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Abstract. S-adenosylmethionine (SAM) is the main methyl group donor and has antioxidant po-
tential. In this study, preventive and regressive potential of SAM were investigated in high fat/high 
cholesterol (HFHC) diet-induced non-alcoholic fatty liver disease (NAFLD) in guinea pigs. They 
were injected with SAM (50 mg/kg, i.p.) for 6 weeks along with HFHC diet or 4 weeks after HFHC 
diet. Serum transaminase activities, total cholesterol (TC), triglyceride (TG), cytochrome p450-2E1 
(CYP2E1) and hydroxyproline (Hyp) levels, prooxidative and antioxidative parameters, protein 
expressions of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) to-
gether with histopathological changes were examined in the liver. SAM treatment diminished HFHC 
diet-induced increases in serum transaminase activities and hepatic TC, TG, CYP2E1, Hyp, α-SMA 
and TGF-β1 expressions and ameliorated prooxidant-antioxidant balance. Histopathological scores 
for hepatic steatosis, inflammation, and fibrosis were decreased by SAM treatment. Increases in 
TC, diene conjugate levels, and lipid vacuoles within the tunica media of the aorta were reduced in 
HFHC-fed animals treated with SAM. These protective effects were also detected in the regression 
period of HFHC-guinea pigs due to SAM. In conclusion, SAM treatment was found to be effective 
in prevention and regression of HFHC-induced hepatic and aortic lesions together with decreases 
in oxidative stress in guinea pigs with NAFLD.
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Introduction

Non-alcoholic steatohepatitis (NASH) is a more severe form 
of non-alcoholic fatty liver disease (NAFLD) and is charac-
terized by steatosis, inflammation and progressive fibrosis. 
A two-hit hypothesis for the pathogenesis of NASH has been 
proposed. Steatosis is the first hit and it enhances the hepatic 
susceptibility to subsequent secondary stresses such as oxida-
tive stress, inflammation and cytokines and contributes to 
the development of NASH and other advanced pathologies 
in the liver (Noureddin et al. 2015). 

S-adenosylmethionine (SAM) is a metabolic intermediate 
which is synthesized from dietary L-methionine and ATP 
by the enzyme methionine adenosyltransferase (MAT). It 
serves as the main methyl group donor and is used in trans-
methylation reactions in the organism. Its methyl group is 
transferred to various substrates such as DNA, RNA, pro-
teins, lipids by methyl transferases, and after the transfer it 
turns into S-adenosylhomocysteine (Li et al. 2020). SAM 
has also direct and indirect antioxidant potential. It acts as 
direct antioxidant through mainly iron chelation and inhi-
bition of Fe2+ autooxidation (Caro and Cederbaum 2004). 
SAM is a precursor of glutathione (GSH), a major cellular 
antioxidant, thus improving cellular ability to scavenge 
free radicals and inhibits cytochrome P450-2E1 (CYP2E1) 
enzyme activity (Cederbaum 2010). It also inhibits the 
production of proinflammatory molecules such as tumor 
necrosis factor α (TNF-α) and prevents mitochondrial dys-
function (Cederbaum 2010; Li et al. 2020). Therefore, SAM 
is accepted as a protective compound against hepatotoxic 
agents (Cederbaum 2010; Brown et al. 2014; Vincenzi et al. 
2018). Moreover, SAM treatment protects against ischemia-
reperfusion- (Valdes et al. 2023), cholestasis- (Brzački et al. 
2019) and alcohol- (Gong et al. 2008) induced liver injuries 
and reduces fibrosis through inhibition of hepatic stellate cell 
activation in an ethanol-lipopolysaccharide-induced fibrotic 
model (Karaa et al. 2008). 

SAM has a special importance in lipid metabolism via 
methylation of phosphatidylethanolamine to phosphati-
dylcholine (Noureddin et al. 2015). The decrease in hepatic 
SAM levels impairs the very low density lipoproteins (VLDL) 
export from the liver by decreasing phosphatidylcholine/
phosphatidylethanolamine ratio and causes triglyceride 
(TG) accumulation in the liver. Low phosphatidylcholine/
phosphatidyletanolamine ratio also increases membrane 
permeability and sensitizes the liver to endotoxin-induced 
proinflammatory cytokines (Noureddin et al. 2015; Mato et 
al. 2019). Low SAM levels were suggested to play a role in 
NASH development by serving as a second hit (Wortham 
et al. 2008; Noureddin et al. 2015; Mora et al. 2018). Indeed, 
although some investigators have found to be useful in the 
treatment of liver damage in experimental models of NAFLD 
and NASH (Oz et al. 2006; Bekyarova et al. 2017; Guo et al. 

