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DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the 
methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer 
(NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive 
large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database 
until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC. Seventy-five 
studies were reviewed, focusing on the promoter methylation of key genes, such as APC, BRCA1, CDH1, CDH13, DAPK1, 
DLEC1, FHIT, GSTP1, hMLH1, MGMT, CDKN2A, RARβ, RASSF1, RUNX3, and TIMP3. These studies explored diagnostic, 
prognostic, epidemiological, and therapeutic aspects across NSCLC subtypes. Additionally, mutational profiles of TP53, 
RB1, KEAP1, and STK11 and expression patterns of ASCL1, DLL3, and NOTCH were analyzed. The findings suggest that 
LCNEC may serve as a biological bridge between non-small cell and small-cell lung carcinoma. Our analysis highlights 
that the methylation status of selected genes could enhance diagnosis, prognosis, and personalized treatment strategies in 
patients with NSCLC, particularly those with LCNEC.
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Lung cancer is a very aggressive and highly prevalent 
disease worldwide. It is the leading cause of cancer mortality 
in men and is the second highest cause of cancer death in 
women, behind only breast cancer [1]. Despite advances in 
early diagnosis and standard treatment, most patients are 
diagnosed at an advanced stage and have a poor prognosis, 
with an overall 5-year survival rate of 10–15% [2]. Lung cancer 
is divided into small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC), with histological subtypes, namely 
adenocarcinoma (AD), squamous cell carcinoma (SCC), and 
large cell carcinoma (LCC) as the most frequent subtypes. 
The recognition of histological subtypes has become impor-
tant as a determinant of therapy [3, 4]. The identification 
of molecular abnormalities in a substantial number of lung 

cancer patients has given rise to personalized targeted thera-
pies, opening novel therapeutic perspectives [5, 6]. Large cell 
neuroendocrine carcinoma (LCNEC), another subtype of 
NSCLC, is a rare and highly aggressive type of lung cancer 
with a complex biology that shares similarities with both 
SCLC and NSCLC. The LCNEC clinical management is still 
controversial, and there is currently a lack of standardized 
treatment strategy [7].

DNA methylation is a heritable modification based on 
the addition of a methyl group through a covalent bond to 
the 5’carbon of the cytosine ring. This bond is mediated by 
DNA methyltransferases (DNTMs) [8]. In 98% of cases, 
DNA methylation occurs in the CpG pattern in somatic 
cells, whereas approximately 25% methylation occurs in the 
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non-CpG pattern in embryonic stem cells [9]. Most DNA 
methylation is necessary for normal development, including 
X-chromosome inactivation, genomic imprinting, and 
suppression of repetitive element transcription or transposi-
tion. Changes in methylation patterns can contribute to malig-
nancies during impaired gene regulation [10]. DNA methyl-
transferases share a common catalytic domain consisting of 
six conserved amino acid motifs in the C-terminus, whereas 
significant differences occur at the N-terminus. DNMTs can 
be divided into two major groups in mammals based on their 
structure and function [11]. The first type is DNMT1 with 
a maintenance methylation function, which binds to hemi-
methylated DNA and maintains a DNA methylation pattern 
after replication [12]. DNTM1 is also a crucial element of 
the transcription suppression complex that interacts with 
DNMT1-associated proteins, such as transcription factor 
E2F1 and histone deacetylases (HDACs) [13]. DNMT3A and 
DNMT3B are responsible for de novo methylation as they 
do not require hemi-methylated DNA for binding activi-
ties. They display an equal affinity for hemi- or non-methyl-
ated DNA and can cooperate with DNMT1 to extend DNA 
methylation [14]. Hypermethylation at promoter gene 
regions mostly suppresses gene transcription, whereas 
demethylation leading to hypomethylation increases gene 
transcriptional activity and its expression. Gene expres-
sion can be suppressed by inhibition of binding transcrip-
tion factors sensitive to methylated CpG [15], such as E2F or 
MYC [16]. Hypomethylation, on the other hand, underlines 
gene activation with followed gene overexpression. Genome 
hypomethylation often accompanies terminal stages of 
tumor progression and is accompanied by gene instability or 
transposon expression [8].

DNA methyltransferases are methylation enzymes and 
play a crucial role in DNA methylation. Consequently, 
suppressing their methylation function can result in a demeth-
ylation characterized by a gradual reduction of DNA methyl-
ation in newly divided cells [17]. Azacytidine and decitabine 
are nucleoside analogs applied as demethylation drugs that 
are used to treat myelodysplastic syndrome [18] and acute 
leukemia [19]. These DNA methyltransferase inhibitors 
(DNMTi) affect the demethylation process, where they are 
able to reverse gene silencing induced by hypermethylation 
[20]. Zebularine is another drug that falls in the category 
of nucleoside analogs with inhibition of DNA methylation 
function [21]. The mechanism of action is similar to azacyti-
dine, but zebularine has lower toxicity and higher stability 
in aqueous solutions in comparison to both azacytidine and 
decitabine, however, it is associated with radioactivity [22]. 
Hydralazine and procainamide are the first drugs reported 
under the category of non-nucleoside agents with a demeth-
ylation effect. Hydralazine decreases the expression of both 
DNMT1 and DNMT3A, and the procainamide effect results 
in DNA hypomethylation [23]. Furthermore, pyrazolone and 
pyrazine have been identified as DNMT3A inhibitors. The 
main reason for the development of other non-nucleoside 

drugs is their effectiveness at lower concentrations compared 
to the cytotoxicity of high concentrations of nucleoside 
analogs [24].

Here, we have presented a review of data to determine the 
methylation profile of genes associated with NSCLC progres-
sion. We have searched in PubMed from inception to August 
17, 2024, for publications on topics focusing on i) methyla-
tion of selected genes in histological subtypes of NSCLC 
and ii) expression and mutation profiles of selected genes in 
NSCLC. The result of methylation analysis can thus improve 
our understanding of the molecular characteristics of NSCLC 
in terms of diagnosis, prognosis, and targeted therapy.

Materials and methods

Search strategy. T﻿his study followed the Preferred 
Reporting Items for Systematic Reviews and Meta-analysis 
(PRISMA) 2020 statements checklist (Supplementary 
Table S1) [25]. A literature search was conducted in PubMed, 
which is the most recommended database for reviews 
because of its extensive range of articles, advanced search 
filters, and systematic search systems. Studies published from 
inception to August 17, 2024, were considered. To perform 
a comprehensive search, we used the following keywords in 
different patterns: (“NSCLC”) AND (“methylation”) AND 
(“pattern” OR “CDKN2A” OR “RASSF1” OR “CDH13” 
OR “DAPK1” OR “TIMP3” OR “hMLH1” OR “APC” OR 
“BRCA1” OR “DLEC1” OR “CDH1” OR “RUNX3” OR 
“FHIT” OR “MGMT” OR “RAR beta” OR “WIF1”) OR 
(“expression) OR (“mutation”) AND (“RB1” OR “TP53” OR 
“STK11” OR “LKB1” OR “KEAP1” OR “ASCL1” OR “DLL3” 
OR “NOTCH”) (Supplementary Table S2).

Eligibility criteria. To be included in the review, studies 
had to meet the following criteria: i) patients with NSCLC or 
in NSCLC cell lines; ii) to be aimed at diagnostic, prognostic, 
therapeutic, predictive biomarkers, and or epidemiology, iii) 
methylation analyses of NSCLC histological subtypes. The 
search terms used in this review are presented in Supplemen-
tary Table S3.

Studies were excluded if one of the following existed: i) 
duplicate publications; ii) non-human studies or animal 
studies; iii) reviews, case reports, letters, editorials, or expert 
opinions; iv) studies without data available or with incom-
plete or retracted text.

Study selection and data extraction. The selection 
process of publications that complied with the inclusion 
criteria was performed manually by author A.P. without the 
application of automation tools. Four thousand nine hundred 
fifty items were selected. After removing 2,122 duplicates, we 
excluded 2,343 citations by title and screened 484 abstracts 
for retrieval, from which 484 eligible studies were included. 
The queries and the sections of the paper pertaining to 
methylation of selected genes in histological subtypes and 
expression and mutational profiles of selected genes yielded 
75 disjunctive studies that were used (Figure 1). Data were 
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collected by author A.P. without the utilization of automa-
tion. The extracted data included a summary of methyla-
tion of selected gene promoters in histological subtypes of 
NSCLC and expression and mutational profiles in NSCLC.

For the main topic of investigation, the method for evalu-
ating the results was to summarize data from multiple studies 
on methylation of selected gene in histological subtypes of 
NSCLC, namely AD, SCC, and LCC. All authors judged 
the inclusion of the studies in the review. Comparisons of 
methylation in NSCLC subtypes of the studies included are 
presented in Supplementary Table S4.

Results

The search terms used in the review are summarized 
in Supplementary Table S3. For the research topic, the 
approach to evaluating the results was to collect methyla-
tion data in NSCLC and its subtypes, mainly AD, SCC, and 
when included, LCNEC. All authors assessed the inclusion of 
studies in the review based on these parameters.

The independent review authors included only studies in 
which the measures described above were identifiable and 
explicit results were reported. Comparisons of the region 
gene methylation status analyzed in NSCLC and NSCLC 
subtype patients have been complicated because of the lack 
of data on LCNEC.

