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Abstract. MicroRNAs (miRNAs) are essential modulators of gene expression and are associated 
with various pathological processes, including spinal cord injury (SCI). This investigation aimed to 
elucidate miR-10a activity in SCI and its potential interaction with sirtuin 1 (SIRT1). The SCI rat 
model was established to assess hind limb movement, measure levels of miR-10a, SIRT1, neuronal 
survival, and inflammatory factors. An in-vitro SCI cell model was also developed to evaluate cell 
viability and inflammatory factor levels. The interaction between miR10a and SIRT1 was verified. 
Upregulated miR-10a and downregulated SIRT1 expression were found in the tissues of SCI rats. 
miR-10a knockdown in SCI rats enhanced the recovery of motor function, increased neuronal 
survival, and reduced the levels of inflammatory cytokines. Luciferase reporter assays confirmed 
that miR-10a targeted SIRT1 directly. In PC12 cells, downregulation of miR-10a increased SIRT1 
expression, enhanced cell viability, and reduced inflammatory factor levels after LPS stimulation. 
Conversely, SIRT1 knockdown inhibited the protective effects of downregulated miR-10a on cell vi-
ability and inflammatory responses. The results suggest that miR-10a downregulation protects against 
SCI by upregulating SIRT1 expression, improving functional recovery, and reducing inflammation. 
Targeting the miR-10a/SIRT1 axis is a promising strategy for SCI treatment.
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Introduction

Spinal cord injury (SCI) is neurological damage that causes 
severe sensorimotor deficits and other complications (Ortega 
et al. 2023). The most frequent and severe disabilities caused 

by SCI include tetraplegia and paraplegia, resulting in 
marked impairment in affected individuals (González-Viejo 
et al. 2023). SCI pathophysiology is associated with complex 
mechanisms, including oxidative stress, inflammation, and 
apoptosis, contributing to secondary injury and worsening 
functional outcomes (Feng et al. 2023; Zuo et al. 2023). 
Although the underlying SCI pathophysiology has been 
comprehensively elucidated, effective treatment does not 
exist because of abnormal cellular and tissue response to 
the injury. 

MicroRNAs (miRNAs) are non-coding RNAs that 
modulate gene expression by translational splicing and 
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post-transcriptional inhibition (Busseau et al. 2023). They 
interact directly with the 3’-untranslated regions (3’-UTRs) 
of mRNAs, resulting in the inhibition of translation and 
suppression of the mRNA (DiVincenzo et al. 2023). Studies 
have shown the involvement of miRNAs in a variety of bio-
logical processes, including cell growth, differentiation, and 
apoptosis (Hu et al. 2023; Jeong and Hwang 2023; Ma et al. 
2023). miR-10a has been reported to be involved in inflam-
mation and apoptosis (Lu et al. 2023), and its expression is 
upregulated in epileptic hippocampal neurons, renal tissues 
affected by renal ischemia-reperfusion, and osteoarthritic 
tissues (Ma et al. 2019; Xu et al. 2020). Additionally, studies 
using miR-10a mimics have shown that it can enhance the 
expression of TNF-α, interleukin 1β (IL-1β), and interleu-
kin 6 (IL-6) (Lu et al. 2023), while IL-1β-induced apoptosis 
was prevented by transfection with a miR-10a-5p inhibitor 
(Ma et al. 2019). Xu et al. (2020) found that the overexpres-
sion of miR-10a worsened renal damage and promoted cell 
apoptosis in vivo. 

Moreover, miR-10a has been associated with several 
neurological disorders, such as Alzheimer’s disease (Gui et 
al. 2015; Jia et al. 2021), Parkinson’s disease (Jia et al. 2021), 
and ischemic stroke (Ryu et al. 2020), indicating its possible 
role in neurodegenerative mechanisms. Studies have dem-
onstrated that suppression of miRNA-10a-5p enhanced the 
specialization of mesenchymal stem cells (MSCs) by specifi-
cally targeting brain-derived neurotrophic factor (BDNF). 
This process ultimately facilitated the healing of damaged 
tissues following SCI (Zhang T et al. 2020). Altered expres-
sion of several miRNAs has been observed in adult rats after 
traumatic SCI (Han T et al. 2023; Han Z et al. 2023; Yue et 
al. 2023). These results suggest that miRNAs may play an 
important role in SCI. However, the association of miR-10a 
in SCI requires further elucidation.