2021), both experimental and clinical studies are limited 
in this area (Anstee and Day 2012; Noureddin et al. 2015; 
Mora et al. 2018). 

On the other hand, NAFLD/NASH is accepted as an 
effective factor that increases the risk of atherosclerotic car-
diovascular diseases (Gaudio et al. 2012). The mechanisms 
leading to the formation and progression of atherosclerotic 
lesions are very similar to the mechanisms seen in NAFLD/
NASH and oxidative stress plays an important role in the 
pathogenesis of both NAFLD and atherosclerosis (Gaudio 
et al. 2012; Polimeni et al. 2015). Some investigators have 
also suggested that SAM treatment may be useful in the 
prevention of endothelial dysfunction associated with 
atherosclerosis (Lim et al. 2011; Kim et al. 2013; Vergani 
et al. 2020).

Therefore, in this study, we investigated the effect of 
SAM treatment on high fat/high cholesterol (HFHC) diet-
induced hepatic and aortic lesions in guinea pigs. The main 
purpose was to determine for the first time whether SAM 
has a  preventive and/or regressive potential on hepatic 
and aortic injuries and oxidative stress in HFHC-treated 
guinea pigs. 

Materials and Methods 

Chemicals

The chemical, S-adenosyl-L methionine disulfate tosylate 
was donated by Pure Encapsulations, Inc. (Sudbury, MA, 
USA). Cholesterol was purchased from Alfa Easer (Kandel, 
Germany), and other chemicals were obtained from Sigma-
Aldrich (Darmstadt, Germany).

Animals and experimental design

Dankin-Hartley guinea pigs, weighing 600–650 g, were ob-
tained from Aziz Sancar Experimental and Medical Research 
Institute of Istanbul University. All animals were housed in 
a stainless steel cage (two or three per cage) with temperature 
and light control, 12 h dark and 12 h light. The experimental 
procedures used in this study were approved by the Animal 
Care and Use Committee of Istanbul University (Approval 
No: 02.03.2108-2018/18). 

To investigate preventive and regressive effects of SAM 
treatment on hepatic and aortic lesions and oxidative stress 
in HFHC-treated guinea pigs, animals were divided into 
five groups: a) Control group: guinea pigs were fed a com-
mercial guinea pig chow and injected for 0.9% NaCl as 
vehicle for 6 weeks. b) HFHC group: guinea pigs were fed 
on HFHC diet containing 81% standard guinea pig chow 
diet, 1% cholesterol, 8% yolk powder and 10% beef tallow 
for 6 weeks. c) SAM+HFHC group: animals were fed on 
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HFHC diet together with SAM injection (50 mg/kg; freshly 
dissolved in 0.9% NaCl solution; 5 days per week; i.p.) for 
6 weeks. d) Regression groups: guinea pigs fed on HFHC 
diet for 6 weeks were divided into 2 regression groups 
and fed control diet for an additional 4-week period. First 
regression group was injected with 0.9% NaCl as vehicle of 
SAM (REG group). However, the second regression group 
was injected with SAM (50 mg/kg; freshly dissolved in 0.9% 
NaCl solution; 5 days per week) intraperitoneally for 4 weeks 
(SAM+REG group).

Diets were prepared by the Barbaros Denizeri Company 
(Gebze) and kept at 4°C. The animals were allowed free ac-
cess to food and water. To avoid differences in the amount of 
consumed food and drinking water between groups, intake 
of food and water was periodically monitored. 

