therapeutic targets for the marker genes and 
utilized Cytoscape tools to visualize the associations (Fig. 
S3). We assessed 53 medications targeting marker genes: 2 
for SOCS1, 20 for IL-6, 1 for EGR1, 20 for JUN, and 10 for 
NR4A1. However, no drugs targeting ZFP36 were found in 
the DGIdb database. Among the 20 drugs targeting IL-6, six 
were IL-6 inhibitors. The relationship between marker genes 
and medications targeting them is presented in Table S6.

A ceRNA network based on marker genes

After that, we used the Targetscan, MiRanda, MiRDB, and 
spongeScan databases to construct a ceRNA network based 
on the six marker genes. In total, 290 edges and 248 nodes 
were present in the network containing six marker genes, 119 
miRNAs, and 123 lncRNAs (Fig. S4). Our analysis revealed 
that 51 lncRNAs might competitively bind hsa-miR-766-3p, 
hsa-miR-149-3p, hsa-miR-561-3p, hsa-miR-324a-5p, and 11 
other miRNA-regulated SOCS1. Moreover, hsa-miR-766-
3p and hsa-miR-149-3p were found to be regulated by 39 
lncRNAs. For JUN, we identified 30 lncRNAs that regulated 
JUN expression through competitive binding with hsa-miR-
524-5p, hsa-miR-1972, hsa-miR-542-3p, hsa-miR-758-3p, 
and hsa-miR-940. Among them, lncRNA LINC00917, 
AC079586.1, and RP11-157B13.7 can target both hsamiR-
542-3p and hsa-miR-758-3p. We also found that 20 lncRNAs 
can regulate JUN expression through the modulation of 
hsa-miR-515-5p, hsa-miR-760, hsa-miR 302a-5p, hsa-miR-
149-5p, which in turn affects IL-6 expression. Among these, 
hsa-miR-515-5p expression was regulated by 15 lncRNAs. 
In the ceRNA network of NR4A1, eight and nine lncRNAs 
were identified to bind to hsa-miR-3425p and hsa-miR-665, 
respectively, to regulate the gene. In total, five lncRNAs were 
found to compete with hsa-miR-3787-3p for binding, leading 
to the regulation of EGR1 expression. Detailed information 
on the ceRNA network is provided in Table S7.

Expression of the marker gene in the NAFLD mouse model

To validate the reliability of the identified marker genes, 
NAFLD mouse models were induced by feeding C57BL/6 
mice with an HFD for an additional 20 weeks. H&E stain-
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Figure 3. A. LASSO regression of the nine Ferroptosis-related DEGs. B. Partial likelihood deviance for the LASSO coefficient profiles. 
Six genes were selected at the value (lambda.min). C. SVM-RFE algorithm filtered 9 DE-FRGS and finally screened all nine genes as the 
best diagnostic genes. D. NAFLD marker genes were obtained from the LASSO model and the SVM-RFE model. E. Determination of 
logistic regression model for AUC of disease samples. F. ROC curves of 6 marker genes. (See online version for color figure.)
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ing confirmed the establishment of NAFLD in the mouse 
models (Fig. 5A,B). Subsequently, we validated the marker 
genes in the NAFLD mouse model using qRT-PCR. The 
results indicated differential expression of the four marker 
genes in the livers of HFD-fed mice (Fig. 5C–F). Specifically, 
HFD-fed mice exhibited significantly lower hepatic expres-
sion levels of IL-6, EGR1, SOCS1, and NR4A1 compared to 
CON mice (p < 0.05).

Discussion

Hepatocyte death constitutes a pivotal mechanism in vari-
ous liver injuries, encompassing multiple cell death path-
ways, including autophagy, pyroptosis, and programmed 
necrosis, alongside apoptosis and necrosis (Qian et al. 2021; 
Knorr et al. 2022). The liver is particularly susceptible to 
oxidative damage, with many liver disorders marked by 
an overabundance of iron accumulation (Wu et al. 2021). 
NAFLD is closely related to the mechanism of ferroptosis 
lipid peroxidation, and ferroptosis suppression has been 
shown to substantially alleviate NAFLD (Tsurusaki et al. 
2019). Therefore, ferroptosis could be an essential target 
for treating and preventing NAFLD. In this study, we used 
bioinformatics approaches to analyze the genetic differences 
in ferroptosis between NAFLD and normal samples. We 
screened diagnostic markers, explored the molecular patho-
genesis of ferroptosis in NAFLD, and validated these genes 
in an established NAFLD mouse model. Our findings offer 
valuable clinical insights for preventing and treating NAFLD.

In our study, we assessed six DEGs implicated in fer-
roptosis in NAFLD: EGR1, IL-6, JUN, SOCS1, ZFP36, and 
PTGS2. The AUC values of the ROC curves for these genes 
exceeded 0.8, indicating their reliable accuracy and speci-
ficity in distinguishing NAFLD cases from healthy samples. 
Due to the challenge of obtaining human liver samples, we 
induced NAFLD in C57BL/6 mice by feeding them a HFD 
to further validate the expression of these genes. This model 
closely mimics the development of human NAFLD and is 
commonly used in metabolic studies (Eng and Estall 2021). 
Our findings demonstrate a notable decrease in the expres-
sion levels of EGR1, IL-6, NR4A1, and SOCS1 in NAFLD 
mice compared to the control group, validating the forecasts 
generated by our analysis.

EGR1 is a  transcription factor primarily involved in 
tissue damage, immune response, and fibrosis (Ma et al. 
2023). By targeting and suppressing the expression of miR-
15a-5p, the knockdown of EGR1 can increase the protein 
expression of GPX4 (Fan et al. 2021), which is the primary 
endogenous inhibitor of ferroptosis (Bersuker et al. 2019). 
This implies that low levels of EGR1 can contribute to the 
disease by preventing ferroptosis. Our findings indicate 
a  downregulation of EGR1 expression in NAFLD mice, 

implying a potential organismal defense mechanism. It is 
conceivable that an EGR1/GPX4 axis, by modulating fer-
roptosis, contributes to the regulation of NAFLD develop-
ment. SOCS1, a member of the cytokine signaling repressor 
protein family, functions as a negative feedback regulator, 
inhibiting cytokine signaling pathways within cells (Dai et 
al. 2023). It specifically inhibits the JAK/STAT signaling 
pathway by targeting unphosphorylated JAK and blocking 
JAK phosphorylation through the kinase inhibitory region 
of SOCS1 (Liau et al. 2018). Furthermore, GSVA analysis 
of SOCS1 confirmed the upregulation of the JAK/STAT 
signaling pathway in the low-expression group. SOCS1 
plays a critical role in regulating ferroptosis in cancer cells, 
thereby indirectly enhancing cellular susceptibility to lipid 
oxidation and ferroptosis (Yan et al. 2023). Remarkably, our 
model demonstrated downregulation of SOCS1 expression, 
suggesting its role in inhibiting ferroptosis and its protec-
tive function in NAFLD. Additionally, in mice subjected 
to a high-fat diet, the knockdown of NR4A1 exacerbates 
insulin resistance and liver steatosis, whereas NR4A1 over-
expression mitigates hepatic triglyceride accumulation (Sun 
et al. 2021). NR4A1 regulates tumor ferroptosis (Ye et al. 
2021) and is consequently involved in both ferroptosis and 
NAFLD. The GSVA analysis of the ferroptosis-related gene 
NR4R1 showed upregulation of the “JAK-STAT signaling 
pathway” and “NOD-like signaling pathway” in the low-
expression group. This observation suggests that NR4A1 
plays a role in NAFLD development by suppressing these 
pathways. Additionally, IL-6 induces chondrocyte ferrop-
tosis by triggering cellular oxidative stress and perturbing 
iron homeostasis (Bin et al. 2021). This is because IL-6 has 
isozyme-specific effects on GPX expression and can reduce 
its transcript concentration (Bin et al. 2021). Increased IL-6 
expression in the presence of hepatic steatosis is associated 
with the severity of NAFLD as well as insulin resistance in 
the liver and adipose tissue (Cobbina and Akhlaghi 2017). 
Nevertheless, our analysis uncovered a reduction in IL-6 
expression in NAFLD. This observation indicates the com-
plexity of IL-6 involvement in NAFLD, with the decrease in 
IL-6 levels potentially attributed to excessive loss induced 
by ferroptosis in the liver.

The liver harbors numerous innate and adaptive immune 
cells pivotal for preserving immune homeostasis (Kubes 
and Jenne 2018), and immune dysregulation is implicated 
in NAFLD development. Consequently, we investigated im-
mune infiltration in the livers of both NAFLD patients and 
healthy individuals employing the CIBERSORT algorithm. 
Our results revealed significantly elevated levels of M1 and 
M2 macrophages, as well as resting dendritic cells and mast 
cells, in the livers of NAFLD patients compared to those of 
healthy controls. Notably, M2 macrophages and γδ T cells 
predominated in liver tissue, underscoring their importance 
in the immunological milieu of NAFLD.
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Simple steatosis triggers macrophage infiltration in the 
liver, with the macrophage count escalating alongside the 
severity of steatosis and liver inflammation (Barreby et al. 
2022). Macrophage activation and polarization profoundly 
influence NAFLD progression (Kazankov et al. 2019). Dur-
ing the reparative phase of NASH, hepatic macrophages 
polarize towards an inflammatory and pro-fibrotic M2 
phenotype, thereby fostering fibrosis (Kazankov et al. 2019). 
This observation suggests that while dysfunctional immune 
cells may exacerbate liver damage, an early inflammatory 
response could facilitate the recovery and regeneration of 
liver tissue (Ahmed et al. 2021). Nevertheless, our study 
revealed a notable abundance of hepatic M1 macrophages 
in NAFLD patients compared to normal individuals. This 
phenomenon may stem from the plasticity and adaptability 
of macrophages, allowing them to partially reverse their phe-
notype (Sica et al. 2014). γδ T cells represent a distinct subset 
of T lymphocytes crucial for host defense, immune surveil-
lance, and immune system homeostasis. IL-17A, a pivotal 
pro-inflammatory cytokine in the liver, is predominantly 
secreted by γδ T cells (Mills 2023). The escalating presence 
of γδ T cells in the liver during NAFLD progression and ex-
acerbation of steatohepatitis modulates CD4 T cells and aug-
ments IL-17 expression (Xi et al. 2019). This finding aligns 
with our study results, which unveiled a negative correlation 
between the expression levels of NAFLD ferroptosis-related 
genes and γδ T cells. KEGG enrichment analysis revealed 
the predominant enrichment of these genes in the IL-17 
signaling pathway, which facilitates NAFLD progression 
by recruiting neutrophils and stimulating ROS produc-

tion. Knockdown of the pivotal gene IL-17RA within this 
pathway impedes NAFLD progression (Harley et al. 2014). 
Consequently, γδ cells, responsible for IL-17A production, 
emerge as the principal regulatory cells in NAFLD progres-
sion, suggesting that diminishing the hepatic enrichment 
of γδ cells could offer an effective strategy to halt NAFLD 
advancement.