Sirtuin 1 (SIRT1) is a NAD+-dependent protein dea-
cetylase that has been extensively studied for its roles in 
cellular homeostasis and stress responses (Barangi et al. 
2023). SIRT1 has neuroprotective activity against various 
neurological disorders, such as SCI (Rao et al. 2023). It 
regulates various cellular processes, including inflamma-
tion, apoptosis, and oxidative stress, through its deacetylase 
activity and interaction with various transcription factors 
and co-regulators (Sun et al. 2022; Tang et al. 2022). Jiang 
et al.’s research demonstrated that an absence of SIRT1 
in endothelial cells resulted in significant damage to the 
blood-spinal cord barrier (BSCB). This damage led to 
inflammation throughout the body, neural cell death, 
and poor functional recovery after SCI (Jiang et al. 2023). 
Furthermore, numerous studies have demonstrated that 
SIRT1 expression is reduced in tissues and cells affected 
by SCI. Conversely, upregulation of SIRT1 was found to 
reduce apoptosis in the cells of SCI models (Yu et al. 2019; 
Chen and Qin 2020). Additionally, SIRT1 serum levels 

were observed to be strongly correlated with the extent of 
the injury and thus may play a crucial role in determining 
the restoration of neurological functioning in SCI (Zhong 
et al. 2021).

In this study, the potential interaction sites between SIRT1 
and miR-10a were investigated using bioinformatics analysis. 
It was hypothesized that miR-10a modulates the levels of 
SIRT1 and, therefore, could have therapeutic implications 
for SCI. This hypothesis was tested on in vivo and in vitro 
SCI models; furthermore, the functional recovery, neuronal 
survival, and inflammatory responses following the modula-
tion of miR-10a and SIRT1 expression were assessed.

Materials and Methods

Animals 

Sprague-Dawley rats (weight = 200–300 g, male, n = 60, age 
= 6–8 weeks) provided by the Jiesijie Experimental Animal 
Company (Shanghai, China) were housed under standard 
conditions of 23 ± 2°C, 12 h light/dark cycle, 40–60% relative 
humidity, and ad libitum chow and water. The authors’ affili-
ated institutions granted approval for this research through 
the Institutional Review Board (IRB).

Rat SCI model development

The SCI model was developed as previously described 
(Gruner 1992; Khan et al. 1999). Briefly, 40 rats were anes-
thetized by intraperitoneal injections of pentobarbital (30 
mg/kg), their skin was shaved, sterilized with betadine, and 
incised (20 mm) from the midline to expose the thoracic 
region of the vertebral column (T8–T11). The paravertebral 
muscle was dissected, and T10 laminectomy was performed 
to access the dorsal cord surface without disruption of the 
dura. To induce SCI, a 10 g rod was dropped from 5.0 cm 
height onto the T10 spinal cord level, after which the inci-
sion was sutured, and the animals were transferred to warm 
boxes for recovery. In the sham group, SCI induction was 
omitted, and only the surgical area was exposed (n = 20). 

To elucidate the activity of miR-10a, Genechem (Shang-
hai, China) provided anti-miR-10a lentiviral vectors (LV-
anti-miR-10a) and negative control (LV-NC) vectors. These 
were intrathecally injected in the rats 3 days before SCI 
induction (Sachdeva et al. 2020). The rats were then divided 
into the LV-anti-miR-10a (n = 10) and LV-NC (n = 10) 
groups. Seven days after the surgical procedure, correlations 
between miR-10a levels and brain function were examined 
using the Basso, Beattie, and Bresnahan (BBB) score. Blood 
samples were collected from the femoral vein and centri-
fuged (3000×g, 10 min) to obtain the serum. Subsequently, 
after intraperitoneal anesthesia by pentobarbital (40 mg/
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kg), the animals were sacrificed by cervical dislocation, and 
their spinal cord tissues were sampled. The sequences of 
anti-miR-10a and anti-NC were as follows: anti-miR-10a, 
5’-CACAAAUUCGGA UCUACAGGGUA-3’; anti-NC, 
5’-CAGUACUUUUGUGUAGUACAA-3’.