Samples

At the end of the experimental period guinea pigs were fasted 
overnight and anesthetized with ketamine (40 mg/kg, i.p., 
Pfizer, USA) and xylazine HCl (5 mg/kg, i.p., Bioveta, Czech 
Republic) anesthesia. Blood samples were taken into dry 
tubes by cardiac puncture and then, they were centrifuged 
at 1500×g for 10 min to separate the sera. Liver tissues were 
rapidly removed, washed in 0.9% NaCl and homogenized 
in ice-cold phosphate-buffered saline (PBS; 0.01 M, pH 7.4). 
Tissue homogenates were centrifuged at 600×g for 10 min 
at 4°C and post-nuclear supernatants (PNS) were used for 
biochemical analyses of the liver. The aorta, from the aortic 
valve to the renal artery, was quickly removed, rinsed and 
cut into small segments. Serum and tissues were stored at 
–80°C until analyzed. 

Determinations in serum 

Total cholesterol (TC) and triglyceride (TG) levels and ala-
nine aminotransferase (ALT) and aspartate aminotransferase 
(AST) activities were measured by using a Cobas Integra 800 
autoanalyzer (Roche Diagnostics, Mannheim, Germany). 
TNF-α level was measured using ELISA kits (Abbkine, 
Wuhan, China). 

Determinations in liver

Hepatic SAM (Sunred Bio, Shanghai, China), hydroxypro-
line (Hyp) (Bioassay Technology Laboratory, Shanghai, 
China) and CYP2E1 (Abbkine, Wuhan, China) levels were 
measured in PNS samples obtained from liver homogen-
ates by using ELISA kits according to manufacturers’ 
instructions. Hepatic TC and TG levels were measured 
using commercial colorimetric kits (Biolabo Biochemistry 
and Coagulation, Maizy, France) in lipid extracts obtained 
from the tissues.

Reactive oxygen species (ROS) levels generation was de-
termined using a fluorometric assay (Wang and Joseph 1999). 
For this reason, PNS samples of liver homogenates were 
incubated with 100 μM 2ʹ,7ʹ-dichlorodihydrofluorescein 
diacetate to form 2ʹ,7ʹ-dichlorofluorescein by cellular es-
terases. The fluorescence of 2ʹ,7ʹ-dichlorofluorescein  was 
determined using a microplate fluorimeter and luminometer 
(Fluoroskan Ascent FL, Thermo Scientific Inc., USA) with 
an excitation of 485 nm and emission of 538 nm. Hepatic 
lipid peroxidation was evaluated by the determination of 
thiobarbituric acid reactive substances (TBARS) and diene 
conjugate (DC) levels. For TBARS determination, especially 
malondialdehyde levels were measured using the method 
of Buege and Aust (1978). The absorbance of the samples 
was recorded at 532  nm and the results were calculated 
using the extinction coefficient (1.56×10−5 M−1cm−1). DC 
levels were determined spectrophotometrically at 233 nm 
in lipid extracts. They were dissolved in cyclohexane, and 
the amounts of DC levels were calculated using a  molar 
extinction coefficient of 2.52×104 M−1cm–1 (Buege and 
Aust 1978). Oxidative protein damage was quantified by 
measuring carbonyl groups based on spectrophotometric 
detection of the protein hydrazones formed by the reaction 
between 2,4-dinitrophenylhydrazine and protein carbonyl 
(PC) groups (Reznick and Packer 1994). Hepatic PC levels 
were calculated from the maximum absorbance (360 nm) 
using a molar extinction coefficient of 22.000 M−1cm−1. GSH 
levels were measured in the PNS samples of homogenates 
with 5,5-dithiobis-(2-nitrobenzoate) at 412 nm (Beutler et 
al. 1963). Ferric reducing antioxidant power (FRAP) assay 
was used for the determination of antioxidant power of liver 
homogenates. A ferric-tripyridyltriazine complex is reduced 
to its ferrous form by electron-donating antioxidants present 
in liver tissue. The reaction is monitored by measuring the 
change in absorption at 593 nm (Benzie and Strain 1996). 
Protein levels in liver homogenates were assayed by bicin-
choninic acid using serum albumin as standard (Smith et 
al. 1985).

Determinations in aorta

TC and DC levels were determined in lipid extracts of the 
aorta using the same method as in liver tissue.