The expression levels of various ferroptosis-related genes 
exhibited consistent correlations with distinct immune cell 
populations. In our investigation, IL-6, SOCS1, and NR4A1 
displayed a robust positive correlation with activated mast 
cells but a  pronounced negative correlation with resting 
mast cells, while EGR1 showed a  significant negative as-
sociation with γδ T  cells. Additionally, the expression of 
these genes was downregulated in NAFLD patients. These 
findings suggest that the altered immune microenvironment 
in NAFLD patients may be associated with the expression of 
these genes. We hypothesize that the regulation of immune 
cell aggregation by the ferroptosis-related genes EGR1, IL-
6, SOCS1, and NR4A1 occurs through immunological or 
inflammatory pathways, thereby influencing the progression 
of NAFLD. Nevertheless, these conclusions rely primarily on 
the analysis of existing data, and additional clinical trials or 
animal studies are warranted to corroborate and substanti-
ate our findings.

Our analysis of drugs targeting the marker and ceRNA 
networks revealed six out of the 20 drugs as IL-6 antago-
nists: siltuximab, clazakizumab, sirukumab, elsilimomab, 
pf-04236921, and olokizumab. Although these drugs have 
been utilized in conditions like rheumatoid arthritis, Crohn’s 

Figure 5.  Marker genes 
expression in high-fat diet 
(HFD)-fed mice. A,B. He-
matoxylin and eosin (H&E) 
staining of liver slices (mag-
nification ×400, scale bar = 
100 μm). EGR1 (C), IL-6 (D), 
NR4A1 (E), and SOCS1 (F) 
mRNA levels were consider-
ably lower in the HFD group 
than in the CON group. 
Values are shown as the mean 
± SD. * p < 0.05, ** p < 0.01, 
*** p < 0.001.
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disease, and myeloma, their efficacy in NAFLD treatment 
remains unreported. Additionally, genipin, which targets 
SREBP-1c and reduces hyperlipidemia and hepatic lipid 
accumulation in mice, exhibits beneficial effects, such as 
enhancing pancreatic β-cell function in energy metabolism 
for the treatment of metabolic disorders (Wang et al. 2022). 
Non-coding RNAs, such as miR-34a-3p, miR-23a-3p, miR-
200b, and miR-200c, play essential roles in lipid metabolism 
in NAFLD (Li et al. 2021; Xu et al. 2021; Goncalves et al. 
2023). Nevertheless, the effectiveness of these targeted 
drugs and non-coding RNAs in treating NAFLD remains 
uncertain, necessitating additional research to elucidate 
their exact mechanisms. Consequently, these gene-targeting 
drugs and non-coding RNAs selected for study merit further 
exploration as prospective NAFLD treatments. However, this 
study has several limitations. Firstly, the reliance on mouse 
models instead of human samples may hinder the validation 
of disparities in NAFLD marker gene expression. Secondly, 
the sample size is relatively small; underscoring the need 
for larger sample sizes in future animal studies and clinical 
cohort investigations.

Conclusion

In conclusion, this study employed a comprehensive bioinfor-
matics approach to investigate ferroptosis-related genes and 
their implications in NAFLD. The expression levels of EGR1, 
IL-6, SOCS1, and NR4A1 were found to be significantly 
diminished in an established NAFLD model. This observa-
tion implies their involvement in ferroptosis in NAFLD and 
potentially in modulating the immunological milieu within 
the livers of NAFLD patients. While further experiments 
are necessary to validate the molecular interactions between 
these ferroptosis-related genes and NAFLD, our findings are 
crucial for advancing our understanding of NAFLD patho-
physiology and treatment. Consequently, we will continue to 
explore these genes in future research endeavors to enhance 
our comprehension of NAFLD management.
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Figure S1. Single-gene GSEA-KEGG pathway analysis of EGR1 (A), IL-6 (B), JUN (C), NR4A1 (D), 
SOCS1 (E) and ZFP36 (F). 
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Figure S2. Differential activation pathways were found between groups with high and low expression levels for 
each marker gene. GSVA in EGR1 (A), IL-6 (B), JUN (C), NR4A1 (D), SOSC1 (E), and ZFP36 (F). 
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Figure S3. Marker gene-drug prediction. These medicines can target marker genes via DGIdb. 
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Figure S4. A ceRNA network based on marker genes. The network has 290 edges and 248 nodes (6 marker 
genes, 119 miRNAs, and 123 lncRNAs). 
 
 
Supplementary Tables 
 
 

Figure S4. A ceRNA network based on marker genes. The network has 290 edges and 248 nodes (6 marker genes, 119 miRNAs, and 123 
lncRNAs).
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Supplementary Tables

Table S1. Ferroptosis-related genes from the FerrDb database

RPL8
IREB2
ATP5MC3
CS
EMC2
ACSF2
NOX1
CYBB 
NOX3
NOX4
NOX5
DUOX1
DUOX2
G6PD 
PGD 
VDAC2
PIK3CA 
FLT3
SCP2
TP53
ACSL4
LPCAT3
NRAS 
KRAS 
HRAS 
TF 
TFRC 
TFR2
SLC38A1
SLC1A5
GLS2
GOT1
CARS1
TP53
ALOX5
KEAP1
HMOX1
TP53
TP53
GLS2
ATG5
ATG7
NCOA4
TF 
ALOX5
ALOX12
ALOX12B 
ALOX15
ALOX15B
ALOXE3
PHKG2
TFRC 

ACO1
IREB2
SLC38A1
GLS2
G6PDX 
ULK1
ATG3
ATG4D 
ATG5
BECN1
MAP1LC3A 
GABARAPL2
GABARAPL1
ATG16L1
WIPI1
WIPI2
SNX4
ATG13
ULK2
NCOA4
ACSL4
TP53
SAT1
ALOX15
ACSL4
LPCAT3
ALOX15
ACSL4
KEAP1
EGFR 
NOX4
MAPK3
MAPK1
BID 
ACSL4
ZEB1
KEAP1
DPP4
ALOX15
ALOX12
CDKN2A 
PEBP1
SOCS1
CDO1
MYB 
HMOX1
MAPK8
 
MAPK9
MAPK1
MAPK3
SLC1A5

CHAC1
MAPK14
LINC00472
NOX4
GOT1
BECN1
PRKAA2
PRKAA1
ELAVL1
BAP1
TP53
ABCC1
ACSL4
MIR6852
ACVR1B 
TGFBR1
BAP1
EPAS1
HILPDA 
HIF1A 
ALOX12
ACSL4
HMOX1
IFNG 
ANO6
LPIN1
HMGB1
TNFAIP3
TLR4
NOX4
ATF3
ATM 
YY1AP1
EGLN2
MIOX 
TAFAZZIN 
MTDH 
IDH1
SIRT1
TAFAZZIN 
BECN1
FBXW7
PANX1
DNAJB6
BACH1
 
LONP1
CD82
IL1B 
CTSB 
POR 
CYB5R1

ELOVL5
FADS1
ALOX12
FBXW7
PTEN 
NR1D1
NR1D2
TBK1
IL6
USP7
miR-182-5p 
miR-378a-3p 
CTSB
ACSL4
ATF4
BECN1
AQP3
AQP5
AQP8
LINC00618
IREB2
MT1DP 
ACSL4
PEX10
KEAP1
AGPAT3
PEX12
CHP1
GPAT4
BRPF1
OSBPL9
INTS2
MMD 
CYP4F8
MLLT1
TTPA 
GRIA3
EPT1
POM121L12
LIG3
AEBP2
AGPS 
CDCA3
PEX2
 
LPCAT3
PEX6
TIMM9
DCAF7
LCE2C 
FAR1
PHF21A 

(continued)
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SMAD7
LYRM1
AMN 
PEX3
MTCH1
ZEB1
SIRT1
ACADSB 
PVT1 
hsa_circ_0008367
SLC39A14
NCOA4
MAP3K11
GSK3B 
MAPK8
BRD7
TP53
SLC25A28
ACSL4
MFN2
ACSL4
SLC11A2
ZFAS1
SLC38A1
TSC1
PEBP1
TGFB1
SNCA 
SIRT3
PRKAA2
TFRC 
CGAS 
STING1
HDDC3
MIR761
MDM2
MDM4
ALOX15
POR 
MIR214
DLD 
LONP1
 