Behavioral assessment

To elucidate the motor activities of the hind limbs, a BBB 
motor-rating scale was applied 7 days post-surgery (Wang 
et al. 2018). The scale assesses motor ability using a 21-point 
open-field locomotor scale, where 0 = no locomotion and 21 
= normal motor functions. The rats’ hindlimb movements, 
stability, trunk position, coordination, stepping, toe clear-
ance, paw placement, and tail position were evaluated by 
two independent researchers, and the mean of their scored 
values was used.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from SCI tissues and PC12 cells 
using TRIzol (Invitrogen, Waltham, MA, USA), according 
to the provided directions. The RNA was then reverse-
transcribed to cDNA using a cDNA Synthesis Kit (Applied 
Biosystems, MA, USA). qPCR was performed using SYBR 
Green Master Mix (Applied Biosystems) and an ABI Prism 
7000 Sequence Detection system (Applied Biosystems). 
The experimental conditions were as follows: the tempera-
ture was set to 95°C and maintained for 5 min, followed 
by 40 cycles of PCR with steps at 95°C (30 s), 60°C (30 s), 
and 72°C (30 s). The miR-10a (sense primer: 5’-CGCG-
CAAATTCGTATCTAGG-3’; antisense primer: 5’-AGT-
GCAGGGTCCGAGGTATT-3’) and U6 primers (sense 
primer: 5’-CTCGCTTCGGCAGCACA-3’; antisense primer: 
5’-AACGCTTCACGAATTTGCGT-3’), were obtained from 
Sangon Biotech (Shanghai, China), with the U6 primer was 
used as a  reference. The relative miR-10a expression was 
measured using the 2−ΔΔCt method.

Western blotting

Tissues from SCI lesion site and treated PC12 cells were 
homogenized in RIPA lysis buffer (Beyotime, Shanghai, 
China) and the protein concentrations were measured using 
a BCA kit (Beyotime). The proteins were then separated on 
8% SDS-PAGE gels and transferred to PVDF membranes. 
The membranes were incubated first with primary antibodies 
against SIRT1 (1:500, ab110304, Abcam, UK) and GAPDH 
(1:1,0000, ab8245, Abcam) antibodies and then a secondary 
antibody (1:1000, ab6789, Abcam). Bands were visualized by 
chemiluminescence (ECL Prime Western Blotting System; 
GE Healthcare) and quantified by ImageJ software (NIH, 
USA). The GAPDH was used as the loading control.

Immunohistochemistry

Samples of SCI tissues were embedded in paraffin, sectioned 
(4-μm thick), deparaffinized in xylene (Sigma-Aldrich, St 
Louis, MO, USA), treated with 3% H2O2, and heated for 
30 min in citrate buffer for antigen retrieval. The sections 
were then incubated overnight with the primary anti-SIRT1 
antibody (1:200, ab110304, Abcam) at 4°C, then for 45 min 
with the secondary antibody (1:1000, ab6789, Abcam) at 
ambient temperature (AT), stained with 3,3’diaminobenzi-
dine (DAB), rinsed, and counterstained with hematoxylin 
for 30  s. Lastly, the samples were evaluated and imaged 
under a  microscope (Olympus, Japan) and assessed by 
ImageJ software.

Nissl body staining

The sections were incubated overnight with anhydrous 
ethanol:chloroform (1:1 ratio) at AT, then with alcohol 
(95%) and absolute ethanol (100%), rinsed three times 
with distilled water, and stained at 37°C for 10 min with 
pre-warmed tar purple (0.1%, pH 3). The sections were 
then washed three times with distilled water, differentiated 
using alcohol (95%) for 5 min, dehydrated for 5 min with 
xylene and 100% anhydrous ethanol, and mounted. The 
effects of treatments on motor function were assessed by 
randomly selecting motor neurons from the anterior horn 
of five stained sites.