Histopathological analysis

Pieces of liver and aorta were fixed in 10% buffered formalin, 
embedded in paraffin, sectioned and stained with hematoxylin 
and eosin (H&E) for histologic examinations. Reticulin stain-
ing was also performed to show reticulin fibers of fibrotic 
areas in the liver. Steatosis, liver damage and fibrosis scores 
were made according to the protocol proposed by Goodman 
(2007) previously reported by us (Bingül et al. 2016). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/dichlorodihydrofluorescein-diacetate
https://www.sciencedirect.com/topics/medicine-and-dentistry/dichlorodihydrofluorescein-diacetate
https://www.sciencedirect.com/topics/medicine-and-dentistry/dichlorofluorescein
https://www.sciencedirect.com/topics/medicine-and-dentistry/dichlorofluorescein
https://www.sciencedirect.com/topics/medicine-and-dentistry/excitation
https://www.sciencedirect.com/topics/medicine-and-dentistry/carbonyl-derivative
https://www.sciencedirect.com/topics/medicine-and-dentistry/formaldehyde
https://www.sciencedirect.com/topics/medicine-and-dentistry/paraffin
https://www.sciencedirect.com/topics/medicine-and-dentistry/haematoxylin
https://www.sciencedirect.com/topics/medicine-and-dentistry/eosin
https://www.sciencedirect.com/topics/medicine-and-dentistry/reticulin
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Results

Changes in body and liver weights, liver index and serum 
parameters

There were no significant changes in body weight in HFHC 
and SAM+HFHC groups compared to controls. Significant 
increases in liver weight and liver index were detected in 
HFHC group as compared to control, but SAM treatment 
did not alter liver weight and liver index in HFHC-guinea 
pigs. Serum TC and TNF-α levels and ALT and AST activities 
increased significantly, but TG levels remained unchanged 
in HFHC group. SAM treatment diminished significantly 
TNF-α levels and ALT and AST activities, but TC and TG 
levels did not alter in HFHC-fed animals. 

Guinea pigs in the HFHC group were fed with the HFHC diet 
for 6 weeks, followed by a regression period in which they were 
fed normal chow for 4 weeks. At the end of this period, there 
was no change in body and liver weights, liver index, serum 
TC, TG and TNF-α levels, and ALT and AST activities. When 
SAM was applied to HFHC guinea pigs during the regression 
period, liver weight and liver index, as well as serum TC levels, 
ALT and AST activities showed significant decreases (Table 1). 

Changes in liver histology 

Histopathological findings in the liver are shown in Figure 1. 
Normal hepatic architecture was seen in control group. Dif-

Table 1. The effect of S-adenosylmethionine (SAM) treatment on body weight, liver weight and liver index values and serum parameters 
in guinea pigs fed on HFHC diet 

Control
(n = 6)

HFHC
(n = 6)

SAM+HFHC
(n = 6)

REG
(n = 6)

SAM+REG
(n = 6)

Body weight (g) 750.0 ± 41.5 719.0 ± 72.1 728.0 ± 60.0 743.2 ± 62.9 696.3 ± 74.9
Liver weight (g) 35.1 ± 3.44 55.1 ± 8.28a 50.3 ± 5.99a 48.5 ± 6.62a 42.5 ± 4.55b

Liver index (%) 4.68 ± 0.53 7.71 ± 1.36a 6.91 ± 0.39a 6.52 ± 0.61a 6.12 ± 0.55a,b

TC (mmol/l) 1.51 ± 0.46 5.71 ± 1.03a 4.61 ± 1.28a 5.83 ± 1.30a 3.46 ± 0.65a,b

TG (mmol/l) 0.82 ± 0.10 0.96 ± 0.19 0.90 ± 0.16 0.89 ± 0.15 0.94 ± 0.22
TNF-α (ng/l) 18.6 ± 2.52 22.2 ± 1.91a 16.1 ± 1.39b 21.7 ± 1.81 20.4 ± 2.18
ALT (U/l) 51.0 ± 5.32 120.7 ± 47.9a 62.2 ± 6.36a,b 84.0 ± 18.5a 68.5 ± 10.6a,b

AST (U/l) 96.3 ± 14.0 597.0 ± 98.7a 401.8 ± 31.5a,b 370.0 ± 132.1a 303.0 ± 63.0a,b

Data are mean ± SD. REG, regression period following HFHC feeding. a p < 0.05 vs. control group; b p < 0.05 vs. HFHC group. 