There were 34 items in the diagnostic research area, 
including APC, BRCA1, CDH1, CDH13, DAPK1, DLEC1, 
FHIT, hMLH1, MGMT, CDKN2A, RAR β, RASSF1, RUNX3, 
TIMP3, WIF1, STK11, RB1 genes, and ASCL1 and DLL3 
proteins; in the prognostic area, there were 35 items with 
genes APC, BRCA1, CDH1, CDH13, DAPK1, DLEC1, FHIT, 
hMLH1, MGMT, CDKN2A, RAR β, RASSF1, RUNX3, TIMP3, 
TP53, RB1, STK11, KEAP, WIF1; and NOTCH protein; in the 
field of epidemiology, there were 3 studies: i) in the first study, 
authors compared promoter methylation level of GSTP1, 
CDKN2A, FHIT, APC, RASSF1A, hMLH1, hMSH2, AGT  
gene between Korean and Western populations; ii) CDKN2A 
aberrant methylation was analyzed between female smokers 
and female never-smokers and CDKN2A, RASSF1A, APC, 
RAR β, CDH13, MGMT and GSTP1 between smokers and 
never-smokers; iii) in the third, CDH13 and RASSF1 genes 
were studied to monitor efficacy and sensitivity of chemo-
therapy (Figures 1 and 2).

The following section provides a summary of the data 
and its interpretation. At the end of each subsection, a brief 
discussion of the methylation state of the studied genes is 
given.

Detailed results and discussion

Gene methylation and gene inactivation
Genes with potential diagnostic and prognostic implications

DAPK. DAPK (death-associated protein kinase) is a 
calcium/calmodulin-dependent serine/threonine kinase 
that mediates interferon-γ-induced cell death [26]. DAPK 
downregulation is commonly observed in tumors and in 
some cases, this downregulation correlates with metastatic 
progression. The spontaneously occurring rare lung metas-
tases derived from low metastatic clones in vivo display 
loss of DAPK expression [26]. These findings demonstrate 

Figure 1. PRISMA 2020 flow diagram for systematic reviews, including 
searches of databases and registers alone.

Figure 2. For the 75 studies in the review, the research focus was in the 
following categories: 45% of the studies were diagnostic (n=34), 47% were 
prognostic (n=35), 4% were epidemiologic (n=3), and 4% were predictive 
(n=3).
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BRCA1. BRCA1 (breast cancer 1) is a multifunctional 
tumor suppressor that plays a key role in cell cycle regulation, 
replication, mitotic spindle assembly, chromatin hierarchical 
control, transcription regulation [45], and DNA damage 
response and apoptosis [46]. The inactivation of BRCA1 by 
epigenetic alterations is a critical event in breast tumorigen-
esis. Aberrant methylation of BRCA1 has been observed in 
association with relatively poor clinical outcomes [47]. It 
may potentially be used as a prognostic marker relating to 
the overall survival and disease-free survival of patients with 
breast cancer [48, 49]. Various meta-analyses have provided 
evidence that BRCA1 methylation is associated with poor 
survival of breast cancer patients [50–52]. BRCA1 is hyper-
methylated in 18.57% (13/70) [53], 21% (6/28) [32], and 
37.08% (33/89) [54] of NSCLC cases. Hypermethylation 
occurred in 13.33% (2/15) [32], 20.41% (10/49) [53], and 
42.31% (22/52) [54] of AD, 13.33% (2/15) [53], 14.29% (1/7) 
[32], and 29.73% (11/37) [54] of in SCC and 33.33% (1/3) 
[32] of LCC (Supplementary Table S6). Patients with BRCA1 
methylation demonstrated significantly poorer recurrence-
free survival. Considering that BRCA1 plays a role in chemo-
therapy-induced apoptosis, it is plausible that the identifica-
tion of methylated BRCA1 could provide information that is 
clinically relevant to tailored adjuvant therapy [53].

TIMP3. TIMP3 (tissue inhibitor of metalloproteinase 3) 
protein functions in a wide range of tissue cytoplasm and 
extracellular matrix. It is an inhibitor of matrix metallopro-
teinases (MMPs), which are involved in the degradation of 
the extracellular matrix. The balance between MMPs and 
TIMPs is important to ensure the integrity of the extracel-
lular matrix. Any alteration of the latter may affect several 
biological processes, including carcinogenesis [55]. Aberrant 
promoter methylation of TIMP3 gene promoter frequently 
occurred in BRCA1ness (tumors that share molecular 
features of BRCA1-mutant tumors) breast cancer [56], 
gastric cancer [57], and NSCLC [58]. Hypermethylation 
in TIMP3 gene promoter occurred in 18.52% (10/54) [59], 
26.17% (28/107) [28], 39.29% (11/28) [32], and 47.29% 
(61/129) [58] of NSCLC cases, more particularly in 9.38% 
(3/32) [59], 24.44% (11/45) [28], 38.46% (20/52) [58], 40% 
(6/15) [32] of AD, 23.26% (10/43) [28], 33.33% (7/21) [59], 
42.86% (3/7) [32], 53.25% (41/77) [58] of SCC, and 0% (0/3) 
[32] and 25% (1/4) [28] of LCC (Supplementary Table S7). 
TIMP3 has an important role in metastasis and cell invasion 
in cancer. Hypermethylation of the TIMP3 gene promoter is 
associated with improved survival in NSCLC [58, 59].

DLEC1. DLEC1 (deleted in lung and esophageal cancer) 
is a tumor-suppressor gene, which plays a role in cell-cycle 
control by inducing G1 arrest [60]. Promoter methyla-
tion was associated with downregulation or loss of DLEC1 
expression in lung cancer [61]. DLEC1 has been seen to be 
methylated in prostate cancer [62], renal cell carcinoma [63], 
gastrointestinal tumors [64], and lung cancer [65]. Promoter 
hypermethylation occurred in 37.14% (26/70) [66], 38.66% 
(92/238) [61], 41.03% (32/78) [39], and 70.59% (12/17) [34] 

a causal effect of DAPK on suppressing tumor metastasis. 
Downregulation of DAPK expression in lung cancers corre-
lates with advanced disease stage and lymph node involve-
ment [27]. DAPK promoter methylation was found in 
18.69–40.98% (20/107 [28], 26/101 [29], 24/70 [30], 50/122 
[31]), 50% (14/28) [32], 58.12% (68/117) [33], and 76.47% 
(13/17) [34] of NSCLC cases, specifically 15.56% (7/45) 
[28], 22.58–47.89% (14/62 [28], 5/20 [30], 7/15 [32], 34/71 
[31]), 57.37% (35/61) [33], and 78.57% (11/14) [34] in AD, 
20.93–41.46% (9/43 [28], 12/39 [28], 16/51 [31], 17/41 [30]), 
58.93% (33/56) [33], 66.67% (2/3) [34] and 71.43% (5/7) [32] 
in SCC, 0% (0/4;0/3) [28, 32] and 22.22% (2/9) [30] in LCC 
(Supplementary Table S4). Finally, DAPK promoter methyla-
tion could be an important indicator of tumor progression, 
which is associated with poor prognosis and aggressive 
metastatic phenotype in patients with NSCLC [27, 33, 35].

RAR-β. RAR-β (retinoic acid receptor β) is required for 
normal lung development because of the spatiotemporal 
regulation of retinoic acid levels that assures the formation 
of a fully functional organ. The RAR-β, as a member of the 
thyroid-steroid hormone receptor superfamily, localizes to 
the cytoplasm and subnuclear compartments. It binds to 
retinoic acid (RA), the biologically active form of vitamin 
A, which mediates cellular signaling in embryonic morpho-
genesis, cell growth, and differentiation. Signal transduction 
involves the binding of RA to nuclear RA receptor (RAR), 
which forms a heterodimer complex with retinoid X receptor 
(RXR). The RAR-RXR modulates transcription by binding to 
DNA at RA response elements (RAREs) located in enhancer 
regions of the target gene [36].

In the classical model of RA-dependent gene activation, 
unliganded RAR-RXR heterodimers repress transcription of 
their associated genes. However, additional co-regulators and 
epigenetic changes contribute to transcriptional regulation. 
In the repressive unliganded state, the RAR-RXR heterodimer 
recruits co-repressors such as nuclear receptor co-repressor 
1 (NCOR1) and NCOR2 (also known as SMRT), which in 
turn recruit HDAC protein complexes and Polycomb repres-
sive complex 2 (PRC2). This results in histone H3 lysine 27 
trimethylation (H3K27me3), chromatin condensation, and 
gene silencing [37, 38]. RAR-β gene is frequently epigeneti-
cally silenced in tumor progression: the RAR-β gene hyper-
methylation was found in 30.56–56.25% (11/36 [39], 38/101 
[29], 43/107 [28], 22/53 [40], 45/80 [41]), 80.24% (134/167) 
[42], and 80.36% (45/56) [43] of NSCLC cases, more specifi-
cally in 26.67–60% (8/30 [39], 22/45 [28], 32/62 [29], 13/22 
[40], 15/25 [41]), 81.48% (66/81) [42], and 88.24% (15/17) 
[43] of AD, in 15.38% (6/39) [29], 33.33–66.67% (15/43 [28], 
14/36 [39], 8/17 [40], 30/45 [41]), 79.1% (68/86) [42], and 
88.46% (23/26) [43] SCC, and in 25% (1/4) [28, 40] of LCC 
(Supplementary Table S5). RAR β hypermethylation corre-
lates well with an increased risk in NSCLC patients. It also 
contributes to NSCLC tumorigenesis and may serve as a 
potential risk factor, diagnostic marker, and drug target for 
NSCLC [44].
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of NSCLC cases, in particularly 28.57% (10/35) [66], 31.52% 
(29/92) [61], 40% (12/30) [39], and 71.43% (10/14) [34] 
promoter hypermethylation occurred in AD, 44.44% (16/36) 
[39], 45.71% (16/35) [66], 47.83% (44/92) [61], and 66.67% 
(2/3) [34] in SCC, and 35.19% (19/54) [61] in LCC (Supple-
mentary Table S8). DLEC1 promoter hypermethylation 
was associated with lung cancer risk. DLEC1 methylation 
detection in patients with lung cancer exhibited a potential 
diagnostic utility [65].