BACH1
DNAJB6
WWTR1
SIRT1
ATM
PRKCA
LGMN
ACSL4
TP53
IFNG
SMPD1
MYCN

SLC11A2
IFNA1
IFNA2
IFNA4
IFNA5
IFNA6
IFNA7
IFNA8
IFNA10
IFNA13
IFNA14
IFNA16
IFNA17
IFNA21
SMG9
NR1D1
ACSL4
PPARG
TLR4
IL6
MIR335
ATF3
HMOX1
HMGB1
EPAS1
SNX5
PAQR3
MICU1
NOX4
TOR2A
MIR375
MAP3K14
SIRT3
CircKDM4C
MIR324
QSOX1
 
KLF2
MIR5096
TFRC
HOTAIR
H19
FOXO4
ELAVL1
YTHDC2
DDR2
SLC39A7
TRIM46
ACSL1
KDM5A
TRIM21
HMOX1
DPEP1
CYGB
IDO1

GSTZ1
TP53
ACO1
GJA1
IREB2
SLC7A11
PGRMC1
CIRBP
FAR1
circPSEN1
USP11
STING1
YAP1
HMOX1
MIR135B
TRIM26
YAP1
NDRG1
MIR302A
ASMTL-AS1
ZFAS1
FADS2
PIEZO1
LIFR
PTPN6
MIR15A
EGR1
ADAM23
ARHGEF26-AS1
ACSL4
 
lncRNA
AABR07017145.1
TIMP1
MIR15A
KDM6B
NCOA4
GSK3B
IFNG
METTL14
CHAC1
MIB1
KDM5C
ACSL4
MEG3
CCDC6
ATF3
IREB2
CFL1
ALOXE3
MIR539
KMT2D
PTGS2
CHAC1
SLC40A1

TF
TFRC
FTH1
GPX4
HSPB1
NFE2L2
GPX4
FTH1
SLC7A11
GPX4
AKR1C1
AKR1C2
AKR1C3
GPX4
RB1
HSPB1
HSF1
SLC7A11
GPX4
GCLC
SLC7A11
NFE2L2
SQSTM1
NQO1
HMOX1
FTH1
 
SLC3A2
MT1G
NFE2L2
SLC40A1
SLC7A11
GPX4
SLC7A11
CISD1
SLC7A11
FANCD2
GPX4
NFE2L2
FTMT
HSPA5
ATF4
SLC7A11
GPX4
GPX4
HMOX1
ATF4
NFE2L2
TP53
SLC7A11
HELLS
SCD
FADS2
SRC
STAT3

Table S1. (continued)

(continued)
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NFE2L2
PML
MTOR
NFS1
TP63
SLC7A11
TP53
CDKN1A
MIR137
SLC40A1
GPX4
GPX4
ENPP2
VDAC2
FH
CISD2
SLC40A1
MIR9-1
MIR9-2
MIR9-3
CBS
NFE2L2
 
SQSTM1
GPX4
ISCU
FTH1
ACSL3
OTUB1
CD44
LINC00336
STAT3
BRD4
PRDX6
MIR17
SCD
SESN2
NF2
ARNTL
HIF1A
JUN
CA9
HSPA5
TMBIM4
HSPA5
PLIN2
MIR212
Fer1HCH
AIFM2
AIFM2
LAMP2
ZFP36
GPX4
PROM2
CHMP5

CHMP6
AKR1C1
AKR1C2
AKR1C3
CBS
NFE2L2
CAV1
GCH1
SIRT3
DAZAP1
PIR
GCLC
FTL
HCAR1
SLC16A1
RRM2
SCD

PIK3CA
RPTOR
SREBF1
SREBF2
FZD7
NFE2L2
NFE2L2
P4HB
NT5DC2
BCAT2
HSF1
PLA2G6
MIR424
PARK7
FXN
SUV39H1
ATF2
CDKN1A
FTH1
NFE2L2
STAT3
ACOT1
NFE2L2
ALDH3A2
NFE2L2
STK11
FNDC5
CircIL4R
CDH1
NFE2L2
MIR214
NEDD4L
SQSTM1
TF
FTMT
BRD2
BRD3

BRD4
BRDT
SCD
SLC7A11
DECR1
NFE2L2
GPX4
SLC7A11
NFE2L2
GLRX5
GPX4
NCOA3

GPX4
MTOR
PANX2
RHEBP1
TFAP2A
CP
SLC7A11
ARF6
GDF15
ABHD12
PPP1R13L
TFAM
KDM3B
RNF113A
PARK7
AHCY
FXN
circ-TTBK2
MIR522
IDH2
PPARA
NOS2
SIAH2
RELA
PRKAA2
VDR
NEDD4
FXN
AIFM2
PRDX1
AR
CBS
NFE2L2
CHMP5
CHMP6
HMOX1
ZFP36
LAMP2
MTF1
COPZ1
NUPR1
USP35

HSF1
PROM2
PLA2G6
HIF1A
NEAT1
RRM2
SLC7A11
FTMT

PARP1
PARP2
PARP3
PARP4
PARP6
PARP8
PARP9
PARP10
PARP11
PARP12
PARP14
PARP15
PARP16
PDSS2
TXN
SENP1
PLA2G6
OIP5-AS1
MIR190A
FGF21	
CREB1	
CREB3	
CREB5	
FTMT
GOT1	
TFRC
GPX4	
MIR130B
BEX1	
ASAH2	
SCD
FABP4	
AKT1S1	
MLST8	
MTOR
RPTOR
CDH1	
SIRT1	
TYRO3	
SIRT6	
TMSB4X
TMSB4Y
KIF20A
ECH1
circRHOT1	
ETV4	

Table S1. (continued)

(continued)
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MEG8
VCP
circ_0007142
ENPP2

RBMS1
KDM4A
CBS
MGST1
circKIF4A
miR-7-5p
PRDX6	
circ_0067934
MPC1	
CHMP1A
CAMKK2
SOX2
SRSF9
PROK2
MIR4443	
SIRT2
circRNA1615

MIR27A
MIR670	
MEF2C
NF2
CDH1
HSPB1
EZH2
PEDS1
SMPD1
ADAMTS13
CDC25A
G6PD
SRSF9
CAV1
CircFNDC3B
PPARD
CISD2
ENO3
SESN2
LCN2
MARCHF5
TRIB2

DHODH
SLC7A11	
MIR545
OTUB1
PDK4
CircPVT1
MIR9-3HG
ADIPOQ
circDTL
GPX4
mmu_circRNA_0000309
 	
IL6
PTPN18
FTH1
FTH1
FTL
LCN2
ABCC5
CISD3
MS4A15
LCN2

FURIN
circRHBG
GALNT14
KLHDC3	
LINC01833
circGFRA1
MAPKAP1
MLST8
MTOR
PRR5
RICTOR
GSTM1
TERT
circ0097009
TMEM161B-DT
circEPSTI1
MIR18A
RARRES2
USP11
	

Table S1. (continued)

Table S2. DEGs involved in NAFLD samples

id logFC AveExpr t P.Value adj.P.Val B
FOSB -3.71737 10.12579 -12.7345 3.38E-21 5.29E-17 37.51716
MYC -2.17667 11.23325 -11.2139 2.77E-18 2.16E-14 31.05087
JUNB -2.19622 10.84673 -10.9619 8.58E-18 4.48E-14 29.95585
FOS -2.43184 11.91821 -10.5913 4.59E-17 1.20E-13 28.33465
WNT5A 1.260966 9.792385 10.53082 6.03E-17 1.35E-13 28.06887
RAB26 1.086493 11.51695 10.47823 7.66E-17 1.42E-13 27.83765
THBS1 -1.61357 11.2616 -10.4649 8.14E-17 1.42E-13 27.77889
FAM107A -1.63472 10.55895 -10.4146 1.02E-16 1.60E-13 27.55749
SOCS2 -1.61042 11.3142 -10.373 1.24E-16 1.76E-13 27.37426
PPP1R15A -1.39261 10.68695 -10.1109 4.08E-16 5.32E-13 26.21729
TMEM169 1.156489 9.314684 9.958645 8.19E-16 9.86E-13 25.54279
APOLD1 -2.08094 9.67447 -9.88041 1.17E-15 1.31E-12 25.1958
NAT8B 1.509599 9.901963 9.79192 1.76E-15 1.83E-12 24.80293
CYR61 -1.70267 11.61684 -9.64914 3.38E-15 3.21E-12 24.16824
HBEGF -1.37925 9.215596 -9.64099 3.51E-15 3.21E-12 24.132
KLF6 -1.19481 11.19339 -9.62986 3.69E-15 3.21E-12 24.08246
GADD45G -2.03225 10.76135 -9.5499 5.33E-15 4.39E-12 23.72659
P4HA1 -1.18962 11.01287 -9.48327 7.24E-15 5.66E-12 23.42981
GADD45B -1.08372 12.4328 -9.40936 1.02E-14 7.42E-12 23.10046
FILIP1L -1.21127 9.979781 -9.40381 1.04E-14 7.42E-12 23.07574
RNF43 1.30893 9.97378 9.31652 1.56E-14 1.06E-11 22.68652
EPHA2 -1.39975 10.01729 -9.30523 1.64E-14 1.07E-11 22.63618
NR4A2 -1.44078 8.908895 -9.23526 2.26E-14 1.31E-11 22.324
ADAMTS1 -1.86824 10.68568 -9.2125 2.51E-14 1.40E-11 22.22246
SIK1 -1.09196 9.015107 -9.2056 2.59E-14 1.40E-11 22.19167

(continued)
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Table S2. (continued)