Immunohistochemical analysis of α-SMA and TGF-β-1

Liver sections were incubated with the following primary 
antibodies: α-SMA (dilution 1:100, ABP52852, rabbit 
polyclonal, Abbkine, Wuhan, China) and TGF-β-1 (dilu-
tion 1:100, APB52598, rabbit polyclonal, Abbkine, Wuhan, 
China) for 1 hour at room temperature. Negative control 
sections treated with phosphate-buffered antibodies were 
confirmed to be unstained. The secondary antibody was 
reacted for 25 min. AEC (ScyTek Laboratories, Inc.205 
South 600 West Logan, UT 84321, USA) chromogen was 
used to visualize the reaction. Finally, the sections were 
counterstained with Mayer’s hematoxylin, coverslipped, and 
evaluated by a light microscope.

Statistical analysis

Statistical analysis was evaluated by using the Statistical Pack-
age for Social Sciences program (21.0; SPSS Inc., Chicago, IL, 
USA) program. All variables were given as mean ± standard 
deviation (SD). Data distributions and test of normality 
were investigated by Shapiro-Wilk test. One-way ANOVA 
test (post-hoc Tukey’s test) was used to assess the parameters 
with normal distribution. Homogeneity of variances was 
evaluated with Levene test. Kruskal-Wallis test (post-hoc 
Mann Whitney-U test) was used to compare the parameters 
without normal distribution. In all cases, a difference was 
considered significant when p < 0.05.

Table 2. The effect of S-adenosylmethionine (SAM) treatment on steatosis, inflammation and fibrosis scores in the liver of guinea pigs 
fed on HFHC diet

Control
(n = 6)

HFHC
(n = 6)

SAM+HFHC
(n = 6)

REG
(n = 6)

SAM+REG
(n = 6)

Steatosis 0.00 ± 0.00 2.83 ± 0.41a 2.17 ± 0.40a,b 2.33 ± 0.82a 1.50 ± 0.55a,b

Inflammation 0.00 ± 0.00 1.33 ± 0.81a 0.50 ± 0.54 0.83 ± 0.75a 0.50 ± 0.84
Fibrosis 0.00 ± 0.00 3.33 ± 0.52a 2.50 ± 0.54a,b 2.83 ± 0.41a 2.00 ± 0.00a,b

Data are mean ± SD. REG, regression period following HFHC feeding. a p < 0.05 vs. control group; b p < 0.05 vs. HFHC group. 
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Figure 1. The effect of S-adenosylmethionine (SAM) treatment 
on hepatic histopathology of guinea pigs fed on HFHC diet (H&E 
×200, Reticulin ×200). 

fuse macrovesicular steatosis, mild lympocytic infiltration, 
arrowing in sinusoids and fibrosis in the form of fine bridg-
ing were detected between the central-portal regions. These 
fibrous bridging areas were highlighted and reticulin fibers 
running parallel were observed by reticulin stain in HFHC 
group. However, in SAM+HFHC group, steatosis findings 
were regressed. Hepatocytes appeared close to native histol-
ogy around the central and portal veins. In addition, fibrous 
bands decreased and fibrous bridges between portal-central 
regions lost their continuity in this group. Although the 

histological changes seen in the HFHC group still continued 
in REG group, in SAM-treated regression period, natural 
histology was detected in more area in liver tissue and fibrous 
bands appear to be thinner and shorter than HFHC group. 

Hepatic steatosis, inflammation and fibrosis scores are 
evaluated in Table 2. SAM treatment diminished signifi-
cantly the increases in steatosis, inflammation and fibrosis 
scores in HFHC group, but decrease in inflammation score 
was not significant. Although these scores did not alter in 
regression group, steatosis and fibrosis scores decreased 

Figure 2. The effect of S-adenosylmethionine (SAM) treatment 
on aortic histopathology of guinea pigs fed on HFHC diet (H&E 
×200). 
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significantly in SAM-treated regression group as compared 
to HFHC group. 