Enzyme-linked immunosorbent assays (ELISA)

The levels of TNF-α (KRC3011) and IL-6 (BMS625) in sera 
and culture supernatants were measured using rat ELISA 
Kits (Invitrogen), following the guidelines of the kits. Ab-
sorbance was measured at 450 nm using a microplate reader 
(Bio‑Rad, CA, USA).

Cell culture and transfection

PC12 cells (American Type Culture Collection) were grown 
in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 
Waltham, MA, USA) supplemented with 10% fetal bovine 
serum (FBS, Gibco) and 1% penicillin/streptomycin at 37°C 
in a humidified incubator with 5% CO2.

Genepharma (Shanghai, China) provided the SIRT1 
small interfering RNA (si-SIRT1, 5’-GAACAAAGUU-
GACGAUUUAGATT-3’) and negative control (si-control, 
5’- UUCUCCGAACGUGUCACGUTT-3’); the cells were 
transfected with LV-anti-miR-10a alone or with si-control 
or si-SIRT1 via Lipofectamine 3000 (Invitrogen), according 
to the provided directions. The transfection efficiency of the 
cells was measured at 48 h after transfection using Western 
blotting and qRT-PCR analysis.
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PC12 cells were exposed to lipopolysaccharides (LPS, 
L2630, Sigma-Aldrich) at concentrations of 50, 100, and 
200 ng/ml for 6 h. The MTT assay revealed about a 50% 
decrease in cell viability at a concentration of 100 ng/ml (Sup-
plementary material, Figure S1), prompting its selection for 
further experiments aimed at establishing an in vitro model 
of SCI (Ding et al. 2023).

Dual-luciferase reporter gene analysis

TargetScan was used to predict the putative miR-10a and 
SIRT1 binding sites. The 3’-UTR of the SIRT1 sequence was 
amplified and cloned into a pGL3 luciferase reporter vec-
tor (Promega, Madison, WI, USA) to establish a wide-type 
plasmid (SIRT1-WT). For the mutant-type (SIRT1-MT) 
plasmid, a Directed Mutagenesis system (Invitrogen) was 
utilized. PC12 cells were co-transfected with SIRT1-WT 
or -MT plasmids and miR-10a mimic (sense, 5’-CAAAU-
UCGGAUCUACAGGGUAUU-3’, and anti-sense, 5’-UAC-
CCUGUAGAUCCGAAUUUGUG-3’) or miR-NC (sense, 

5’-UUCUCCGAACGUGUCACGUTT-3’, and anti-sense, 
5’-UACCCUGUAGAUCCGAAUUUGUG-3’) using Lipo-
fectamine 3000 (Invitrogen), according to the provided 
instructions. The luciferase activities in lysed cells were as-
sessed using a Luciferase Assay Kit (GeneCopoeia, Rockville, 
MD, USA).

MTT assay

PC12 cells (1×105 per well) were seeded in 96-well plates 
and grown at 37°C for 24 h. After removal of the culture 
supernatants, the cells were incubated with LV-anti-miR-10a, 
LV-anti-miR-10a+si-control, or LV-anti-miR-10a+si-SIRT1 
for 48 h at 37°C, after which the cells were treated with LPS 
(100 ng/ml) for 6 h. Subsequently, 10 μl of MTT reagent were 
then added to each well and incubated for 4 h at 37°C. The 
formazan crystals were then dissolved in DMSO (100  μl; 
Nanjing KeyGen Biotech Co., Ltd.), and absorbances at 
490 nm were measured in a microplate reader.

Statistical measurements

Data were analyzed using SPSS 20.0 (IBM Corp., Armonk, 
NY, USA) and are presented as mean ± SD. Intergroup 
comparisons were performed with Student’s t-tests, and 
multi-group comparisons, with one-way ANOVA. p < 0.05 
was considered statistically significant.