CDH1. CDH1 encodes E-cadherin, which is an adhesion 
molecule of the epithelial cells that plays a key role in stabi-
lizing and maintaining intercellular connections [67]. 
E-cadherin is bound to the cytoskeleton through catenin, 
and the reduction of CDH1 expression may be involved 
in the invasion and metastasis of several cancers [68–70]. 
CDH1 methylation occurs in many types of cancer [71–79], 
including NSCLC [80]. CDH1 promoter is hypermethylated 
in 32.56–58.33% (42/129 [58], 30/91 [81], 8/17 [34], 24/42 
[82], 119/204 [83]) of NSCLC cases. Hypermethylation 
occurred in 30.77–59.52% (16/52 [58], 11/35 [81], 6/14 [34], 
13/25 [82], 75/126 [83]) of AD cases, 33.77–66.67% (26/77 
[58], 19/56 [81], 6/12 [82], 44/78 [83], 2/3 [34]) of SCC cases, 
and 100% (5/5) [82] of LCC cases (Supplementary Table S9). 
CDH1 promoter hypermethylation may play an important 
role in carcinogenesis and NSCLC progression and may serve 
as a potential drug target in lung cancer. However, CDH1 
methylation does not correlate with other factors, such as 
smoking history, clinical stage, pathological type, sex status, 
lymph node metastasis, or degree of differentiation [80, 84].

RUNX3. RUNX3 (Runt-related transcription factor 3) is a 
regulator in the transforming growth factor (TGF)-β signaling 
pathway, which is a known tumor suppressor [85]. Loss of 
RUNX3 through deletion or expression inhibition results in 
the limited function of SMAD proteins and the promotion 
of TGF-β signaling, which leads to tumor development [86]. 
Promoter methylation of the RUNX3 gene was shown in 
gastric cancer [87], esophageal cancer [88], breast cancer [89, 
90], or NSCLC [91]. RUNX3 promoter was hypermethylated 
in 20–52.94% (15/75 [92], 30/119 [93], 23/54 [59], 26/58 [94], 
9/17 [34]) of NSCLC cases. Among the NSCLC cases, RUNX3 
methylation was observed in 27.91–57.14% (12/43 [92], 10/32 
[59], 26/72 [93], 13/32 [94], 8/14 [34]) of AD, 6.67% (3/45) 
[93], 6.9% (2/29) [92], 33.33% (1/3) [34], 38.1% (8/21) [59], 
and 50% (13/26) [94] of SCC, and 50% (1/2) [93] of LCC 
(Supplementary Table S10). RUNX3 is strongly associated 
with NSCLC and the histological type of the NSCLC since 
it was less frequent in SCC compared with AD [95]. Further, 
RUNX3 hypermethylation is associated with an increased risk 
and worse survival in NSCLC and plays an important role in 
lung carcinogenesis and clinical outcomes [91].

Genes with potential diagnostic, prognostic, and thera-
peutic implications

WIF1. The Wnt/β-catenin signaling pathway is an evolu-
tionarily conserved pathway that regulates crucial aspects of 

cell fate determination, cell migration, cell polarity, neural 
patterning, and organogenesis during embryonic devel-
opment [96]. Dysregulation of Wnt/β-catenin signaling 
is often caused by mutations of various components in the 
pathway, particularly mutations or silencing of the Wnt 
tumor suppressor. Wnt inhibitors may have a broader role 
in cancers such as melanoma, lung, and renal cancer, where 
immunotherapy has come to the forefront [97]. New studies 
have firmly established the importance of this pathway in 
regulating the expression of various checkpoints in immune 
cells and tumor cells to promote immune escape. WIF1 (Wnt 
inhibitory factor1) acts as an inhibitor of the Wnt/β-catenin 
signaling pathway. WIF1 functions as a tumor suppressor 
gene and has been found to be epigenetically silenced in 
various cancers [98]. Hypermethylation of the WIF1 gene 
promoter was shown in endometrial cancer [99], hepato-
cellular carcinoma [100], colorectal cancer [101], cervical 
cancer [102], or NSCLC [103]. WIF1 promoter hypermeth-
ylation occurred in 15.91% (7/44) [104], 27.66% (65/235) 
[105], 35.29% (6/17) [34], 47.48% (66/139) [106], 69.44% 
(50/72) [107] NSCLC, specifically in 13.33% (4/30) [104], 
21.43% (3/14) [34], 22.22% (30/135) [105], 45.57% (36/79) 
[106], 63.33% (19/30) [107] of AD, and 27.27% (3/11) [104], 
32.18% (28/87) [105], 50% (30/60) [106], and 100% (3/3; 2/2) 
[34, 107] of SCC. LCC was evaluated in only two studies, 
with 0% (0/3) [104] and 53.8% (7/13) [105] (Supplementary 
Table S11). WIF1 hypermethylation contributes to the devel-
opment of NSCLC and is a potential marker for the diagnosis 
of NSCLC and the prediction of prognosis in patients with 
NSCLC [103].
Genes with potential diagnostic, prognostic, and epidemio-
logical implications

CDKN2A. Several tumor suppressor genes are silenced by 
promoter gene hypermethylation. Tumor suppressors play 
key roles in normal cellular functions, such as p16INK4 through 
cell cycle regulation. The p16INK4 is a tumor suppressor 
and cyclin-dependent kinase inhibitor that is essential for 
regulating the cell cycle by inactivating cyclin-dependent 
kinases that phosphorylate pRB [108]. Hypermethylation 
of the CDKN2A (Cyclin-dependent kinase inhibitor 2A), 
which encodes protein p16INK4, promoter region may repre-
sent an early event, followed by heterozygous deletion of the 
p16INK4 locus [109]. The CDKN2A promoter hypermethyl-
ation occurred in 25.23–42.42% (27/107 [28], 22/99 [110], 
27/101 [29], 16/53 [40], 10/28 [32], 8/22 [111], 14/33 [112]) 
and 58.82% (10/17) [34], 78.69% (48/61) [113], and 79.49% 
(31/39) [114] of NSCLC samples, specifically 13.33–33.33% 
(6/45 [28], 9/62 [29], 3/13 [111], 9/38 [110], 10/32 [40], 
5/15 [32]), 61.53% (8/13) [112], 64.29% (9/14) [34], 70.59% 
(12/17) [114], and 83.33% (30/36) [113] in AD, 11.76–37.21% 
(2/17 [40], 1/7 [32], 16/61 [110], 4/15 [112], 1/3 [34], 16/43 
[28]) and 46.15% (18/39) [29], 55.56% (5/9) [111], 86.36% 
(19/22) [114], and 87.5% (14/16) [113] in SCC, and 25% 
(1/4; 1/4) [28, 113], 33.33% (1/3) [32], and 100% (4/4) [40] in 
LCC (Supplementary Table S12). The finding of used studies 
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indicates that the CDKN2A promoter gene hypermethylation 
is associated with poor prognosis of NSCLC patients [115].

APC. Wnt/β-catenin signaling is essential for intestinal 
homeostasis and is aberrantly activated through mutation 
of the tumor suppressor APC. The APC (Adenomatous 
Polyposis Coli) gene encodes tumor suppressor protein that 
acts as an inhibitor of the Wnt signaling pathway. The APC 
tumor suppressor controls the switch between transcrip-
tional coactivator and corepressor complexes at Wnt target 
genes in which β-catenin and APC have opposing actions. 
The β-catenin C-terminal activation domain associates with 
chromatin-modifying complexes in vitro and promotes 
H3K4 trimethylation at the c-Myc gene in vivo [116]. In the 
absence of Wnt signal, casein kinase 1 (CK1) and glycogen 
synthase kinase-3β (GSK-3β) in a multiprotein complex with 
β-catenin, and the APC, phosphorylate APC, which increases 
its affinity for β-catenin. The β-catenin is then ubiquitinated 
and destroyed by proteasome-mediated proteolysis [116].

Because the Wnt signaling pathway is often mutated or 
epigenetically altered in tumors, inhibitors of Wnt signaling 
are being intensively studied. Non-mutational changes 
include all levels of epigenetic modifications – DNA methyl-
ation, histone modification, and mRNA interference. Both 
types of changes promote tumor formation and invasive-
ness, which usually happens because of the loss of function 
of corepressors or the overexpression of coactivators of the 
Wnt signaling pathway. It has been shown that knocking 
down specific components of the Wnt signaling pathway has 
inhibitory effects on tumor growth in vivo and in vitro. For 
example, it has been observed that the silencing of β-catenin 
by siRNA has an inhibitory effect on the growth of colorectal 
cancers [117]. Loss of Wnt inhibitors may play a major role 
in NSCLC, although unlike in colon cancer, loss-of-function 
mutations in the Wnt pathway inhibitor APC are uncommon 
in NSCLC [118, 119].