Changes in aortic histology

Histopathological findings obtained from H&E staining 
aorta sections are shown in Figure 2. Normal aorta histology 
was observed in control group. Spaces of fat droplets within 
tunica media were observed in the aorta of HFHC group. 
The aorta of SAM+HFHC group showed less spaces of fat 
droplets as compared to HFHC group. The same histology 
seen in HFHC group was also detected following regres-
sion. However, in SAM+REG group, slight decreases in lipid 
vacuoles were observed in the media. 

Changes in hepatic TC, TG, SAM, Hyp and CYP2E1 levels 

Significant elevations in TC, TG, Hyp and CYP2E1 levels 
and reduction in SAM levels were detected in HFHC group. 

Although there were no changes in TC levels, TG, Hyp and 
CYP2E1 levels decreased, but SAM levels increased in the 
liver of SAM-treated HFHC group. Decreases in TC, TG, 
Hyp and CYP2E1 levels and increases in SAM levels were 
also obtained in SAM+REG group, but not REG group as 
compared to HFHC group (Fig. 3). 

Changes in hepatic prooxidant and antioxidant param-
eters 

Significant increases in hepatic ROS, TBARS, DC and PC 
levels and decreases in GSH and FRAP levels were found 
in HFHC group. SAM treatment decreased significantly 
ROS, TBARS, DC and PC levels and increased GSH and 
FRAP levels in guinea pigs fed on HFHC diet. There were 
also significant decreases in ROS, TBARS, DC and PC 
levels and increases in GSH levels in SAM+REG group, 
but not REG group as compared to HFHC group (Fig. 4 
and Table 3). 

Figure 3. The effect of S-adenosylmethionine (SAM) 
treatment on total cholesterol (TC), triglyceride (TG), 
hepatic SAM, hydroxyproline (Hyp) and cytochrome 
P450-2E1 (CYP2E1) levels in guinea pigs fed on 
HFHC diet (mean ± SD). a p < 0.05 vs. control group, 
b p < 0.05 vs. HFHC group. REG, regression period 
following HFHC feeding.
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Changes in hepatic α-SMA and TGF-β1 protein expressions 

Significant increases in α-SMA and TGF-β1 protein ex-
pressions were detected in guinea pigs fed on HFHC diet. 
These expressions decreased in SAM-treated HFHC group. 
Similarly, α-SMA and TGF-β1 protein expressions were 
also observed to decrease markedly in SAM+REG group as 
compared to HFHC group. However, there were no changes 
in expressions of these parameters in REG group (Fig. 5).

Changes in TC and DC levels in the aorta

Aorta TC and DC levels augmented significantly in HFHC 
group. SAM treatment decreased aorta TC and DC levels 
in guinea pigs fed on HFHC diet. In SAM+REG group, 

aorta TC and DC levels were also decreased significantly 
in SAM+REG (p  < 0.01) and REG (p  < 0.05) groups as 
compared to HFHC group (Table 3). 

Discussion

Some dietary experimental models such as methionine 
choline deficient (MCD), high fat (HF), high fructose (HFr) 
and high cholesterol (HC) diets and their combinations have 
been used to understand the pathogenesis of NAFLD/NASH 
(Takahashi et al. 2012). It has been suggested that HF-diet 
together with HC-diet interact synergistically to induce 
NASH (Savard et al. 2013). HC containing diets are also a risk 
factor for atherosclerosis as in NASH. Therefore, HFHC diet 

Table 3. The effect of S-adenosylmethionine (SAM) treatment on hepatic glutathione (GSH) and ferric reducing antioxidant power 
(FRAP) levels in the liver as well as aortic total cholesterol (TC) and diene conjugate (DC) levels in the aorta of guinea pigs fed on 
HFHC diet

Control
(n = 6)

HFHC
(n = 6)

SAM+HFHC
(n = 6)

REG
(n = 6)

SAM+REG
(n = 6)

GSH (nmol/mg protein) 50.3 ± 4.41 37.7 ± 3.64a 59.9 ± 7.38b 45.6 ± 7.46 54.8 ± 8.94b

FRAP (nmol/mg protein) 98.1 ± 14.9 53.2 ± 15.5a 78.1 ± 11.9b 63.1 ± 11.5a 69.5 ± 10.5a

TC (µmol/g aorta) 3.25 ± 0.75 6.67 ± 0.62a 5.10 ± 0.53a,b 5.07 ± 0.96a,b 4.75 ± 1.01a,b

DC (µmol/g aorta) 2.64 ± 0.21 3.55 ± 0.58a 2.97 ± 0.26a,b 3.00 ± 0.20a,b 2.89 ± 0.26b

Data are mean ± SD. REG, regression period following HFHC feeding. a p < 0.05 vs. control group; b p < 0.05 vs. HFHC group. 