SOCS3 -1.35832 8.991903 -8.85323 1.31E-13 5.86E-11 20.61829
PPRC1 -1.10482 11.25239 -8.8508 1.33E-13 5.86E-11 20.60741
FOSL2 -1.47649 10.23076 -8.84484 1.36E-13 5.86E-11 20.58082
MAP3K8 -1.14189 10.70128 -8.84153 1.39E-13 5.86E-11 20.56603
CYP7A1 2.299719 10.53905 8.789267 1.76E-13 7.26E-11 20.33259
PIM1 -1.52117 11.59116 -8.68052 2.91E-13 1.08E-10 19.84692
GPRC5A -1.31432 8.760031 -8.66853 3.07E-13 1.12E-10 19.79337
PHLDA1 -1.44048 10.71129 -8.60014 4.21E-13 1.45E-10 19.48801
ARL14 -1.59334 8.587361 -8.54446 5.43E-13 1.77E-10 19.23944
GINS2 1.256891 9.710579 8.508509 6.41E-13 2.01E-10 19.07896
PNRC1 -1.53511 10.62952 -8.44794 8.47E-13 2.60E-10 18.80868
NR4A1 -1.30722 8.684865 -8.43716 8.90E-13 2.68E-10 18.76059
IL6 -2.35007 9.069118 -8.34785 1.34E-12 3.82E-10 18.36226
C17orf96 -1.14053 9.971487 -8.31168 1.58E-12 4.35E-10 18.20102
FMO1 1.426674 9.13203 8.300543 1.67E-12 4.37E-10 18.15136
JUN -1.11399 12.39631 -8.30013 1.67E-12 4.37E-10 18.14952
RGS1 -1.08806 9.930366 -8.29957 1.67E-12 4.37E-10 18.14701
FOSL1 -1.79873 8.95223 -8.29397 1.72E-12 4.41E-10 18.12205
PTGS2 -1.4921 9.75136 -8.28569 1.79E-12 4.45E-10 18.08517
RRS1 -1.2678 10.85954 -8.23254 2.28E-12 5.48E-10 17.84835
IGFBP2 -1.40787 11.57056 -8.22588 2.35E-12 5.49E-10 17.81866
IL1RL1 -1.58356 8.842817 -8.19846 2.66E-12 6.04E-10 17.69654
PEG10 1.42138 9.446904 8.112393 3.95E-12 8.25E-10 17.31345
CRISPLD2 -1.17879 10.97731 -8.10746 4.04E-12 8.33E-10 17.29151
KRT222 1.407107 9.127814 7.998881 6.65E-12 1.28E-09 16.80875
FRAT1 1.042989 9.833934 7.947413 8.42E-12 1.60E-09 16.58015
SLITRK3 -2.04001 10.23091 -7.89825 1.05E-11 1.92E-09 16.36196
SOCS1 -1.47636 9.36709 -7.85896 1.26E-11 2.24E-09 16.18768
ZFP36 -1.25894 10.35613 -7.85572 1.28E-11 2.25E-09 16.17332
BCL6 -1.05441 11.10534 -7.69318 2.69E-11 4.05E-09 15.45358
MOGAT2 1.069046 9.292723 7.693023 2.69E-11 4.05E-09 15.45289
EGR1 -1.41884 12.62904 -7.66067 3.12E-11 4.60E-09 15.30991
SLC25A34 1.35093 10.20203 7.650587 3.26E-11 4.73E-09 15.26533
AGPAT9 -1.0472 11.07115 -7.58813 4.34E-11 6.17E-09 14.98959
NAGS 1.233252 10.20879 7.519561 5.92E-11 8.06E-09 14.68724
CCL2 -1.40749 11.91881 -7.49932 6.49E-11 8.57E-09 14.5981
IL4R -1.01569 10.87308 -7.45902 7.79E-11 9.92E-09 14.42069
SLC2A3 -1.14262 10.88932 -7.43001 8.89E-11 1.10E-08 14.29311
CLCF1 -1.00011 8.986573 -7.29514 1.64E-10 1.84E-08 13.70112
FOXC1 -1.18151 8.876078 -7.24508 2.05E-10 2.18E-08 13.48192
THBD -1.37212 10.04276 -7.20084 2.51E-10 2.57E-08 13.28849
DBP 1.370326 9.166775 7.198497 2.53E-10 2.57E-08 13.27823
KCNK1 -1.18268 10.33526 -7.1898 2.63E-10 2.64E-08 13.24023
RGS2 -1.18032 11.66866 -7.13521 3.37E-10 3.23E-08 13.00193
EMP1 -1.43843 10.61761 -7.12459 3.53E-10 3.32E-08 12.95565
MAFF -1.02445 8.541991 -7.12064 3.60E-10 3.35E-08 12.93841
PIM3 -1.02626 10.12722 -7.11842 3.63E-10 3.36E-08 12.92877
ANKS4B 1.051835 9.999815 7.110194 3.77E-10 3.46E-08 12.89289
IGFBP1 -1.45743 10.76558 -7.10627 3.83E-10 3.49E-08 12.87581
PADI4 -1.07857 8.70138 -7.05877 4.75E-10 4.15E-08 12.66895

(continued)
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PLAUR -1.02246 9.487603 -7.0461 5.02E-10 4.37E-08 12.61387
RTP3 1.38638 12.07905 6.908341 9.31E-10 7.51E-08 12.01615
C14orf80 1.201282 10.14715 6.870586 1.10E-09 8.54E-08 11.85285
LOC73010 1.046043 9.31037 6.845053 1.24E-09 9.47E-08 11.74254
C2CD4B -1.04511 9.113979 -6.84048 1.26E-09 9.62E-08 11.72281
IER3 -1.41272 10.62984 -6.78533 1.61E-09 1.19E-07 11.48493
C10orf10 -1.25472 11.44701 -6.78355 1.62E-09 1.19E-07 11.47727
KIAA0040 -1.33136 9.646372 -6.77792 1.67E-09 1.21E-07 11.45301
KLF4 -1.08931 9.428132 -6.7501 1.88E-09 1.33E-07 11.33329
TGFB3 -1.35435 10.61449 -6.72184 2.14E-09 1.47E-07 11.21177
CEBPA 1.271243 12.30586 6.700904 2.34E-09 1.59E-07 11.12184
RALGDS -1.12556 10.20209 -6.65117 2.92E-09 1.91E-07 10.90853
TNFRSF12 -1.51369 10.02705 -6.61356 3.45E-09 2.18E-07 10.74753
PTX3 -1.40955 8.258027 -6.60887 3.52E-09 2.20E-07 10.72748
CRYAA 1.307361 10.26304 6.515115 5.33E-09 3.15E-07 10.32739
MYBPH -1.17212 8.533135 -6.51265 5.39E-09 3.17E-07 10.3169
IL1B -1.32246 10.34258 -6.50533 5.56E-09 3.26E-07 10.28574
PRSS3 1.038414 8.660752 6.502674 5.63E-09 3.27E-07 10.27443
CISH -1.18097 11.00277 -6.37136 1.00E-08 5.35E-07 9.717377
S100P -1.38336 10.31997 -6.34566 1.12E-08 5.86E-07 9.608814
C5AR1 -1.09339 10.12948 -6.31798 1.26E-08 6.46E-07 9.491984
LIF -1.06317 8.813163 -6.27784 1.51E-08 7.48E-07 9.322925
MMP19 -1.0004 8.940009 -6.27506 1.52E-08 7.55E-07 9.311236
ABCC6P1 1.0071 9.770297 6.269816 1.56E-08 7.65E-07 9.289181
OSMR -1.02132 10.60639 -6.25713 1.65E-08 7.96E-07 9.23584
FPR1 -1.10705 9.920089 -6.24222 1.76E-08 8.39E-07 9.173215
ACTG2 -1.31272 9.66197 -6.23236 1.84E-08 8.70E-07 9.131838
LGALS4 1.226828 10.3704 6.231008 1.85E-08 8.73E-07 9.126148
SPSB1 -1.36716 10.63129 -6.1996 2.12E-08 9.85E-07 8.994479
IER5L -1.02771 9.871274 -6.15456 2.57E-08 1.15E-06 8.806042
GFPT2 -1.13491 9.130288 -6.13704 2.77E-08 1.24E-06 8.732857
LOC15476 -1.15654 10.14418 -6.06822 3.73E-08 1.57E-06 8.446205
RASD1 -1.53849 9.857731 -6.00462 4.91E-08 1.97E-06 8.182321
SERPINE1 -1.20041 10.92924 -5.9923 5.17E-08 2.04E-06 8.131337
SLC7A1 -1.18456 9.018894 -5.98292 5.38E-08 2.12E-06 8.09255
FAM124B 1.033475 9.558248 5.940316 6.46E-08 2.42E-06 7.916632
PROK2 -1.34674 9.214529 -5.9137 7.24E-08 2.64E-06 7.80699
RND1 -1.3873 10.33941 -5.85269 9.39E-08 3.28E-06 7.556381
NFE2 -1.00478 9.905769 -5.79417 1.20E-07 4.01E-06 7.316963
FAM169B -1.03682 8.894854 -5.51489 3.89E-07 1.06E-05 6.188566
C2orf82 1.082272 10.0155 5.351491 7.63E-07 1.84E-05 5.54003
CDH15 1.181789 9.058184 5.27981 1.02E-06 2.39E-05 5.258431
RGS16 -1.01054 9.320187 -5.12185 1.94E-06 4.06E-05 4.644495
CNN1 -1.00385 8.998817 -5.08551 2.25E-06 4.56E-05 4.504585
AVPR1A -1.13181 10.87159 -4.98583 3.34E-06 6.23E-05 4.123495
S100A12 -1.2928 10.23392 -4.65708 1.21E-05 0.000174 2.895781
AKR1B10 1.412058 9.01886 4.266948 5.24E-05 0.00056 1.502928

Table S2. (continued)
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Table S3. GSEA enrichment analysis results of  marker genes