Results

Altered expression of miR-10a and SIRT1 in SCI tissues

The BBB scores in the SCI group were markedly lower than 
those in the control group, indicating that rats’ hindlimb mo-
tor functions were significantly affected (Fig. 1A). miR-10a 
expression in SCI tissues was significantly increased (Fig. 
1B), while expression of SIRT1 was markedly decreased in 
SCI tissues (Fig. 1C) relative to the control group. 

Knockdown of miR-10a promoted recovery of motor function 
and inhibited inflammation in SCI rats

The in vivo effect of miR-10a after SCI surgery was assessed 
by LV-anti-miR-10a treatment. miR-10a levels in the spinal 
cords of the SCI rats were reduced by miR-10a knockdown 
(Fig. 2A), while SIRT1 levels were increased (Fig. 2B,C). 
Furthermore, examination of the BBB scores indicated that 
miR-10a knockdown improved neurological function in SCI 
rats compared with the LV-NC treatment (Fig. 3A). To fur-
ther elucidate the neuroprotective effects induced by miR-10a 
knockdown, Nissl bodies were stained and evaluated in the 
anterior horns of the spinal cords (Fig. 3B). The SCI group 

Figure 1. miR-10a and SIRT1 expression in spinal cord tissues. A. 
BBB score was used to assess hindlimb motor function 7 days after 
SCI induction (n = 10). B. miR-10a expression in the spinal cord 
tissues of sham and SCI rat models was quantified via qRT-PCR (n 
= 3). C. SIRT1 protein expression was assessed by Western blotting 
(n = 3). * p < 0.05, ** p < 0.01.

BA

C
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showed fewer Nissl bodies compared to the sham group. 
Conversely, there was a significant increase in the number 
of Nissl bodies observed in the SCI+LV-anti-miR-10a group 
when compared to the SCI group (Fig. 3C). Unsurprisingly, 
LV-anti-miR-10a reduced the serum levels of TNF-α (Fig. 
3D) and IL-6 (Fig. 3E) in SCI rats.

miR-10a is predicted to target SIRT1 specifically

A potential binding site for miR-10a was predicted in the 
SIRT1-3’-UTR sequence (Fig. 4A). Transfection with the 
SIRT1 wild-type (WT) and mutant (MT) luciferase vectors 
revealed that miR-10a reduced the luciferase activity of the 

Figure 2. miR-10a knockdown increased 
SIRT1 expression in SCI rats. A. The miR-
10a expression in spinal cord tissues of SCI 
rats injected with LV-NC or LV-anti-miR-
10a was elucidated by qRT-PCR (n = 3). 
B.,C. Immunohistochemistry was used to 
measure the levels of SIRT1 in spinal cord 
tissues (n = 3, 2 cm length of the spinal cord 
centered at the injury site). * p < 0.05, scale 
bar = 100 μm.

A B C

Figure 3. Knockdown of 
miR-10a promoted recovery 
of motor function and inhib-
ited inflammation in SCI rats. 
A. BBB scores were used to 
assess functional recovery in 
LV-NC- or LV-anti-miR-10a-
treated SCI rats (n = 10). 
B.,C. The Nissl bodies of the 
anterior horn of the spinal 
cord were stained to assess 
neuronal survival rates in SCI 
rats (n = 3). Scale bar = 100 
μm. D.,E. The serum levels 
of inflammatory cytokines 
(TNF-α and IL-6) were as-
sessed by ELISA (n = 10). 
** p < 0.01 vs. Sham group; 
# p < 0.05, vs. SCI group.

B

C D E

A
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Figure 4. miR-10a targets SIRT1 
directly. A. Predicted binding sites 
of miR-10a in the 3’-UTR sequences 
of SIRT1-WT and SIRT1-MUT. B. 
PC12 cells were co-transfected with 
SIRT1-MUT or SIRT1-WT 3’-UTR 
reporter plasmids together with NC 
mimic or miR-10a mimic, and after 
48  h, their luciferase activity was 
assessed by dual‑luciferase reporter 
assays. C.,D. Expression of SIRT1 
protein in PC12 cells transfected with 
miR-10a mimic or NC mimic were 
analyzed by Western blotting. **p < 
0.01 vs. NC mimic group.