Methylation-sensitive high-resolution melting analysis 
(MS-HRM) is commonly used as a method for promoter 
methylation analysis, which can be further validated with 
bisulfite pyrosequencing or next-generation sequencing 
(NGS). The APC gene promoter is hypermethylated in 
various types of cancers [120–122], including NSCLC, 
where it is frequently found to be hypermethylated in 49% 
of cases [123]. Moreover, the APC promoter hypermethyl-
ation occurred in 25–48.48% (9/36 [38], 15/53 [124], 7/17 
[34], 216/514 [125], 48/99 [110]), 67.86% (19/28) [32], and 
89.01% (81/91) [126] cases of NSCLC cases, specifically in 
14.29% (3/21) [38], 40.51–73.33% (32/79 [124], 6/14 [34], 
20/38 [110], 161/299 [125], 11/15 [32]), and 100% (43/43) 
[126] cases of AD, 23.2–57.14% (45/194 [125], 1/3 [34], 6/15 
[38], 28/61 [110], 4/7 [32]), and 100% (33/33) [126] cases 
of SCC and in 33.33% (1/5, 5/15) [32, 126] cases of LCC 
(Supplementary Table S13). 

As shown by Virmani et al. (2001), APC is underexpressed 
in lung and breast cancer cells, when 5-aza-3´deoxycytidine 
enhances the APC level and decreases the APC methylation 

level in lung and breast cancer cells [127]. The methyla-
tion status of the APC promoter is strongly associated with 
NSCLC carcinogenesis [128]. Further, the APC methylation 
could not facilitate the distinction between early NSCLC and 
advanced NSCLC, nor between AD and SCC [129].

MGMT. MGMT (O-6-methylguanine-DNA methyltrans-
ferase) is a specific DNA damage reversal repair protein that 
has been demonstrated to protect tissues against the toxic 
and carcinogenic effects of alkylating agent chemotherapy 
by removing adducts from the O6 position of guanine 
[130]. Methylation of the gene’s promoter has been associ-
ated with several cancer types, including colorectal cancer 
[131], gastric cancer [132], breast cancer [133], ovarian 
cancer [134], or NSCLC [135–137]. The MGMT promoter is 
hypermethylated in 8.95–19.63% (46/514 [125], 8/65 [138], 
14/101 [29], 11/75 [139], 21/107 [28]), 29.79% (28/94) [140], 
37.78% (34/90) [141], and 49.54% (109/220) [142] of NSCLC 
cases. Hypermethylation occurred in 8.03–30.55% (24/299 
[125], 2/18 [138], 8/62 [29], 7/44 [139], 12/45 [28], 22/72 
[140]), 40% (46/115) [142], and 46.88% (15/32) [141] of 
AD, 7.73–27.27% (15/194 [125], 4/31 [139], 6/39 [29], 8/43 
[28], 6/29 [138], 6/22 [140]), 37.21% (16/43) [141], and 60% 
(63/105) [142] of SCC, and 20% (3/15) [141] and 25% (1/4) 
[28] of LCC (Supplementary Table S14). Advanced-stage 
NSCLC patients showed higher methylation than early-stage 
patients. MGMT methylation is indeed associated with an 
increased NSCLC risk and thus has the potential to be a good 
biomarker for NSCLC diagnosis [143].

hMLH1. The hMLH1 (human mutL homolog 1) plays a 
role in DNA damage repair, it is a component of the DNA 
mismatch repair pathway [144]. MLH1 is epigenetically 
inactivated via methylation of the gene promoter, leading to 
the deficiency of mismatch repair, resulting in microsatel-
lite instability. In colorectal cancer, microsatellite instability 
resulting from methylation of the hMLH1 gene promoter can 
cause its transcriptional silencing, leading to the carcinogen-
esis of colorectal cancer [145]. hMLH1 promoter methylation 
occurs in other types of cancers as well [146–148], including 
NSCLC [149]. The promoter of the hMLH1 gene is hyper-
methylated in 6.67–35.71% (5/75 [92], 17/99 [110], 14/78 
[39], 8/28 [32], 85/238 [61]), 53.33–72.41% (56/105 [150], 
38/70 [151], 84/116 [152]) of NSCLC cases. Hypermethyl-
ation occurred in 4.65–22.83% (2/43 [92], 4/30 [39], 7/38 
[110], 21/92 [61]), 40–71.88% (6/15 [32], 17/28 [151], 43/65 
[150], 23/32 [152]) of AD, 10.34–22.22% (3/29 [92], 1/7 
[32], 11/61 [110], 8/36 [39]), and 35.29–72.62% (6/17 [150], 
42/92 [61], 21/42 [151], 61/84 [152]) of SCC and 33.33% 
(1/3) [32] and 40.74% (22/54) [61] of LCC (Supplementary 
Table S15). The promoter of the hMLH1 hypermethylation 
should be an early diagnostic marker for NSCLC and also a 
prognostic index for NSCLC [153]. Additionally, cisplatin-
based adjuvant chemotherapy is more beneficial for NSCLC 
patients without hMLH1 methylation. hMLH1 methylation 
may have the potential to become a biomarker of individual-
ized therapy for NSCLC patients [149].
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FHIT. The fragile histidine triad gene (FHIT), whose 
product is known as bis (5’-adenosyl)-triphosphatase, is 
one of the histidine triad gene family members [154], which 
encodes hydrolase of Ap3A, and the FHIT-Ap3 enzyme-
substrate complex appears to be the tumor suppressor signal. 
Lack of expression of FHIT protein by promoter methyla-
tion has been found to play an important role in epithelial 
tumorigenesis [157, 158]. Apart from NSCLC [159–161], 
FHIT promoter methylation was shown in cervical cancer 
[162], breast cancer [163], or liver cancer [164]. FHIT is 
hypermethylated in 27.2–36.13% (68/250 [165], 28/91 [166], 
19/56 [167], 34/99 [110], 38/109 [168], 43/119 [169]), 53.92% 
(110/204) [83], and 59.62% (31/52) [170] of NSCLC cases. 
Hypermethylation occurred in 25–40.91% (10/40 [166], 
24/93 [165], 11/38 [110], 13/41 [168], 24/72 [169], 6/17 
[167], 9/22 [170]), and 52.38% (66/126) [83] of AD cases, 
30.77–56.41% (12/39 [83], 40/125 [165], 9/26 [167], 25/68 
[168], 23/61 [110], 18/45 [169], 18/44 [166], 44/78 [83]), and 
73.33% (22/30) [170] of SCC cases and 0% (0/4) [166] and 
50% (1/2) [169] of LCC cases (Supplementary Table S16). 
FHIT hypermethylation is associated with an increased risk 
and worsened survival in NSCLC patients. FHIT hyper-
methylation, which induces the inactivation of the FHIT 
gene, plays an important role in carcinogenesis and clinical 
outcomes and may serve as a potential drug target of NSCLC 
[160].

Genes with potential diagnostic, prognostic, thera-
peutic, and epidemiological implications

RASSF1A. RASSF1A (Ras association domain-containing 
protein 1) is one of the prototypical tumor-suppressor genes 
universally inactivated in human malignancies. RASSF1 
is a protein encoded by the RASSF1 gene. The RASSF1 
gene has eight isoforms, of which RASSF1A and RASSF1C 
are the most abundantly expressed [171]. As a regulator of 
key cancer pathways, namely Ras/Rho GTPases and Hippo 
signaling without ignoring strong interaction with micro-
tubules, RASSF1A is one of the guardians of cell homeo-
stasis [172]. As shown by Xie et al. (2022), RASSF1A is 
underexpressed in lung cancer tissue and cells. Treatment 
with 5-aza-3’-deoxycytidine increases RASSF1A levels and 
reduces its methylation in lung cancer cells [173]. Although 
promoter hypermethylation and loss of heterozygosity of the 
remaining allele are the most common molecular mecha-
nisms of silencing the RASSF1 gene, RASSF1A can also be 
inactivated by protein degradation or point mutation [174]. 
Promoter gene methylation was found in 21.43–41.59% 
(6/28 [32], 18/70 [30], 39/112 [175], 21/53 [40], 31/78 [39], 
26/65 [176], 40/99 [110], 41/100 [177], 42/101 [29]), 52.38% 
(22/42) [178], and 85.71% (48/56) [43], cases of NSCLC 
cases. Further, 6.67% (1/15) [32], 17.07% (7/41) [30], 32.95% 
(28/85) [175], 43.54–68.18% (27/62 [29], 14/30 [39], 18/33 
[176], 34/72 [177], 18/38 [110], 17/32 [178], 21/33 [176], 
15/22 [40]), and 82.35% (14/17) [167] cases of hypermethyl-

ation were presented in AD, 25–50% (7/28 [177], 5/20[176], 
2/7 [32], 12/36 [39], 6/17 [40], 22/61 [110], 15/39 [29], 11/27 
[175], 9/20 [30], 5/10 [178]), and 89.66% (26/29) [43, 167] in 
SCC and 0% (0/4) [40], 22.22% (2/9) [30], 25% (3/12) [176], 
and 66.67% (2/3) [32] in LCC (Supplementary Table S17). 
RASSF1 promoter hypermethylation is associated with an 
increased risk of NSCLC and with the differentiation state 
of NSCLC [179, 180] and can reflect the drug sensitivity of 
tumors to individualized treatment [178]. There is a signifi-
cant relationship between RASSF1A promoter methyla-
tion and lung cancer risk (OR, 16.12, 95% CI, 11.40–22.81; 
p>0.001) with no evidence of between-study heterogeneity. 
In subgroup analyses, the increased risk of RASSF1A methyl-
ation in cases compared to controls for the NSCLC group 
(OR, 13.66, 95% CI, 9.529–19.57) and for the SCLC group 
(OR, 314.85, 95% CI, 48.93–2026.2) [179].