Figure 4. Hepatic reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), diene conjugate (DC) and protein 
carbonyl (PC) levels in guinea pigs fed on HFHC diet (mean ± SD). a p < 0.05 vs. control group, b p < 0.05 vs. HFHC group. REG, regres-
sion period following HFHC feeding. 
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is accepted as an appropriate dietary experimental model for 
NASH and atherosclerosis. Guinea pigs are very susceptible 
to the development of HFHC induced NASH and athero-
sclerosis (Ye et al. 2013). Therefore, in this study, guinea pigs 
were used as experimental animals. 

In this study, HFHC diet was observed to increase serum 
ALT and AST activities and TNF-α levels, hepatic TC and 
TG levels together with increases in steatosis, inflammation 
and fibrosis scores in the liver histopathology in guinea pigs. 

Increases in hepatic Hyp levels and profibrotic α-SMA and 
TGF-β1 protein expressions are indicators of fibrosis forma-
tion. As it is known, activated hepatic stellate cells (HSC) is 
known to be the main fibrogenic cell and HSC activation 
is crucial in liver fibrogenesis. TGF-β1 is a key cytokine in 
the pathogenesis of liver fibrosis and α-SMA is a marker of 
activated HSCs (Karaa et al. 2008; Bingül et al. 2016).

CYP2E1-generated ROS plays an important role in the 
induction of oxidative stress in NAFLD (Cederbaum 2010; 
Harjumaki et al. 2021). TBARS and DC levels are indica-
tors of lipid peroxidation, however, PC levels are indicators 
of protein oxidation. In this study, hepatic ROS, TBARS, 
DC and PC levels elevated in HFHC guinea pigs. In these 
conditions, decreases in hepatic GSH may be related to its 
increased consumption as a potent intracellular antioxidant 
molecule. Additionally, the FRAP assay is a global marker 
for antioxidant power (Benzie and Strain 1996). Decreases 
in FRAP levels in the liver of guinea pigs with NASH also 
reflects an insufficiency in antioxidant power. These findings 
show that a prooxidant state developed in the liver of guinea 
pigs fed on HFHC. Our results obtained from HFHC guinea 
pigs are in accordance with previous results in the liver of 
guinea pigs (Çoban et al. 2013; Zhang et al. 2013; Ipsen et 
al. 2016; Bekyarova et al. 2017; Küskü-Kiraz et al. 2018). 

Decreased SAM levels in chronic liver disease may be 
related to enhanced consumption of this substance as an 
antioxidant and/or its reduced synthesis via inhibition of 
MAT1A, an oxidation sensitive enzyme (Anstee and Day 
2012; Ramani and Lu 2017). MAT1A-deficient mice were 
detected to show spontaneous steatosis and its progression 
to NASH, and SAM treatment reduced hepatic damage, ALT 
and AST activities, and TG levels in these mice (Mato et al. 
2019). Therefore, it has been suggested that SAM homeo-
stasis may have an active role in the pathogenesis of NAFLD 
and that SAM supplementation can be used as a treatment 
tool in NAFLD (Wortham et al. 2008; Noureddin et al. 2015). 
However, experimental (Oz et al. 2006; Lieber et al. 2007; 
Bekyarova et al. 2017) studies on this subject are limited. 
In addition, the mechanisms by which SAM is effective in 
NAFLD are not well known. In mice with NASH induced by 
MCD diet, SAM administration ameliorated liver damage by 
increasing hepatic SAM and GSH levels and downregulating 
gene expressions of inflammatory and fibrogenic cytokines 
(Oz et al. 2006). Similarly, the administration of SAM de-
creased microvesicular steatosis, malondialdehyde levels 
and apoptosis in the liver of rats fed a HFr-diet (Bekyarova 
et al. 2017). However, Lieber et al. (2007) have reported that 
although SAM or dilinoleylphosphatidylcholine (DLPC) 
alone was not effective, combination of SAM with DLPC 
prevented CYP2E1 activation, TG accumulation, oxida-
tive stress and fibrotic changes in the liver of rats fed on 
HF diet. However, in a recent study, it was found that SAM 
reduced steatosis in rats fed on HF diet by upregulating an-