A

B C D

SIRT1-WT vectors but did not affect SIRT1-MUT vectors 
(Fig. 4B). Additionally, the in-vitro SIRT1 levels were also 
markedly reduced by miR-10a (Fig. 4C,D). Therefore, 
miR-10a is suggested to directly modulate SIRT1 levels.

miR-10a inhibition alleviates inflammation in the in-vitro 
SCI model.

To elucidate the function of miR-10a in an in vitro SCI 
model, LV-NC, LV-anti-miR-10a+si-control, LV-anti-miR-
10a, or LV-anti-miR-10a+si-SIRT1 transfected cells were 
treated with 100 ng/ml LPS for 6 h. It was observed that LPS 
treatment markedly increased the levels of miR-10a relative 
to the control group, while levels were markedly reduced 
in LV-anti-miR-10a-transfected cells relative to LV-NC-
transfected cells (Fig. 5A). Additionally, SIRT1 protein 
expression was substantially decreased in the LPS group 
compared with the control. SIRT1 levels were also mark-
edly increased in the LV-anti-miR-10a group compared 
with the LPS group; this elevation was reversed by SIRT1 
knockdown with SIRT1-siRNA (Fig. 5B,C). MTT assays for 
cell viability indicated significantly reduced viability in the 
LPS group compared with the control. However, miR-10a 
knockdown markedly increased cell viability compared 
with the LPS group, but this effect was reversed by si-SIRT1 
(Fig. 5D). Moreover, the levels of inflammatory factors 
assessed by ELISA showed significant increases in both 
TNF-α and IL-6 in the LPS group relative to the control. 
miR-10a knockdown significantly reduced inflammatory 
factor levels compared with the group treated only with 
LPS and were markedly reduced after SIRT1 knockdown 
(Fig. 5E,F).

Discussion

SCI is a  neurological disorder that causes severe motor, 
autonomic, and sensory dysfunction (Ortega et al. 2023). 
The pathophysiology of SCI derives from both primary and 
secondary damage to the spinal cord, with the latter includ-
ing inflammation, oxidative stress, apoptosis, and glial scar 
formation (Feng et al. 2023; Zuo et al. 2023). miRNAs regu-
late these processes and, therefore, might be effective targets 
for treating SCI (Busseau et al. 2023; DiVincenzo et al. 2023). 
This investigation indicated that miR-10a was upregulated in 
SCI-affected tissues, while miR-10a knockdown improved 
the recovery of motor function, enhanced neuronal survival, 
and reduced the levels of inflammatory cytokines.

The results of this research are consistent with those of 
previous studies indicating that miRNAs are crucially as-
sociated with SCI pathogenesis. For example, it has been 
documented that miR-21 is increased in SCI and enhances 
neuronal cell death by specifically targeting phosphatase 
and tensin homolog (PTEN) (Kar et al. 2021). Moreover, 
miR-124 is decreased in SCI, this miRNA provides defense 
against neuronal death by specifically targeting Bax (Xu et al. 
2019). Furthermore, numerous studies have demonstrated 
the involvement of miRNAs in the development of neurode-
generative disorders. Specifically, the disruptions in miRNA 
expression have been proposed to serve as a dependable and 
efficient method for diagnosing Parkinson’s disease without 
the need for intrusive procedures (Kumar et al. 2024). The 
upregulation of miR-125b in the brain afflicted with Alzhei-
mer’s disease is induced by the transcription factor nuclear 
factor kappa B (NF-κB), potentially leading to neuroinflam-
mation through the modulation of complement factor-H 
(CFH) mRNA (Lukiw and Alexandrov 2012). Studies have 
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demonstrated that miR-34a and miR-146a are positively 
associated with inflammatory mediators (Dos Santos et al. 
2024; Liu et al. 2024). In summary, our results confirm the as-
sociation of miRNAs with neuroinflammation. Knockdown 
of miR-10a could reduce the concentrations of inflammatory 
cytokines. These findings further contribute to our under-
standing by indicating that miR-10a is also disrupted in SCI, 
and is linked to inflammation, perhaps playing a role in the 
development of the condition.