CDH13. Cadherin 13 (CDH13) is a unique member 
of the cadherin superfamily as it lacks transmembrane 
and cytoplasmic domains. CDH13 is anchored to the cell 
membrane through the glycosylphosphatidylinositol anchor 
[181]. CDH13 is involved in low-density lipoproteins, 
hormone-like effects on Ca2+ mobilization and increased 
cell migration, insulin-dependent signaling, eNOS activa-
tion, phenotype changes, and angiogenesis [182, 183]. The 
presence of CDH13 methylation was shown in various 
cancers [184–187], including NSCLC [188]. Toyooka et al. 
(2001) showed that all methylated breast and lung carci-
noma cell lines lacked expression irrespective of whether the 
unmethylated form was present, confirming biallelic inacti-
vation in methylated lines. Gene expression was restored in 
all five methylated cell lines tested after treatment with the 
demethylating agent 5’-aza-2-deoxycytidine [189]. CDH13 
is hypermethylated in 16.92% (11/65) [138], 25.74–65.57% 
(26/101 [29], 40/150 [124], 172/514 [125], 13/28 [32], 121/251 
[188], 23/42 [178], 35/54 [190], 40/61 [113]) of NSCLC cases. 
Hypermethylation occurred in 29.11–53.13% (23/79 [124], 
20/62 [29], 6/15 [32], 123/299 [125], 62/122 [188], 17/32 
[178]), and 63.41–69.44% (26/41 [190], 8/12 [138], 25/36 
[113]) of AD cases, 2.94–22.68% (1/34 [138], 6/39 [29], 
44/194 [125]), and 42.86–69.23% (3/7 [32], 9/16 [113], 6/10 
[178], 93/142 [188], 9/13 [190]) of SCC cases and in 25% 
(1/4) [113] and 33.33% (1/3) [32] of LCC cases (Supple-
mentary Table S18). CDH13 hypermethylation is associated 
with an increased risk and worse survival in NSCLC and can 
reflect drug sensitivity of tumors to individualized treatment 
[178, 191].

Methylation sensitive genes

Dammann et al. found that methylation in NSCLC 
occurred in genes TIMP4 (94%), SOX15 (100%), EGFL7 
(100%), CD105 (69%), SEMA2 (93%), DLC1 (61%), and 
SLIT2 (100%) [192]. Castro et al. analyzed multiple gene 
promoter hypermethylation, which resulted in PRDM2 
(41%), SCGB3A1 (50%), BNIP3 (44%), HLTF (15%), 
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H2AFX (19%), ID4 (46%), CCND2 (48%), TWIST1 (39%), 
SFRP4 (39%), SFRP5 (32%), CACNA1G (39%), TGIF (19%), 
CACNA1A (33%) NSCLC methylation [59]. Hypermeth-
ylation also occurred in CALCA (68%), ER (68%), ECAD 
(16%), hTERT (36%), IGF (21,4%), p15 (7%), CD44 (18%) 
[32], BRCA2 (36%), XRCC5 (34%) [54], hMSH2 (8%), AGT 
(21%) [110], TBX5 (84%), PITX2 (77%) [66], RASGFR2 
(38%) [175], TFPI-2 (27%) [94], WIF1 (35%) [34], p14 (9%) 
[28, 29], ESR1 (9%) [138], XPC (35%) [193] in NSCLC.

LCNEC subtypes based on gene mutations

Recent studies have evaluated several genes, including 
TP53, RB1, KEAP1, STK11, MEN1, ASCL1, DLL3, and 
NOTCH, which play a key role in classifying LCNEC into 
two molecular subtypes. Those genes are the determining 
factor in subtyping LCNEC into two subtypes. Type I, or 
NSCLC-like LCNEC, is characterized by biallelic alterations 
in TP53, STK11, or KEAP1 (genes commonly associated 
with AD and SCC) and KRAS mutations (typical of AD), 
along with an ASCL1high/DLL3high/NOTCHlow expression 
profile, which is more similar to SCLC. Type II, or SCLC-
like LCNEC, presents with biallelic TP53 and RB1 alterations 
and an ASCL1low/DLL3low/NOTCHhigh expression profile, 
aligning more closely with the molecular characteristics of 
SCLC [194–197]. In addition, a third subset of carcinoid-
like LCNEC (4%) was identified, which lacked RB1 and 
TP53 alteration and was characterized by MEN1 mutations, 
hallmarks of carcinoids. STK11 mutations appeared more in 
NSCLC-like LCNEC compared to AD. STK11 is associated 
with rapid tumor growth and metastasis in lung AD, which 
can explain the aggressive clinical behavior of LCNEC [198]. 
SCLC-like subset harbored MYCL amplification, SOX2 
amplification, PTEN mutation/loss, and FGFR1 amplifica-
tion, with a complete absence of STK11 and KRAS mutations. 
NSCLC-like subset occasionally showed SCLC alterations 
(e.g., MYCN amplification). Both NSCLC-like and SCLC-
like LCNEC had higher mutational burden than conven-
tional NSCLC and SCLC, suggesting LCNEC could be sensi-
tive to immune checkpoint inhibitors [199]. Miyoshi et al. 
also showed alterations in the PI3K/AKT/mTOR pathway, 
FGFR1 (5%), ERBB2 (4%), and EGFR (1%) [200].

Signaling pathways of DLL3, NOTCH, ASCL1

DLL3 (Delta-like 3) is a member of the NOTCH receptor 
ligand family that inhibits NOTCH receptor activa-
tion, promoting neuroendocrine differentiation [201]. In 
healthy cells, DLL3 is localized to the Golgi apparatus and 
cytoplasmic vesicles, whereas in SCLC, it is typically found 
on the plasma membrane. DLL3 does not initiate signaling 
between cells but functions only when co-expressed with the 
NOTCH receptor on the same cell. Upon binding to DLL3, 
the NOTCH receptor is sequestered in the Golgi apparatus, 
rendering it inactive [202].

ASCL1 is a basic helix-loop-helix transcription factor that 
drives the expression of several oncogenes, including BCL-2, 
SOX2, and MYCL [203]. DLL3 is a direct downstream target 
of ASCL1, which interacts with the promoter of the DLL3 
gene [204]. ASCL1 plays a critical role in the development 
and differentiation of neuroendocrine cells, particularly in 
the lung. It is essential for the formation of normal pulmonary 
neuroendocrine cells, which are precursors to SCLC tumor-
initiating cells [205]. ASCL1 may cooperate with the biallelic 
loss of pRB and p53 in neuroendocrine precursors during 
primary SCLC carcinogenesis and may also contribute to 
secondary SCLC that arises from NSCLC following cancer 
therapy [206].

NOTCH signaling activation promotes tumor cell prolif-
eration or survival and tumorigenesis through multiple 
processes, e.g., upregulation of CCD1 and MYC [207], repres-
sion and subsequent cellular proliferation [208], DUSP1 (dual 
specificity phosphatase one) repression and ERK activation 
[209] or JAK-STAT signaling activation [210]. Conversely, 
NOTCH signaling activation blocks tumor cell proliferation 
or survival and tumorigenesis through multiple processes, 
e.g., direct upregulation of CDKN1A [211], GLI (glioma-
associated oncogene) family zinc finger one repression [212] 
or downregulation and subsequent depletion of cancer stem 
cells [213]. NOTCH signaling is also involved in the devel-
opment and homeostasis of immune cells. For example, 
JAG1-NOTCH signaling promotes the self-renewal of long-
term hematopoietic stem cells, DLL4-NOTCH1 signaling 
supports early T-lymphocyte progenitor differentiation, and 
DLL1-NOTCH2 signaling is essential for the differentiation 
of marginal zone B lymphocytes [214].

Gene alterations in NSCLC

TP53. The p53 protein functions as a transcription 
factor, localized in both the nucleus and cytoplasm, where 
it specifically binds to DNA [215]. It is negatively regulated 
by MDM2 and MDMC, which promote its degradation via 
ubiquitination [216]. In response to oncogenic stress, such 
as BCL2, BRCA1, or CDKN1A activation [217, 218], as well 
as ribosomal stresses [219], nutrient deprivation [220], and 
hypoxia [221], p53 drives the expression of various genes. 
Under these stress conditions, p53 ubiquitination is inhib-
ited, resulting in increased p53 protein levels. Addition-
ally, p53 stability is enhanced through post-translational 
modifications, including phosphorylation, acetylation, and 
methylation [222]. Once stabilized, p53 forms a tetramer in 
the nucleus and binds to specific DNA sequences to regulate 
gene transcription [216].

In the presence of DNA damage, p53 acts as a guardian of 
the genome by coordinating multiple DNA damage response 
mechanisms [223]. The p53 protein activates the expres-
sion of DNA repair proteins DDB2 and XPC [224]. The 
gene encoding p21, which inhibits cell cycle proteins and 
phosphorylation of pRB, is the first transcriptional target 
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identified for p53 [225]. Furthermore, p53 represses cyclin-
dependent kinases and cyclin B, both of which are essential 
for the G2/M phase progression and mitotic entry [226]. 
p53 also induces apoptosis by transcriptionally activating 
pro-apoptotic genes such as Puma, Bax, and Noxa [227, 
228]. Additionally, p53 binds to the promoter region of the 
retrotransposon element LINE1, inhibiting the expression of 
transposon sequences [229].