ID NES pvalue
KEGG_FOCAL_ADHESION 1.942953 2.92E-07
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 1.868545 7.75E-07
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 2.219586 1.17E-06
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 2.140582 1.23E-06
KEGG_LEISHMANIA_INFECTION 2.140898 8.91E-06
KEGG_MAPK_SIGNALING_PATHWAY 1.751111 1.09E-05
KEGG_DILATED_CARDIOMYOPATHY 2.009846 1.21E-05
KEGG_PATHWAYS_IN_CANCER 1.626635 6.65E-05
KEGG_CARDIAC_MUSCLE_CONTRACTION 1.961385 7.27E-05
KEGG_ECM_RECEPTOR_INTERACTION 1.894468 0.00017
KEGG_JAK_STAT_SIGNALING_PATHWAY 1.732594 0.000179
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.938346 0.000222
KEGG_HEMATOPOIETIC_CELL_LINEAGE 1.819244 0.000486
KEGG_RIBOSOME -1.79725 0.000644
KEGG_TGF_BETA_SIGNALING_PATHWAY 1.795346 0.000726
KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 1.826502 0.001695
KEGG_AXON_GUIDANCE 1.641564 0.002772
KEGG_P53_SIGNALING_PATHWAY 1.695529 0.003021
KEGG_BLADDER_CANCER 1.768668 0.003591
KEGG_ARACHIDONIC_ACID_METABOLISM 1.708824 0.003728
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 1.629059 0.004725
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 1.468294 0.005398
KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 1.784299 0.006858
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.609481 0.006989
KEGG_VIRAL_MYOCARDITIS 1.630695 0.007132
KEGG_COLORECTAL_CANCER 1.648278 0.009028
KEGG_RENAL_CELL_CARCINOMA 1.66676 0.010064
KEGG_WNT_SIGNALING_PATHWAY 1.443352 0.0115
KEGG_CHEMOKINE_SIGNALING_PATHWAY 1.444012 0.012821
KEGG_CELL_CYCLE 1.496342 0.013071
KEGG_PEROXISOME -1.39908 0.015793
KEGG_TIGHT_JUNCTION 1.490507 0.01762
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 1.450568 0.019727
KEGG_ARGININE_AND_PROLINE_METABOLISM 1.621661 0.020159
KEGG_PROTEIN_EXPORT -1.55876 0.023471
KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 1.503404 0.026848
KEGG_PRION_DISEASES 1.599667 0.026876
KEGG_RNA_POLYMERASE -1.46094 0.028834
KEGG_TAURINE_AND_HYPOTAURINE_METABOLISM 1.631103 0.029518
KEGG_SMALL_CELL_LUNG_CANCER 1.456026 0.029649
KEGG_NOTCH_SIGNALING_PATHWAY 1.513394 0.033097
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 1.387971 0.03418
KEGG_TASTE_TRANSDUCTION -1.46974 0.036857
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 1.431274 0.037142
KEGG_PROSTATE_CANCER 1.354674 0.040185
KEGG_ACUTE_MYELOID_LEUKEMIA 1.466222 0.045967
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 1.408733 0.048739
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Table S4. Immune infiltration analysis results of the study

id B cells naive B cells memory Plasma cells
GSM1539891 0.070791582 0 0.051561206
GSM1539893 0 0 0.090541988
GSM2385759 0.061058317 0 0.0632446
GSM2385761 0.057256702 0 0.075938632
GSM2385763 0.057399112 0 0.076427674
GSM2385764 0.023116413 0 0.021375858
GSM2385766 0.113277229 0 0.060310119
GSM2385767 0.110335179 0 0.064767336
GSM2385768 0.088829568 0 0.083640338
GSM2385769 0.10717875 0 0.083021368
GSM2385770 0.083192459 0 0.057812708
GSM2385772 0.096032067 0 0.03906588
GSM2385775 0.060304762 0 0.163461848
GSM2385776 0.076451298 0 0.092065997
GSM2385779 0.051186756 0 0.1078879
GSM2385781 0.082360992 0 0.045425706
GSM1539877 0.038930058 0 0.02820127
GSM1539878 0.038307103 0 0.064388861
GSM1539879 0.028983741 0 0.0494745
GSM1539880 0.0635875 0 0.072987865
GSM1539881 0.022571379 0 0.050479731
GSM1539882 0.043306238 0 0.03645072
GSM1539883 0.077302866 0 0.03182737
GSM2385726 0.025527627 0 0.059429691
GSM2385728 0.036644156 0 0.031735407
GSM2385731 0.005660617 0 0.102617481
GSM2385735 0.040293639 0 0.033973871
GSM2385737 0.0662848 0 0.062651318
GSM2385738 0 0.006683332 0.023488476
GSM2385739 0.064973561 0 0.05271381
GSM2385741 0.089826078 0 0.005517916
GSM2385744 0.060010725 0 0.065046364
GSM2385747 0 0 0
GSM2385750 0.020096543 0 0.034267883
GSM2385773 0.009201353 0 0.157561792
GSM2385777 0.049451183 0 0.022539481
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id cells CD4 memory restin T cells CD4 memory activated T cells follicular helper
GSM1539891 0.223420593 0.037784177 0
GSM1539893 0.113729762 0.003560686 0
GSM2385759 0.201147491 0 0
GSM2385761 0.168393568 0 0
GSM2385763 0.231656045 0.004578058 0
GSM2385764 0.236727245 0.050528201 0
GSM2385766 0.17608986 0.031329294 0
GSM2385767 0.17954754 0 0
GSM2385768 0.221035903 0.03557498 0
GSM2385769 0.136268974 0.055188537 0
GSM2385770 0.28512492 0.02663323 0
GSM2385772 0.18743392 0.019592963 0
GSM2385775 0 0.017348366 0
GSM2385776 0.071070388 0.027141243 0
GSM2385779 0.074543822 0.054295019 0
GSM2385781 0.13539238 0.008549487 0
GSM1539877 0.161406017 0.004272449 0
GSM1539878 0.188200594 0 0
GSM1539879 0.290295202 0.012876254 0
GSM1539880 0.233826942 0.028734099 0
GSM1539881 0.185018855 0.048601436 0
GSM1539882 0.217931666 0 0
GSM1539883 0.203780814 0.060533029 0
GSM2385726 0.130584306 0.068205712 0
GSM2385728 0.183621617 0.038919789 0
GSM2385731 0.071518144 0 0
GSM2385735 0.166474149 0.024645877 0
GSM2385737 0.210423014 0.024252927 0
GSM2385738 0.076847986 0.023219426 0
GSM2385739 0.263905403 0.030306477 0
GSM2385741 0.155763433 0.040575919 0
GSM2385744 0.135662994 0.01721717 0
GSM2385747 0.105727169 0.002751352 0
GSM2385750 0.174598106 0.006230625 0
GSM2385773 0.174160996 0.02100275 0
GSM2385777 0.144123242 0 0.000946596

Table S4. (continued)
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id T cells gamma delta NK cells resting NK cells activated
GSM1539891 0.131530027 0 0.005373215
GSM1539893 0.267805764 0 0.006147203
GSM2385759 0.214459393 0 0
GSM2385761 0.079505362 0 0
GSM2385763 0.068730239 0.002288686 0
GSM2385764 0.096429996 0 0.0178989
GSM2385766 0.101281579 0 0.011921649
GSM2385767 0.179042793 0 0.002208011
GSM2385768 0.126246448 0 0
GSM2385769 0.068234014 0 0.020724033
GSM2385770 0.099895721 0 0
GSM2385772 0.08700979 0.006133335 0.005737064
GSM2385775 0.031611076 0 0
GSM2385776 0.110576801 0 0.008180495
GSM2385779 0.017951715 0.003348638 0.008271023
GSM2385781 0.075673371 0 0.021312387
GSM1539877 0.082242674 0 0.024698527
GSM1539878 0.131705212 0 0.023850051
GSM1539879 0.263312462 0 0.000101988
GSM1539880 0.177424446 0.016906401 0
GSM1539881 0.200756482 0 0
GSM1539882 0.131305627 0 0
GSM1539883 0.066859921 0.015033257 0
GSM2385726 0.218473745 0 0.021814082
GSM2385728 0.24056683 0 0
GSM2385731 0.308980321 0 0
GSM2385735 0.207406705 0 0.001380741
GSM2385737 0.14639098 0 0.013263313
GSM2385738 0.205233816 0 0.029160277
GSM2385739 0.112187016 0 0
GSM2385741 0.224928617 0 0
GSM2385744 0.241311413 0 0.001356968
GSM2385747 0.184394742 0 0.046232399
GSM2385750 0.164724511 0 0.002624469
GSM2385773 0.007289046 0.025227388 0
GSM2385777 0.081497611 0 0.020937138

Table S4. (continued)
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id Macrophages M1 Macrophages M2 Dendritic cells resting
GSM1539891 0.018852097 0.174326391 0.004982996
GSM1539893 0.079659562 0.264314242 0.008305843
GSM2385759 0.051547152 0.236814885 0.01871418
GSM2385761 0.025388179 0.109314221 0
GSM2385763 0.02331105 0.113274747 0
GSM2385764 0.034739059 0.104507499 0
GSM2385766 0.030741842 0.114966315 0
GSM2385767 0 0.1408852 0
GSM2385768 0.030446746 0.101816492 0
GSM2385769 0.04422553 0.069809603 0
GSM2385770 0.027007721 0.099697076 0
GSM2385772 0.0038878 0.174089625 0
GSM2385775 0.015668015 0.046489915 0
GSM2385776 0.002347153 0.187849306 0
GSM2385779 0.058744121 0.108972194 0
GSM2385781 0.003188739 0.139680513 0
GSM1539877 0.036023303 0.139178154 0.022392675
GSM1539878 0.025658299 0.204048072 0.00239425
GSM1539879 0.061556571 0.17018565 0.048732191
GSM1539880 0.018151587 0.095311588 0.00426687
GSM1539881 0.032856267 0.147341285 0
GSM1539882 0.056658466 0.220517101 0.005018648
GSM1539883 0.046426591 0.105331384 0
GSM2385726 0.03260889 0.308742026 0
GSM2385728 0.079758046 0.202433435 0.013851194
GSM2385731 0.101109016 0.208170923 0.022184415
GSM2385735 0.046139427 0.263465525 0.039064221
GSM2385737 0.03792031 0.278459344 0.060570037
GSM2385738 0.045715521 0.360961131 0.031008417
GSM2385739 0.070145254 0.165854717 0.002292974
GSM2385741 0.073256817 0.161960713 0.005245199
GSM2385744 0.015419416 0.292709401 0.031543171
GSM2385747 0.058606803 0.395652503 0.007912597
GSM2385750 0.08000862 0.341829661 0.013373487
GSM2385773 0.006180817 0.137660521 0
GSM2385777 0.053079968 0.170007449 0