Interestingly, it was observed that miR-10a directly targets 
SIRT1, a sirtuin family member of NAD+-dependent protein 
deacetylases, which modulate cellular processes, including 
apoptosis, inflammation, and senescence (Sun et al. 2022; 
Tang et al. 2022; Barangi et al. 2023). SCI rats showed reduced 
SIRT1 expression, while SIRT1 expression was increased by 
miR-10a downregulation, consistent with previous studies 
showing that miRNAs modulate SIRT1 expression. Moreo-
ver, miR-34a has been reported to target SIRT1 directly and 
to induce cellular senescence and inflammation in human 

endothelial cells (Raucci et al. 2021) as well as promoting 
neuronal survival in an ischemic stroke model (Wang et al. 
2023). Here, it was revealed that miR-10a may exert its effects 
on SCI by modulating SIRT1 expression.

Cell experiments showed that miR-10a downregulation 
increased cell viability and reduced the levels of inflamma-
tory factors after LPS treatment, suggesting that miR-10a 
may regulate the inflammatory response in SCI, a  major 
contributor to secondary injury and a key target for thera-
peutic intervention. This is consistent with previous results 
showing that miR-10a plays a role in inflammatory reactions. 
Specifically, treatment with miR-10a mimics has been shown 
to enhance the secretion of TNF-α, IL-1β, and IL-6 (Lu et 
al. 2023), Conversely, inhibition of miR-10a-5p has been 
demonstrated to mitigate apoptosis triggered by IL-1β (Ma 
et al. 2019). It was observed that SIRT1 knockdown reduced 
the protective effects of miR-10a downregulation on cell vi-
ability and inflammatory responses, indicating that SIRT1 
might mediate miR-10a effects on SCI. Previous research 

Figure 5. miR-10a downregulation or SIRT1 silencing affects cell viability and inflammatory factor levels. LV-NC, LV-anti-miR-10a+si-
control, LV-anti-miR-10a, or LV-anti-miR-10a+si-SIRT1 were transfected for 48 h into PC12 cells. Cells were then treated for 6 h with 
LPS (100 ng/ml) A. qRT-PCR was used to measure miR-10a expression in PC12 cells ​after the indicated treatments. Values are depicted 
as the mean ± SD of 3 experimental replicates. ** p < 0.01 vs. control group; # p < 0.05 vs. LPS group. B.,C. SIRT1 protein expression in 
PC12 cells ​after indicated treatments. D. MTT assays measuring cell viability. ELISAs were used to measure the levels of the inflamma-
tory factors TNF-α (E) and IL-6 (F). Values are shown as the mean ± SD of 3 experimental replicates. ** p < 0.01 vs. control group; # p < 
0.05, ## p < 0.01 vs. as indicated.

A B C

D E F
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has shown that SIRT1 can protect against neuronal injury 
and inflammation in various neurological disorders. For 
instance, it protected against neuronal death in an ischemic 
stroke model by deacetylating p53 (Zhang X et al. 2020) and 
suppressed inflammation in a model of multiple sclerosis by 
deacetylation of NF-κB (Schiaffino et al. 2018). The present 
results suggest that SIRT1 may be a key mediator of the ef-
fects of miR-10a on SCI.

Conclusion

In summary, the findings of this study provide new in-
sights into the association of miR-10a and SIRT1 in SCI 
pathogenesis. Furthermore, it suggested that miR-10a may 
contribute to SCI by targeting SIRT1 and modulating the 
inflammatory response, which may represent a novel SCI 
therapeutic strategy. However, further research is required 
to verify these results and explore the potential therapeutic 
effects of miR-10a inhibitors or SIRT1 activators.
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Figure S1. MTT assays measuring cell viability. 
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