Mutations in TP53 are predominantly missense 
mutations, involving a single amino acid substitution, with 
the DNA-binding domain being the most frequently mutated 
region [229]. Mutant p53 proteins tend to be more stable 
than the wild-type protein, leading to their accumulation 
in cells [230]. These mutations not only result in the loss of 
normal p53 function but also promote cancer metastasis and 
contribute to treatment resistance in cancer [231].

A meta-analysis revealed that TP53 mutations occur in 
42.5% (569/1338) of NSCLC cases, with 35.35% (245/693) in 
AD, 49.44% (267/540) in SCC, and 54.29% (57/105) in LCC. 
Moreover, p53 protein expression was found to be negative 
in 52.45% (1347/2568) of NSCLC cases, with 58.86% 
(618/1050) negative in AD, 48.03% (645/1343) in SCC, and 
48% (84/175) in LCC. Notably, TP53 mutations are present 
in 92% of LCNEC cases. NSCLC with TP53 alterations is 
associated with a poorer prognosis and may exhibit increased 
resistance to chemotherapy and radiation therapy [232].

RB1. The Retinoblastoma gene (RB1) encodes the 
retinoblastoma protein (pRB), which plays a crucial role in 
regulating the cell cycle by interacting with E2F transcrip-
tion factors. In its unphosphorylated form, pRB binds to 
E2F, suppressing its transcriptional activity. The phosphor-
ylation status of pRB, governed by the tumor suppressor 
p21 (regulated by p53), controls the formation of pRB-E2F 
complexes [233]. pRB is phosphorylated at multiple sites 
by cyclin-dependent kinases, including cyclin D-CDK4/6, 
cyclin E-CDK2, cyclin A-CDK2, and cyclin B-CDK1 [225]. 
pRB-E2F complexes repress the transcription of numerous 
cell cycle genes, many of which are required for the G1/S 
transition [234]. pRB is attributed to the regulation of epithe-
lial to mesenchymal transition [235] and plays a possible role 
in immune response [236].

RB1 mutations are observed in 9.2% (16/174) of NSCLC 
cases, with 7.14% (12/168) in AD, 23.08% (3/13) in SCC, and 
25% (1/4) in LCC. Although RB1 mutations occur in a minority 
of NSCLC cases and are associated with poor prognosis, they 
are found in the majority of SCLC patients and are linked to 
a more favorable prognosis [237]. Furthermore, adenocarci-
noma patients with concurrent mutations in EGFR, RB1, and 
TP53 are prone to transformation into SCLC [238].

The protein expression of pRB is absent in 28.05% 
(207/738) of NSCLC cases, with 31.16% (110/353) negative 
in AD, 24.65% (88/357) in SCC, and 33.33% (2/6) in LCC 
[239–245]. RB1 mutations occur in 42% of LCNEC cases. 
Deficiency in RB1 may also enhance sensitivity to chemo-
therapy [246].

STK11/LKB1. The STK11/LKB1 gene encodes a serine-
threonine kinase that regulates cellular metabolism, 
energy homeostasis, growth, and cell polarity through the 
phosphorylation of adenosine monophosphate-activated 
protein kinase (AMPK) and 12 AMPK-related kinases [247]. 
AMPK activation can also occur through elevated intracel-
lular Ca2+ levels and DNA damage. In conditions of glucose 
deprivation, leading to reduced fructose-1,6-bisphosphate 
(FBP) levels, aldolases promote the formation of a lysosomal 
complex composed of v-ATPase, Ragulator, AXIN/STK11, 
and AMPK. This complex activates AMPK through STK11 
before energy levels drop [248]. Once activated, AMPK 
shifts metabolism toward reduced anabolism and increased 
catabolism by phosphorylating key proteins involved in lipid 
metabolism, glycolysis, protein synthesis, and mitochondrial 
homeostasis [249].

AMPK serves as a metabolic checkpoint, inhibiting cell 
growth under low-nutrient conditions by modulating the 
mammalian target of the rapamycin (mTOR) pathway, the 
central regulator of cellular growth [250, 251]. AMPK also 
enhances T-cell survival by maintaining intracellular ATP 
levels in the absence of glucose, promoting genes involved 
in glutamine uptake and metabolism [252]. Additionally, 
AMPK regulates mitochondrial function, which may support 
sustained glycolysis and anti-tumor T-cell activity [253].

STK11 is altered in 12.37% (46/372) of NSCLC cases, 
with mutations observed in 12.11% (31/256) of AD, 8.93% 
(5/56) of SCC, and 42.86% (3/7) of LCC. In LCNEC, STK11 
mutations were detected in 30% of cases [194]. Inactivation 
of STK11 is associated with a reduced infiltration of cytotoxic 
CD8+ T-lymphocytes [254]. To date, the expression status of 
STK11 in NSCLC has not been evaluated.

KEAP1. The KEAP1 (Kelch-like ECH-associated protein 
1) gene is a key negative regulator of the cellular adaptive 
response to reactive oxygen species (ROS) and xenobiotics, 
a process mediated by the transcription factor NRF2. Under 
normal physiological conditions, KEAP1 is part of an E3 
ubiquitin ligase complex that controls the activity of NRF2 
by promoting its ubiquitination and subsequent proteasomal 
degradation [255]. In response to cellular stress, KEAP1 
allows NRF2 to evade ubiquitination, leading to its accumu-
lation and translocation into the nucleus, where it activates 
the transcription of antioxidant genes. KEAP1 contains stress 
sensors and inactivation mechanisms that regulate NRF2 
activity in response to oxidative stress, cellular metabolites, 
and dysregulated autophagy [256].

KEAP1 mutations are present in 18.29% (207/1132) of 
NSCLC cases, with a higher frequency in AD (19.23%, 
160/832) and 15.61% (32/205) in SCC. LCC cases were not 
assessed in these studies [257, 258]. In LCNEC, KEAP1 
mutations occur in 20% of cases. Additionally, low or absent 
KEAP1 expression is observed in 56% of NSCLC cases, with 
a higher prevalence in AD (62%) compared to SCC (46%). 
Loss of KEAP1 expression is associated with poor overall 
survival and resistance to chemotherapy [259].
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ASCL1. ASCL1 (achaete-scute homolog 1) encodes 
transcription factors critical for neuronal differentiation 
and the development of olfactory and autonomic neurons. 
It is selectively expressed in normal fetal pulmonary neuro-
endocrine cells [205]. The ASCL1 protein is overexpressed 
in SCLC, whereas its expression is reduced or absent in AD 
and SCC [260]. In LCNEC, ASCL1 expression helps define 
two subtypes: one with high ASCL1 expression and the other 
with low ASCL1 expression [261].

NOTCH. The NOTCH signaling pathway consists of four 
NOTCH receptor isoforms (NOTCH 1–4) that regulate 
cell fate determination, proliferation, differentiation, and 
apoptosis [262]. Approximately 50% of NSCLC cases exhibit 
NOTCH signaling activity, although the specific expression 
patterns vary by subtype [263, 264]. For instance, studies 
by Li et al. (2010) found higher NOTCH1 expression in 
SCC compared to AD [265], while Donnem et al. reported 
lower NOTCH1 expression in SCC than in other subtypes 
[266]. Overexpression of NOTCH1 and NOTCH3 is associ-
ated with metastasis and reduced overall survival in NSCLC 
patients [267]. In contrast, NOTCH expression is signifi-
cantly reduced in SCLC cases with high neuroendocrine 
features. Dysregulation of the NOTCH pathway is a critical 
factor in SCLC tumorigenesis, disease progression, and 
chemoresistance [268].

DLL3. DLL3 (Delta-like 3) is an inhibitory ligand of the 
NOTCH receptor. The binding of DLL3 to NOTCH prevents 
the receptor from translocating to the cell surface, leading 
to its accumulation on the cell membrane, particularly 
when overexpressed. This mechanism promotes the growth 
of neuroendocrine tumor cells. Tanaka et al. reported high 
DLL3 expression in 83% of SCLC cases, while only one out of 
eight NSCLC cases showed DLL3 expression, indicating that 
DLL3 is preferentially expressed in SCLC [269].

Methylation status of mentioned genes

To date, methylation studies in NSCLC have primarily 
focused on the KEAP1 gene, with methylation occurring 
in 47% of cases, suggesting that deregulation of the NRF2/
KEAP1 pathway plays a significant role in NSCLC carcino-
genesis [270, 271]. Methylation of other key genes, including 
TP53, RB1, STK11, MEN1, ASCL1, DLL3, and NOTCH, has 
not yet been evaluated in NSCLC.

Limitations of the studies and future research directions

The limitations of this review primarily stem from the 
heterogeneity and sample size constraints present in the 
included studies. Many studies had a relatively low number 
of patients, which may limit the statistical power and gener-
alizability of the findings. Additionally, most studies did not 
consistently distinguish between the LCC subtype and other 
NSCLC subtypes, and when LCC was included, the sample 
sizes were often small. The variation in clinicopathological 

data and the diverse populations across different geographic 
regions also contributed to inconsistencies in the results, 
complicating direct comparisons. To establish the diagnostic, 
prognostic, and therapeutic implications of gene methyla-
tion in NSCLC, future research should focus on multicentric 
studies involving larger and more diverse patient cohorts. 
This would help validate findings across different popula-
tions and strengthen the clinical relevance of methylation 
markers in NSCLC.