Table S4. (continued)
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id Mast cells resting Mast cells activated Eosinophils
GSM1539891 0.035792063 0 0.014996543
GSM1539893 0 0.038546927 0
GSM2385759 0 0.02432442 0.010220834
GSM2385761 0 0.11660769 0
GSM2385763 0 0.122231385 0.017442175
GSM2385764 0 0.089045696 0.017571196
GSM2385766 0 0.08006466 0
GSM2385767 0 0.249120716 0
GSM2385768 0 0.094308786 0
GSM2385769 0 0.111722663 0
GSM2385770 0 0.070280244 0
GSM2385772 0.013820858 0.029651092 0
GSM2385775 0 0.155793108 0
GSM2385776 0 0.048302299 0
GSM2385779 0 0.16729165 0.002313027
GSM2385781 0 0.114460524 0
GSM1539877 0 0.057882559 0.012810558
GSM1539878 0 0.061173086 0
GSM1539879 0.038030954 0 0
GSM1539880 0.008137408 0.008427534 0
GSM1539881 0 0.032248662 0.015832289
GSM1539882 0 0.068166577 0.013347225
GSM1539883 0 0.014337509 0.020800322
GSM2385726 0.046585865 0 0.03184925
GSM2385728 0.01557953 0 0
GSM2385731 0.098819582 0 0
GSM2385735 0.037179561 0 0
GSM2385737 0.014300865 0 0
GSM2385738 0.048924798 0 0
GSM2385739 0.075076198 0 0
GSM2385741 0.109415568 0 0
GSM2385744 0.009387474 0.001017477 0
GSM2385747 0.062728521 0 0.001114667
GSM2385750 0.028472719 0 0
GSM2385773 0 0.189693742 0
GSM2385777 0 0.077188862 0

Table S4. (continued)
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id T cells CD4 naïve Macrophages M0 T cells CD8
GSM1539891 0 0 0
GSM1539893 0 0 0.117525508
GSM2385759 0 0 0.012318602
GSM2385761 0 0 0
GSM2385763 0 0 0
GSM2385764 0 0 0
GSM2385766 0 0 0.025266467
GSM2385767 0 0 0.000438604
GSM2385768 0 0 0
GSM2385769 0 0 0
GSM2385770 0 0 0
GSM2385772 0 0 0
GSM2385775 0.064695369 0.021833691 0.023710265
GSM2385776 0 0 0
GSM2385779 0 0 0
GSM2385781 0 0 0
GSM1539877 0 0 0
GSM1539878 0 0 0.001155125
GSM1539879 0 0 0.027294636
GSM1539880 0 0 0
GSM1539881 0 0 0
GSM1539882 0 0 0
GSM1539883 0 0 0
GSM2385726 0 0 0.010635507
GSM2385728 0 0 0.040260132
GSM2385731 0.00550047 0.051311474 0.021921473
GSM2385735 0 0 0.042503902
GSM2385737 0 0 0
GSM2385738 0 0 0
GSM2385739 0 0 0.018173212
GSM2385741 0 0 0.034525796
GSM2385744 0 0 0.003068266
GSM2385747 0 0 0.014303565
GSM2385750 0 0 0
GSM2385773 0 0 0
GSM2385777 0 0 0

Table S4. (continued)
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id Monocytes T cells regulatory Dendritic cells activated
GSM1539891 0.215279279 0 0.015309831
GSM1539893 0.009862515 0 0
GSM2385759 0.093285632 0 0.00947854
GSM2385761 0.207111124 0 0.018439626
GSM2385763 0.242848411 0 0.018554839
GSM2385764 0.210343136 0 0.014826106
GSM2385766 0.221084673 0 0.012326927
GSM2385767 0 0 0.061407445
GSM2385768 0.135388285 0 0.019400879
GSM2385769 0.242623848 0 0.029029269
GSM2385770 0.201303107 0 0.013867214
GSM2385772 0.301517549 0 0.020561394
GSM2385775 0.305850965 0 0.043744368
GSM2385776 0.278171388 0 0.034863427
GSM2385779 0.258403031 0 0.029191527
GSM2385781 0.231162635 0 0.047652831
GSM1539877 0.314722832 0 0.014824125
GSM1539878 0.226941897 0 0.032177449
GSM1539879 0 0 0.002229866
GSM1539880 0.233602053 0 0.037656058
GSM1539881 0.236331543 0 0.0216182
GSM1539882 0.205378731 0 0.001919001
GSM1539883 0.28275574 0 0.011042235
GSM2385726 0.040694183 0 0.002846863
GSM2385728 0.11330435 0 0
GSM2385731 0 0 0
GSM2385735 0.097472383 0 0
GSM2385737 0.062020313 0 0.013954984
GSM2385738 0.148756821 0 0
GSM2385739 0.137974659 0 0.00639672
GSM2385741 0.098983944 0 0
GSM2385744 0.111661136 0 0.014588025
GSM2385747 0.107214271 0.003624444 0
GSM2385750 0.12898634 0 0
GSM2385773 0.224508281 0 0.030631287
GSM2385777 0.262670252 0 0.010491942

Table S4. (continued)



19Ferroptosis biomarkers in non-alcoholic fatty liver disease

id Neutrophils
GSM1539891 0
GSM1539893 0
GSM2385759 0.003385956
GSM2385761 0.142044897
GSM2385763 0.021257581
GSM2385764 0.082890695
GSM2385766 0.021339386
GSM2385767 0.012247177
GSM2385768 0.063311575
GSM2385769 0.031973412
GSM2385770 0.035185601
GSM2385772 0.015466664
GSM2385775 0.049488251
GSM2385776 0.062980206
GSM2385779 0.057599575
GSM2385781 0.095140437
GSM1539877 0.062414797
GSM1539878 0
GSM1539879 0.006925985
GSM1539880 0.000979649
GSM1539881 0.00634387
GSM1539882 0
GSM1539883 0.063968964
GSM2385726 0.002002254
GSM2385728 0.003325514
GSM2385731 0.002206085
GSM2385735 0
GSM2385737 0.009507794
GSM2385738 0
GSM2385739 0
GSM2385741 0
GSM2385744 0
GSM2385747 0.009736968
GSM2385750 0.004787035
GSM2385773 0.016882027
GSM2385777 0.107066275

Table S4. (continued)

Table S5. Sequences of PCR primers used in the study

Gene Species Forward Primer Reverse Primer
EGR1 mouse TGACCAATCCTCCGACCTCT AGATGGGACTGCTGTCGTTG
IL6 mouse GCAGAAAAAGGTGGGTGTGTC GGAAGTGGCATTGCATCCCT
NR4A1 mouse TCCCCGAGCCAGACTTATGA GCATGGAATAGCTCTCCCCC
SOCS1 mouse CAACGGAACTGCTTCTTCGC AGCTCGAAAAGGCAGTCGAA
ZFP36 mouse CCGATCCTGATGACTACGCC ATTGAAGATGGGGAGACGCC
JUN mouse TGGGCACATCACCACTACAC TCTGGCTATGCAGTTCAGCC
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Table S6. The relationship between marker genes and marker gene-targeted drugs

search_term match_term drug interaction_types
SOCS1 SOCS1 INSULIN
SOCS1 SOCS1 ALDESLEUKIN
IL6 IL6 SILTUXIMAB inhibitor
IL6 IL6 CLAZAKIZUMAB inhibitor
IL6 IL6 SIRUKUMAB inhibitor
IL6 IL6 ELSILIMOMAB inhibitor
IL6 IL6 PF-04236921 inhibitor
IL6 IL6 OLOKIZUMAB inhibitor
IL6 IL6 RITUXIMAB
IL6 IL6 SAQUINAVIR
IL6 IL6 IFOSFAMIDE
IL6 IL6 LINEZOLID
IL6 IL6 GEMFIBROZIL
IL6 IL6 INFLIXIMAB
IL6 IL6 METRONIDAZOLE
IL6 IL6 ETANERCEPT
IL6 IL6 ECHINACEA,UNSPECIFIED
IL6 IL6 ADALIMUMAB
IL6 IL6 INSULIN
IL6 IL6 RIBAVIRIN
IL6 IL6 IBUDILAST
IL6 IL6 COR-001
IL6 IL6 CISPLATIN
IL6 IL6 NELFINAVIR
IL6 IL6 FENTANYL
IL6 IL6 LEVOFLOXACIN
IL6 IL6 FENOFIBRATE
EGR1 EGR1 GENIPIN
JUN JUN BUPROPIONHYDROCHLORIDE
JUN JUN BUTINOLINE
JUN JUN CLOTRIMAZOLE
JUN JUN BENZENETHIOL
JUN JUN CARBOXYMETHYL-TRIMETHYL-ARSONIUM
JUN JUN CHEMBL275260
JUN JUN FENOFIBRATE
JUN JUN MECHLORETHAMINEHYDROCHLORIDE
JUN JUN SODIUMSELENITE
JUN JUN VINORELBINETARTRATE
JUN JUN TROPISETRON
JUN JUN CINNARIZINE
JUN JUN VINBLASTINESULFATE
JUN JUN CUPRICCHLORIDE
JUN JUN TRIFLUPROMAZINEHYDROCHLORIDE
JUN JUN COLCHICINE
JUN JUN CIPROFIBRATE
JUN JUN NAFRONYLOXALATE
JUN JUN BRUCEANTIN
JUN JUN METHIMAZOLE