Figure 5. The effect of S-adenosylmethionine (SAM) treatment on 
hepatic α-smooth muscle actin (α-SMA) and transforming growth 
factor- β1 (TGF-β1) protein expression of guinea pigs fed on HFHC 
diet (×400). REG, regression period following HFHC feeding. 
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giotensin II receptor 1(AT1R)-associated protein (ATRAP), 
which is the primary receptor of angiotensin II (Ang II) in 
the renin-angiotensin system (RAS) (Guo et al. 2021). Since 
the activation of RAS system was reported to be effective as 
a second hit in NAFLD progression (Wu et al. 2016), this 
activity along with other activities of SAM may indicate its 
useful as a therapeutic agent in NAFLD.

In this study, SAM was injected to animals at the same 
time period with HFHC diet to evaluate its preventive po-
tential against liver lesions. The SAM dose and duration used 
in our study are based on some previous studies (Gong et 
al. 2008; Kim et al. 2013; Bekyarova et al. 2017). SAM treat-
ment decreased serum ALT and AST activities, TNF-α levels 
and liver TG levels and steatosis score without any change 
in liver TC levels in guinea pigs fed on HFHC. Decreases in 
profibrotic α-SMA and TGF-β1 protein expressions, Hyp 
levels and fibrosis score were also detected. Therefore, in-
hibition of HSC activation may play a role in antifibrogenic 
efficiency of SAM in HFHC-fed guinea pigs as previously 
reported (Karaa et al. 2008). This treatment was also found to 
decrease hepatic CYP2E1, ROS, lipid and protein oxidation 
products and increase hepatic GSH and FRAP levels. These 
results indicated that SAM diminished prooxidant state in 
the liver of HFHC-fed guinea pigs.

On the other hand, there is an association between 
NAFLD and endothelial dysfunction (Gaudio et al. 2012). 
Endothelial dysfunction has been recognized as the early 
symbol of atherosclerosis and plays a  role in its develop-
ment and progression. SAM supplementation ameliorated 
endothelial dysfunction in HFD rats (Kim et al. 2013) and 
prevented neointimal formation after balloon injury in obese 
diabetic rats (Lim et al. 2011). In addition, in in vitro condi-
tions, SAM was detected to decrease fatty acid-induced lipid 
accumulation and attenuate oxidative stress in endothelial 
cells (Vergani et al. 2020). However, there is no adequate 
knowledge related to the effect of SAM supplementation on 
aortic lesions in experimental NAFLD models. In this study, 
HFHC diet caused increases in aortic TC and DC levels and 
accumulation of lipid vacuoles in the aortas. Our findings 
indicate that HFHC-induced atherosclerotic changes were 
produced as previously reported (Amran et al. 2009; Çoban 
et al. 2013; Ye et al. 2013) and SAM treatment decreased 
aortic TC and DC levels and improved aortic histology in 
guinea pigs with NASH. 

In our study, SAM was also applied to guinea pigs fed on 
normal diet in 4-week regression period following HFHC 
diet to assess its regressive potential of SAM. Obtained re-
sults indicate that SAM treatment was also effective in the 
regression of HFHC-induced hepatic lesions such as stea-
tosis, inflammation and fibrosis together with decreases in 
oxidative stress parameters. Decreases in TC and DC levels 
and an improvement of aortic histopathological findings 
were observed in aortas of SAM+REG group. 

In conclusion, this study indicates that SAM treatment 
has preventive and regressive efficiency in HFHC-induced 
hepatic injury and oxidative stress. Moreover, an improve-
ment in aortic findings was also observed. These beneficial 
effects of SAM in guinea pigs fed on HFHC diet may be 
related to its multifunctional properties such as antioxidant, 
antiinflammatory, antisteatotic and antifibrotic activities.
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