Furthermore, future research should also focus on 
expanding our understanding of DNA methylation patterns 
across different histological subtypes, particularly the 
rare and aggressive LCNEC. This involves comprehensive 
epigenetic profiling to uncover subtype-specific methyla-
tion markers that could improve diagnosis and prognosis. 
Importantly, DNA methylation holds significant potential 
for the early detection of NSCLC through the identifica-
tion of specific biomarkers, a crucial factor in reducing lung 
cancer mortality [272, 273]. Longitudinal studies are also 
essential to validate methylation as a biomarker, potentially 
facilitating its integration into liquid biopsy platforms for 
non-invasive monitoring of disease progression and treat-
ment response, as methylation sequencing in plasma cell-free 
DNA from patients with advanced cancers may detect the 
presence of cancer and its subtype [274]. Furthermore, post-
operative cell tumor DNA methylation levels could serve as 
an indicator of molecular residual disease in patients with 
resected NSCLC [275].

The clinical translation of methylation research could 
significantly impact NSCLC management. Multi-gene 
methylation panels could enhance diagnostic accuracy 
and guide personalized treatment strategies, especially for 
subtypes like LCNEC, which currently lack standardized 
protocols. Furthermore, research into how methylation status 
affects drug resistance could lead to novel therapeutic targets, 
improving the efficacy of existing treatments. Overall, a focus 
on standardizing methylation testing and integrating it into 
routine clinical practice could pave the way for more precise 
and effective management of NSCLC.

In conclusion, this paper provides a comprehensive 
overview of the aberrant methylation of key genes (APC, 
BRCA1, CDH1, CDH13, CDKN2A, DAPK1, DLEC1, FHIT, 
hMLH1, MGMT, RARβ, RASSF1, RUNX3, WIF1, and 
TIMP3) and the expression and mutation profiles of key genes 
(TP53, RB1, STK11, KEAP1, ASCL1, DLL3, and NOTCH) in 
NSCLC, based on 75 studies covering histological subtypes 
such as AD, SCC, and, where available, LCC (Table 1). Of 
these studies, 34 addressed diagnostic gene methylation, 35 
focused on prognostic factors, and six covered epidemiology 
and predictive biomarkers.

Furthermore, the paper reviews the current understanding 
of mutational and expression profiles in LCNEC. Notably, 
only two studies have investigated KEAP1 methylation in 
NSCLC, and no studies to date have examined the methyla-
tion of TP53, RB1, STK11, ASCL1, DLL3, and NOTCH in 
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NSCLC. LCNEC, positioned as a “bridge” between small 
SCLC and NSCLC, underscores the necessity for further 
research to determine the methylation status of these genes 
in both NSCLC and LCNEC. Such investigations could 
enhance diagnostic, prognostic, and therapeutic strategies, 
leveraging gene methylation modifications.

Supplementary information is available in the online version 
of the paper.
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Supplementary Table S1. PRISMA 2020 main checklist.

Section and Topic Item # Checklist item Location where 
item is reported

TITLE
Title 1 Identify the report as a systematic review. Page 1
ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts checklist.
INTRODUCTION
Rationale 3 Describe the rationale for the review in the context of existing knowledge. Page 2 and 3
Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Page 3
METHODS
Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were 

grouped for the syntheses.
Page 5

Information sources 6 Specify all databases, registers, websites, organizations, reference lists and other sources 
searched or consulted to identify studies. Specify the date when each source was last 
searched or consulted.

Page 3

Search strategy 7 Present the full search strategies for all databases, registers, and websites, including any 
filters and limits used.

Page 2 and 4

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the 
review, including how many reviewers screened each record and each report retrieved, 
whether they worked independently, and if applicable, details of automation tools used 
in the process.

Page 5 and 6

Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers 
collected data from each report, whether they worked independently, any processes 
for obtaining or confirming data from study investigators, and if applicable, details of 
automation tools used in the process.

Page 5 and 6

Data items 10a List and define all outcomes for which data were sought. Specify whether all results 
that were compatible with each outcome domain in each study were sought (e.g., for all 
measures, time points, analyses), and if not, the methods used to decide which results 
to collect.

Page 5 and 6

10b List and define all other variables for which data were sought (e.g., participant and 
intervention characteristics, funding sources). Describe any assumptions made about 
any missing or unclear information.

N/A

Study risk of bias assess-
ment

11 Specify the methods used to assess risk of bias in the included studies, including details 
of the tool(s) used, how many reviewers assessed each study and whether they worked 
independently, and if applicable, details of automation tools used in the process.

Page 6

Effect measures 12 Specify for each outcome the effect measure(s) (e.g., risk ratio, mean difference) used in 
the synthesis or presentation of results.

N/A

Synthesis methods 13a Describe the processes used to decide which studies were eligible for each synthesis 
(e.g., tabulating the study intervention characteristics and comparing against the 
planned groups for each synthesis (item #5)).

N/A

13b Describe any methods required to prepare the data for presentation or synthesis, such 
as handling of missing summary statistics, or data conversions.

N/A

13c Describe any methods used to tabulate or visually display results of individual studies 
and syntheses.

N/A

13d Describe any methods used to synthesize results and provide a rationale for the 
choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify 
the presence and extent of statistical heterogeneity, and software package(s) used.

N/A

13e Describe any methods used to explore possible causes of heterogeneity among study 
results (e.g., subgroup analysis, meta-regression).

N/A

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized 
results.

N/A
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Section and Topic Item # Checklist item Location where 
item is reported

Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results in a synthesis 
(arising from reporting biases).

N/A

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of evidence 
for an outcome.

N/A

RESULTS
Study selection 16a Describe the results of the search and selection process, from the number of records 

identified in the search to the number of studies included in the review, ideally using a 
flow diagram.

Page 6 and 7

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, 
and explain why they were excluded.

N/A

Study characteristics 17 Cite each included study and present its characteristics. Page 8–18
Risk of bias in studies 18 Present assessments of risk of bias for each included study. Page 7
Results of individual 
studies

19 For all outcomes, present, for each study: (a) summary statistics for each group (where 
appropriate) and (b) an effect estimates and its precision (e.g., confidence/credible 
interval), ideally using structured tables or plots.

Page 8–18

Results of syntheses 20a For each synthesis, briefly summarize the characteristics and risk of bias among con-
tributing studies.

N/A

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present 
for each the summary estimate and its precision (e.g., confidence/credible interval) and 
measures of statistical heterogeneity. If comparing groups, describe the direction of the 
effect.

N/A

20c Present results of all investigations of possible causes of heterogeneity among study 
results.

N/A

20d Present results of all sensitivity analyses conducted to assess the robustness of the 
synthesized results.

N/A

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) 
for each synthesis assessed.

N/A

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of evidence for each 
outcome assessed.

N/A

DISCUSSION
Discussion 23a Provide a general interpretation of the results in the context of other evidence. Page 8–18

23b Discuss any limitations of the evidence included in the review. Page 8–18
23c Discuss any limitations of the review processes used. N/A
23d Discuss implications of the results for practice, policy, and future research. Page 19

OTHER INFORMATION
Registration and protocol 24a Provide registration information for the review, including register name and registra-

tion number, or state that the review was not registered.
N/A

24b Indicate where the review protocol can be accessed, or state that a protocol was not 
prepared.

N/A

24c Describe and explain any amendments to information provided at registration or in the 
protocol.

N/A

Support 25 Describe sources of financial or non-financial support for the review, and the role of the 
funders or sponsors in the review.

N/A

Competing interests 26 Declare any competing interests of review authors. N/A
Availability of data, code, 
and other materials

27 Report which of the following are publicly available and where they can be found: 
template data collection forms; data extracted from included studies; data used for all 
analyses; analytic code; any other materials used in the review.

N/A
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Supplementary Table S2. Search strategy used for the PubMed database.
Database PubMed
Date From inception to 15 October 2023
#1 “NSCLC” AND ((methylation) OR (hypermethylation))
#2 ((epigenetics) AND (ASCL1) OR (DLL3) OR (NOTCH) OR (TP53) OR (RB1) OR (STK11) OR (LKB1) OR (KEAP1))

#3
(((methylation) OR (hypermethylation)) AND ((pattern) OR (gene promoter) OR (CDKN2A) OR (RASSF1) OR (CDH13) OR 
(DAPK1) OR (TIMP3) OR (hMLH1) OR (APC) OR (BRCA1) OR (DLEC1) OR (CDH1) OR (RUNX3) OR (FHIT) OR (MGMT) OR 
(RAR beta) OR (WIF1)))

#4 (((expression) OR (mutation)) AND ((ASCL1) OR (DLL3) OR (NOTCH) OR (TP53) OR (RB1) OR (STK11) OR (LKB1) OR 
(KEAP1)))

Supplementary Table S3. The search items used for the systematic review.
Search Terms Used in the Systematic Review
NSCLC methylation profiling NSCLC methylation brca1 NSCLC epigenetic tp53 NSCLC expression p35 NSCLC mutation tp53
NSCLC methylation cdkn2a NSCLC methylation dlec1 NSCLC epigenetic rb1 NSCLC expression rb1 NSCLC mutation rb1
NSCLC methylation rassf1 NSCLC methylation cdh1 NSCLC epigenetic stk11 NSCLC expression stk11 NSCLC mutation stk11
NSCLC methylation cdh13 NSCLC methylation runx3 NSCLC epigenetic lkb1 NSCLC expression lkb1 NSCLC mutation lkb1
NSCLC methylation dapk1 NSCLC methylation rar beta NSCLC epigenetic keap1 NSCLC expression keap1 NSCLC mutation keap1
NSCLC methylation timp3 NSCLC methylation fhit NSCLC epigenetic ascl1 NSCLC expression ascl1
NSCLC methylation hmlh1 NSCLC methylation mgmt NSCLC epigenetic dll3 NSCLC expression dll3
NSCLC methylation apc NSCLC methylation wif1 NSCLC epigenetic notch NSCLC expression notch