(continued)
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search_term match_term drug interaction_types
JUN JUN SERGEOLIDE
JUN JUN DIPHENHYDRAMINEHYDROCHLORIDE
JUN JUN IRISOLIDONE
JUN JUN ROTENONE
JUN JUN CRIDANIMOD
JUN JUN BENZO[B]FLUORANTHENE
JUN JUN 2-MERCAPTOPYRIMIDINE
JUN JUN SANGIVAMYCIN
JUN JUN ANTHRACENE-9-CARBOXYLICACID
JUN JUN AMINEPTINE
JUN JUN AZELASTINEHYDROCHLORIDE
JUN JUN PATULIN
JUN JUN CLOFIBRATE
JUN JUN QUINAPRILHYDROCHLORIDE
JUN JUN RETINYLRETINOATE
JUN JUN LIPOICACID,ALPHA
JUN JUN ISOLIQUIRITIGENIN
JUN JUN ATOMOXETINEHYDROCHLORIDE
JUN JUN NEOCHAMAEJASMINA
JUN JUN GEMFIBROZIL
JUN JUN SERTRALINE
JUN JUN (-)-CAMPHOR
JUN JUN CHEMBL477052
JUN JUN HOLACANTHONE
NR4A1 NR4A1 ACETYLCYSTEINE
NR4A1 NR4A1 HALOPERIDOL
NR4A1 NR4A1 IONOMYCIN
NR4A1 NR4A1 CHEMBL547833
NR4A1 NR4A1 CHEMBL35482
NR4A1 NR4A1 ETOPOSIDEPHOSPHATE
NR4A1 NR4A1 LEVODOPA
NR4A1 NR4A1 NICOTINE
NR4A1 NR4A1 MORPHINE
NR4A1 NR4A1 CYTOSPORONEB

Table S6. (continued)
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Table S7. Detailed information on the ceRNA network

Node1 Node2 Interaction
IL6 hsa-miR-519e-5p mRNA
IL6 hsa-miR-149-5p mRNA
EGR1 hsa-miR-760 mRNA
NR4A1 hsa-miR-3152-3p mRNA
SOCS1 hsa-miR-3163 mRNA
EGR1 hsa-miR-3119 mRNA
NR4A1 hsa-miR-342-5p mRNA
ZFP36 hsa-miR-187-5p mRNA
SOCS1 hsa-miR-411-3p mRNA
EGR1 hsa-miR-3185 mRNA
SOCS1 hsa-let-7i-5p mRNA
NR4A1 hsa-miR-637 mRNA
JUN hsa-miR-2116-5p mRNA
IL6 hsa-miR-1304-5p mRNA
SOCS1 hsa-miR-548x-3p mRNA
EGR1 hsa-miR-132-3p mRNA
EGR1 hsa-miR-4269 mRNA
IL6 hsa-miR-548d-3p mRNA
ZFP36 hsa-miR-934 mRNA
JUN hsa-miR-34a-3p mRNA
ZFP36 hsa-miR-142-5p mRNA
ZFP36 hsa-miR-1299 mRNA
JUN hsa-miR-940 mRNA
NR4A1 hsa-miR-4272 mRNA
EGR1 hsa-miR-936 mRNA
JUN hsa-miR-513c-5p mRNA
EGR1 hsa-miR-23a-3p mRNA
SOCS1 hsa-let-7d-5p mRNA
EGR1 hsa-miR-1264 mRNA
NR4A1 hsa-miR-2115-3p mRNA
NR4A1 hsa-miR-3190-3p mRNA
ZFP36 hsa-miR-361-3p mRNA
EGR1 hsa-miR-191-5p mRNA
SOCS1 hsa-miR-149-3p mRNA
ZFP36 hsa-miR-1913 mRNA
SOCS1 hsa-let-7e-5p mRNA
IL6 hsa-miR-4256 mRNA
SOCS1 hsa-miR-2113 mRNA
EGR1 hsa-miR-4251 mRNA
EGR1 hsa-miR-1911-5p mRNA
IL6 hsa-miR-338-5p mRNA
JUN hsa-miR-542-3p mRNA
IL6 hsa-miR-302a-5p mRNA
SOCS1 hsa-miR-30c-5p mRNA
ZFP36 hsa-miR-3163 mRNA
JUN hsa-miR-1258 mRNA
SOCS1 hsa-miR-187-5p mRNA
SOCS1 hsa-miR-3130-3p mRNA

Node1 Node2 Interaction
ZFP36 hsa-miR-548x-3p mRNA
SOCS1 hsa-miR-556-3p mRNA
JUN hsa-miR-514b-5p mRNA
JUN hsa-miR-633 mRNA
IL6 hsa-miR-3123 mRNA
JUN hsa-miR-522-3p mRNA
SOCS1 hsa-miR-142-5p mRNA
JUN hsa-miR-524-5p mRNA
IL6 hsa-miR-98-5p mRNA
SOCS1 hsa-miR-518a-5p mRNA
ZFP36 hsa-miR-3121-3p mRNA
SOCS1 hsa-miR-922 mRNA
NR4A1 hsa-miR-600 mRNA
SOCS1 hsa-let-7g-5p mRNA
SOCS1 hsa-miR-19b-3p mRNA
SOCS1 hsa-miR-324-5p mRNA
IL6 hsa-miR-574-3p mRNA
NR4A1 hsa-miR-608 mRNA
SOCS1 hsa-miR-527 mRNA
SOCS1 hsa-miR-19a-3p mRNA
IL6 hsa-miR-202-3p mRNA
IL6 hsa-miR-3168 mRNA
EGR1 hsa-miR-23b-3p mRNA
SOCS1 hsa-miR-3144-5p mRNA
EGR1 hsa-miR-204-5p mRNA
IL6 hsa-miR-760 mRNA
SOCS1 hsa-miR-766-3p mRNA
NR4A1 hsa-miR-506-3p mRNA
EGR1 hsa-miR-211-5p mRNA
ZFP36 hsa-miR-16-2-3p mRNA
JUN hsa-miR-200c-3p mRNA
JUN hsa-miR-200b-3p mRNA
ZFP36 hsa-miR-524-5p mRNA
JUN hsa-miR-501-5p mRNA
JUN hsa-miR-637 mRNA
EGR1 hsa-miR-4271 mRNA
IL6 hsa-miR-548c-3p mRNA
EGR1 hsa-miR-524-5p mRNA
IL6 hsa-miR-515-5p mRNA
SOCS1 hsa-miR-155-5p mRNA
EGR1 hsa-miR-377-3p mRNA
NR4A1 hsa-miR-524-5p mRNA
SOCS1 hsa-miR-30d-5p mRNA
SOCS1 hsa-let-7b-5p mRNA
JUN hsa-miR-1299 mRNA
SOCS1 hsa-miR-98-5p mRNA
EGR1 hsa-miR-369-3p mRNA
EGR1 hsa-miR-212-3p mRNA

(continued)
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Node1 Node2 Interaction
ZFP36 hsa-miR-615-5p mRNA
SOCS1 hsa-miR-218-1-3p mRNA
ZFP36 hsa-miR-513a-5p mRNA
ZFP36 hsa-miR-195-3p mRNA
SOCS1 hsa-miR-30b-5p mRNA
JUN hsa-miR-1972 mRNA
SOCS1 hsa-miR-548g-3p mRNA
ZFP36 hsa-miR-182-5p mRNA
ZFP36 hsa-miR-3140-3p mRNA
EGR1 hsa-miR-506-3p mRNA
NR4A1 hsa-miR-665 mRNA
NR4A1 hsa-miR-200a-5p mRNA
NR4A1 hsa-miR-34a-3p mRNA
JUN hsa-miR-495-3p mRNA
SOCS1 hsa-miR-331-3p mRNA
EGR1 hsa-miR-2110 mRNA
ZFP36 hsa-miR-145-5p mRNA
JUN hsa-miR-298 mRNA
IL6 hsa-miR-607 mRNA
IL6 hsa-miR-148b-5p mRNA
SOCS1 hsa-miR-561-3p mRNA
JUN hsa-miR-429 mRNA
ZFP36 hsa-miR-4267 mRNA
EGR1 hsa-miR-600 mRNA
ZFP36 hsa-miR-875-3p mRNA
JUN hsa-miR-758-3p mRNA
EGR1 hsa-miR-125b-2-3p mRNA
IL6 hsa-miR-1323 mRNA
ZFP36 hsa-miR-625-3p mRNA
SOCS1 hsa-let-7f-5p mRNA
EGR1 hsa-miR-581 mRNA
SOCS1 hsa-miR-379-3p mRNA
SOCS1 hsa-miR-569 mRNA
EGR1 hsa-miR-16-1-3p mRNA
JUN hsa-miR-139-5p mRNA
EGR1 hsa-miR-30d-3p mRNA
SOCS1 hsa-let-7a-5p mRNA
EGR1 hsa-miR-3121-3p mRNA
MUC2 hsa-miR-615-5p lncRNA
CDR1-AS hsa-miR-875-3p lncRNA
RP5-894D12.5 hsa-miR-665 lncRNA
TTLL10-AS1 hsa-miR-515-5p lncRNA
PAX8-AS1 hsa-miR-615-5p lncRNA
C10orf91 hsa-miR-149-3p lncRNA
MUC19 hsa-miR-145-5p lncRNA
AC079779.7 hsa-miR-1972 lncRNA
LINC01043 hsa-miR-149-5p lncRNA
AC079779.7 hsa-miR-515-5p lncRNA

Node1 Node2 Interaction
RP11-102K13.5 hsa-miR-1972 lncRNA
LL22NC03-27C5.1 hsa-miR-377-3p lncRNA
RP11-627G23.1 hsa-miR-665 lncRNA
RP5-894D12.5 hsa-miR-1972 lncRNA
RP13-580B18.4 hsa-miR-1972 lncRNA
LINC01070 hsa-miR-766-3p lncRNA
RP3-470B24.5 hsa-miR-361-3p lncRNA
RP11-333E1.2 hsa-miR-125b-2-3p lncRNA
RP4-737E23.2 hsa-miR-377-3p lncRNA
RP11-982M15.8 hsa-miR-2113 lncRNA
FAM182A hsa-miR-1972 lncRNA
RP13-507P19.2 hsa-miR-766-3p lncRNA
RP13-507P19.2 hsa-miR-515-5p lncRNA
LINC01002 hsa-miR-1972 lncRNA
RP11-1228E12.1 hsa-miR-1972 lncRNA
MUC19 hsa-miR-766-3p lncRNA
CTD-3138B18.5 hsa-miR-377-3p lncRNA
LINC01001 hsa-miR-1972 lncRNA
RP13-507P19.2 hsa-miR-361-3p lncRNA
CTA-941F9.10 hsa-miR-149-3p lncRNA
RP11-394A14.2 hsa-miR-149-5p lncRNA
CTD-2008P7.3 hsa-miR-766-3p lncRNA
LINC01043 hsa-miR-324-5p lncRNA
LINC00174 hsa-miR-1972 lncRNA
RP11-210M15.1 hsa-miR-377-3p lncRNA
RP13-580B18.4 hsa-miR-766-3p lncRNA
AIRN hsa-miR-149-3p lncRNA
AC078942.1 hsa-miR-766-3p lncRNA
RP11-46C24.3 hsa-miR-342-5p lncRNA
PCBP3-OT1 hsa-miR-875-3p lncRNA
CTB-51J22.1 hsa-miR-665 lncRNA
RP11-94C24.13 hsa-let-7a-5p lncRNA
LINC01002 hsa-miR-377-3p lncRNA
RP13-580B18.4 hsa-miR-515-5p lncRNA
RP4-671O14.7 hsa-miR-542-3p lncRNA
AC079586.1 hsa-miR-542-3p lncRNA
RP11-231G3.1 hsa-miR-561-3p lncRNA
RP11-54O7.17 hsa-miR-324-5p lncRNA
LINC00265 hsa-miR-149-3p lncRNA
RP11-311F12.1 hsa-miR-149-3p lncRNA
COL4A2-AS2 hsa-miR-615-5p lncRNA
RP11-1217F2.15 hsa-miR-766-3p lncRNA
CTD-3193O13.12 hsa-miR-766-3p lncRNA
RP11-157B13.7 hsa-miR-542-3p lncRNA
LINC00689 hsa-miR-149-3p lncRNA
AC005264.2 hsa-miR-2113 lncRNA
CTD-3099C6.5 hsa-miR-145-5p lncRNA
CTD-3099C6.5 hsa-miR-16-1-3p lncRNA

(continued)
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Node1 Node2 Interaction
AC011284.3 hsa-miR-342-5p lncRNA
SPACA6P hsa-miR-515-5p lncRNA
AC093642.4 hsa-miR-515-5p lncRNA
LINC01043 hsa-miR-218-1-3p lncRNA
MUC2 hsa-miR-342-5p lncRNA
LINC00917 hsa-miR-542-3p lncRNA
RP11-85G18.6 hsa-miR-766-3p lncRNA
CH507-216K13.2 hsa-miR-1972 lncRNA
RP11-394A14.2 hsa-miR-342-5p lncRNA
LINC01022 hsa-miR-766-3p lncRNA
FAM74A1 hsa-miR-515-5p lncRNA
CTD-2330K9.2 hsa-miR-1972 lncRNA
LINC00905 hsa-miR-1972 lncRNA
RP11-64K12.8 hsa-miR-875-3p lncRNA
RP11-343D2.11 hsa-miR-302a-5p lncRNA
FRMPD3-AS1 hsa-miR-875-3p lncRNA
RP11-142C4.6 hsa-miR-766-3p lncRNA
LINC01002 hsa-miR-766-3p lncRNA
CTA-315H11.2 hsa-miR-149-3p lncRNA
RP11-153F5.7 hsa-miR-149-3p lncRNA
LINC00173 hsa-miR-149-3p lncRNA
AC079586.1 hsa-miR-758-3p lncRNA
RP13-895J2.3 hsa-miR-665 lncRNA
RP11-1391J7.1 hsa-miR-342-5p lncRNA
AC015849.16 hsa-miR-139-5p lncRNA
RP11-54O7.17 hsa-miR-342-5p lncRNA
TMEM191A hsa-miR-149-3p lncRNA
RP11-32B5.8 hsa-miR-615-5p lncRNA
RP11-50B3.4 hsa-miR-16-1-3p lncRNA
RP11-186N15.3 hsa-miR-149-3p lncRNA
RP13-582L3.4 hsa-miR-665 lncRNA
RP11-142C4.6 hsa-miR-1972 lncRNA
LINC01002 hsa-miR-515-5p lncRNA
RP11-34P13.7 hsa-miR-182-5p lncRNA
LINC01224 hsa-miR-542-3p lncRNA
CTD-2311B13.1 hsa-miR-766-3p lncRNA
CTA-390C10.9 hsa-miR-145-5p lncRNA
RP11-44M6.7 hsa-miR-331-3p lncRNA
RP11-504P24.8 hsa-miR-1972 lncRNA
CTC-338M12.9 hsa-miR-766-3p lncRNA
RP11-849H4.4 hsa-miR-1972 lncRNA
AC006019.3 hsa-miR-760 lncRNA
RP11-211G23.2 hsa-miR-218-1-3p lncRNA
RP11-231D20.2 hsa-miR-139-5p lncRNA
FENDRR hsa-miR-182-5p lncRNA
SNHG14 hsa-miR-665 lncRNA
AP001631.9 hsa-miR-766-3p lncRNA
RP11-54O7.17 hsa-miR-615-5p lncRNA
CTD-3193O13.1 hsa-miR-149-3p lncRNA

Node1 Node2 Interaction
HOXC-AS1 hsa-miR-361-3p lncRNA
LINC01224 hsa-miR-758-3p lncRNA
CH17-360D5.1 hsa-miR-665 lncRNA
AC010524.2 hsa-miR-182-5p lncRNA
TTN-AS1 hsa-miR-766-3p lncRNA
CTD-2619J13.19 hsa-miR-34a-3p lncRNA
RP11-394A14.2 hsa-miR-760 lncRNA
GS1-279B7.1 hsa-miR-34a-3p lncRNA
CTD-2197I11.1 hsa-miR-515-5p lncRNA
MIR497HG hsa-miR-342-5p lncRNA
RP11-1217F2.15 hsa-miR-515-5p lncRNA
MAFG-AS1 hsa-miR-149-3p lncRNA
RP11-717I24.1 hsa-miR-145-5p lncRNA
RP11-158I9.8 hsa-miR-361-3p lncRNA
CTD-2008P7.3 hsa-miR-149-5p lncRNA
AC114808.3 hsa-miR-665 lncRNA
RP11-1191J2.2 hsa-miR-1972 lncRNA
AC015849.16 hsa-miR-145-5p lncRNA
CTD-3099C6.5 hsa-miR-766-3p lncRNA
CTD-3099C6.5 hsa-miR-515-5p lncRNA
RP11-148K1.12 hsa-miR-149-3p lncRNA
AC006019.3 hsa-miR-342-5p lncRNA
SNHG14 hsa-miR-515-5p lncRNA
RP11-430G17.3 hsa-miR-149-3p lncRNA
RP11-1348G14.8 hsa-miR-149-3p lncRNA
LINC00661 hsa-miR-1972 lncRNA
AC084219.4 hsa-miR-515-5p lncRNA
AC015849.16 hsa-miR-515-5p lncRNA
RP11-44M6.7 hsa-miR-361-3p lncRNA
RP11-561O23.5 hsa-miR-361-3p lncRNA
PAX8-AS1 hsa-miR-149-3p lncRNA
CTD-2008P7.1 hsa-miR-766-3p lncRNA
RP4-751H13.7 hsa-miR-361-3p lncRNA
FAM74A7 hsa-miR-515-5p lncRNA
CTD-2521M24.5 hsa-miR-518a-5p lncRNA
RASSF8-AS1 hsa-miR-665 lncRNA
RP11-630C16.2 hsa-miR-149-3p lncRNA
RP11-157B13.7 hsa-miR-758-3p lncRNA
ABHD11-AS1 hsa-miR-766-3p lncRNA
RP11-700J17.1 hsa-miR-556-3p lncRNA
RP11-15H20.6 hsa-miR-758-3p lncRNA
FAM95B1 hsa-miR-1972 lncRNA
CTD-2369P2.8 hsa-miR-149-3p lncRNA
LA16c-306A4.2 hsa-miR-922 lncRNA
RP11-458F8.4 hsa-miR-940 lncRNA
RP11-347H15.4 hsa-miR-766-3p lncRNA
RP4-539M6.22 hsa-miR-922 lncRNA
AP001476.4 hsa-miR-940 lncRNA
LINC00265 hsa-miR-940 lncRNA
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