Supplementary Table S4. Methylation of DAPK in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 18.69–76.47 20/107 [28], 26/101 [29], 24/70 [30], 50/122 [31], 14/28 [32], 68/117 [33], 13/17 [34]
AD 15.56–78.57 7/45 [28], 14/62 [28], 5/20 [30], 7/15 [32], 34/71 [31], 35/61 [33], 11/14 [34]
SCC 20.93–71.43 9/43 [28], 12/39 [28], 16/51 [31], 17/41[30], 33/56 [33], 2/3 [34], 5/7 [32]
LCC 0–22.22 0/4; 0/3 [28, 32], 2/9 [30]

Supplementary Table S5. Methylation of RAR-β in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 30.56–80.35 11/36 [39], 38/101 [29], 43/107 [28], 22/53 [40], 45/80 [41], 134/167 [42], 45/56 [43]
AD 26.67–88.24 8/30 [39], 22/45 [28], 32/62 [29], 13/22 [40], 15/25 [41], 66/81 [42], 15/17 [43]
SCC 15.38–88.46 6/39 [29], 15/43 [28], 14/36 [39], 8/17 [40], 30/45 [41], 68/86 [42], 23/26 [43]
LCC 25% 1/4 [28, 40]

Supplementary Table S6. Methylation of BRCA1 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 18.57–37.08 13/70 [53], 6/28 [32], 33/89 [54]
AD 13.33–42.31 2/15 [32], 10/49 [53], 22/52 [54]
SCC 13.33–29.73 2/15 [53], 1/7 [32], 11/37 [54]
LCC 33.33 1/3 [32]

Supplementary Table S7. Methylation of TIMP3 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 18.52–47.29 10/54 [59], 28/107 [28], 11/28 [32], 61/129 [58]
AD 9.38–40 3/32 [59], 11/45 [28], 20/52 [58], 6/15 [32]
SCC 23.26–53.25 10/43 [28], 7/21 [59], 3/7 [32], 41/77 [58]
LCC 0–25 0/3 [32], 1/4 [28]
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Supplementary Table S8. Methylation of DLEC1 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 37.14–70.59 26/70 [66], 92/238 [61], 32/78 [39], 12/17 [34]
AD 28.57–71.43 10/35 [66], 29/92 [61], 12/30 [39], 10/14 [34]
SCC 44.44–66.67 16/36 [39], 16/35 [66], 44/92 [61], 2/3 [34]
LCC 35.19 19/54 [61]

Supplementary Table S9. Methylation of CDH1 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell car-
cinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 32.56–58.33 42/129 [58], 30/91 [81], 8/17 [34], 24/42 [82], 119/204 [83]
AD 30.77–59.52 16/52 [58], 11/35 [81], 6/14 [34], 13/25 [82], 75/126 [83]
SCC 33.77–66.67 26/77 [58], 19/56 [81], 6/12 [82], 44/78 [83], 2/3 [34]
LCC 100 5/5 [82]

Supplementary Table S10. Methylation of RUNX3 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 20–52.94 15/75 [92], 30/119 [93], 23/54 [59], 26/58 [94], 9/17 [34]
AD 27.91–57.14 12/43 [92], 10/32 [59], 26/72 [93], 13/32 [94], 8/14 [34]
SCC 6.67–50 3/45 [93], 2/29 [92], 1/3 [34], 8/21 [59], 13/26 [94]
LCC 50 1/2 [93]

Supplementary Table S11. Methylation of WIF1 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 15.91–69.44 7/44 [104], 65/235 [105], 6/17 [34], 66/139 [106], 50/72 [107]
AD 13.33–63.33 4/30 [104], 3/14 [34], 30/135 [105], 36/79 [106], 19/30 [107]
SCC 27.27–100 3/11 [104], 28/87 [105], 30/60 [106], 3/3; 2/2 [34, 107]
LCC 0–53.8 0/3 [104], 7/13 [105]

Supplementary Table S12. Methylation of CDKN2A in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions

NSCLC 25.23–79.49 27/107 [28], 22/99 [110], 27/101 [29], 16/53 [40], 10/28 [32], 8/22 [111], 14/33 [112], 10/17 [34], 48/61 
[113], 31/39 [114]

AD 13.33–83.33 6/45 [28], 9/62 [29], 3/13 [111], 9/38 [110], 10/32 [40], 5/15 [32], 8/13 [112], 9/14 [34], 12/17 [114], 
30/36 [113]

SCC 11.76–87.5 2/17 [40], 1/7 [32], 16/61 [110], 4/15 [112], 1/3 [34], 16/43 [28], 18/39 [29], 5/9 [111], 19/22 [114], 14/16 
[113]

LCC 25–100 1/4; ¼ [28, 113], 1/3 [32], 4/4 [40]

Supplementary Table S13. Methylation of APC in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell car-
cinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 25–89.01 9/36 [38], 15/53 [124], 7/17 [34], 216/514 [125], 48/99 [110], 19/28 [32], 81/91 [126]
AD 14.29–100 3/21 [38], 32/79 [124], 6/14 [34], 20/38 [110], 161/299 [125], 11/15 [32], 43/43 [126]
SCC 23.2–100 45/194 [125], 1/3 [34], 6/15 [38], 28/61 [110], 4/7 [32], 33/33 [126]
LCC 33.33 1/5, 5/15 [32, 126]
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Supplementary Table S14. Methylation of MGMT in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 8.95–49.54 46/514 [125], 8/65 [138], 14/101 [29], 11/75 [139], 21/107 [28], 28/94 [140], 34/90 [141], 109/220 [142]
AD 8.03–46.88 24/299 [125], 2/18 [138], 8/62 [29], 7/44 [139], 12/45 [28], 22/72 [140], 46/115 [142], 15/32 [141]
SCC 7.73–60 15/194 [125], 4/31 [139], 6/39 [29], 8/43 [28], 6/29 [138], 6/22 [140], 16/43 [141], 63/105 [142]
LCC 20–25 3/15 [141], 1/4 [28]

Supplementary Table S15. Methylation of hMLH1 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 6.67–72.41 5/75 [92], 17/99 [110], 14/78 [39], 8/28 [32], 85/238 [61], 56/105 [150], 38/70 [151], 84/116 [152]
AD 4.65–71.88 2/43 [92], 4/30 [39], 7/38 [110], 21/92 [61], 6/15 [32], 17/28 [151], 43/65 [150], 23/32 [152]
SCC 10.34–72.62 3/29 [92], 1/7 [32], 11/61 [110], 8/36 [39], 6/17 [150], 42/92 [61], 21/42 [151], 61/84 [152]
LCC 33.33–40.74 1/3 [32], 22/54 [61]

Supplementary Table S16. Methylation of FHIT in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions
NSCLC 27.2–59.62 68/250 [165], 28/91 [166], 19/56 [167], 34/99 [110], 38/109 [168], 43/119 [169], 110/204 [83], 31/52 [170]
AD 25–52.38 10/40 [166], 24/93 [165], 11/38 [110], 13/41 [168], 24/72 [169], 6/17 [167], 9/22 [170], 66/126 [83]
SCC 30.77–73.33 12/39 [83], 40/125 [165], 9/26 [167], 25/68 [168], 23/61 [110], 18/45 [169], 18/44 [166], 44/78 [83], 22/30 [170] 
LCC 0–50 0/4 [166], 1/2 [169]

Supplementary Table S17. Methylation of RASSF1A in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions

NSCLC 21.43–85.71 6/28 [32], 18/70 [30], 39/112 [175], 21/53 [40], 31/78 [39], 26/65 [176], 40/99 [110], 41/100 [177], 42/101 [29], 
22/42 [178], 48/56 [43]

AD 6.67–82.35 1/15 [32], 7/41 [30], 28/85 [175], 27/62 [29], 14/30 [39], 18/33 [176], 34/72 [177], 18/38 [110], 17/32 [178], 
21/33 [176], 15/22 [40], 14/17

SCC 25–89.66 7/28 [177], 5/20 [176], 2/7 [32], 12/36 [39], 6/17 [40], 22/61 [110], 15/39 [29], 11/27 [175], 9/20 [30], 5/10 
[178], 26/29 [43, 167]

LCC 0–66.67 0/4 [40], 2/9 [30], 3/12 [176], 2/3 [32]

Supplementary Table S18. Methylation of CDH13 in NSCLC and its subtypes adenocarcinoma (AD), squamous cell carcinoma (SCC) and large cell 
carcinoma (LCC).
Histological subtype Percentages (%) Proportions

NSCLC 16.92–65.57 11/65 [138], 26/101 [29], 40/150 [124], 172/514 [125], 13/28 [32], 121/251 [188], 23/42 [178], 35/54 [190], 
40/61 [113]

AD 29.11–69.44 23/79 [124], 20/62 [29], 6/15 [32], 123/299 [125], 62/122 [188], 17/32 [178], 26/41 [190], 8/12 [138], 25/36 
[113]

SCC 2.94–69.23 1/34 [138], 6/39 [29], 44/194 [125], 3/7 [32], 9/16 [113], 6/10 [178], 93/142 [188], 9/13 [190]
LCC 25–33.33 1/4 [113], 1/3 [32]
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