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Disruption of lipid raft reverses drug resistance in colorectal cancer cells 
through the phosphatase and tensin homolog/phosphoinositide 3-kinase/
protein kinase B pathway and P-glycoprotein 
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Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the 
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, 
the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to 
clarify the role of the PI3K pathway in reversing drug resistance. The results showed decreased resistance after inhibiting 
PI3K activity. Furthermore, the reduced resistance due to flotillin knockdown was restored after adding the PI3K activator. 
Additional results showed no changes in PI3K molecules. However, p-AKT expression was downregulated. Further results 
suggested that the phosphatidylinositol (3,4,5)-trisphosphate/phosphatidylinositol 4,5-bisphosphate (PIP3/PIP2) ratio was 
downregulated, whereas the phosphatase and tensin homolog (PTEN) expression was upregulated. In addition, we also 
found that P-gp activity inhibition resulted in increased adriamycin accumulation and reversal of resistance, and flotillin 
knockdown was accompanied by a downregulation of P-gp expression in CRC cells. In conclusion, our study demonstrated 
that flotillin knockdown could reverse drug resistance in CRC cells by downregulating the PTEN/PI3K/AKT pathway and 
P-gp. 
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Multidrug resistance (MDR) refers to the cross-resistance 
of cancer cells to several chemotherapeutic agents [1], which 
is a difficult and urgent concern about chemotherapy. Lipid 
rafts are small (10–200 nm), heterogeneous, highly dynamic, 
sterol-and sphingolipid-enriched domains that can separate 
cellular processes [2]. These contribute to the development 
of drug resistance regarding multiple malignancies [3–5]. 
Therefore, disrupting these lipid rafts can restore drug 
sensitivity in breast cancer-resistant cells [6]. Our prelimi-
nary experiments revealed that drug resistance in colorectal 
cancer (CRC) cells was reversed when the lipid raft-resident 
proteins, flotillins, were knocked down [7]. However, the 
exact underlying mechanisms remain unclear. Regarding 
the phosphoinositide 3-kinase (PI3K) pathway, most of the 
PI3K/protein kinase B (AKT) positive regulatory molecules 
such as PI3K, AKT, 3-phosphoinositide-dependent kinase 1 
(PDK1), and mammalian target of rapamycin (mTOR) are 
located in lipid rafts, which facilitate lipid raft-mediated 
AKT phosphorylation [8, 9], promote phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3) accumulation at the plasma 
membrane, and activate downstream signaling molecules 
[10]. The disruption in the lipid raft inhibits the activation 
of the PI3K/AKT pathway, such that the pharmacological 
disruption in its structure inhibits insulin-like growth 
factor-1-mediated AKT phosphorylation [11]. Moreover, it 
blocks the binding of AKT and PDK1 to the cell membrane 
by affecting the PH structural domain, which inhibits 
the activation of the PI3K/AKT pathway [12]. Therefore, 
disrupting lipid rafts might inhibit the PI3K/AKT pathway 
activation. The PI3K signaling pathway is one of the most 
frequently altered pathways in human cancers and is crucial 
for driving tumorigenesis and progression [13–19]. PTEN 
is a tumor suppressor that dephosphorylates PIP3 to PIP2, 
thereby antagonizing the PI3K pathway [20]. Therefore, 
activating the PI3K signaling molecules or inactivating the 
PTEN molecules is manifested as the aberrant activation 
of the PI3K/AKT signaling pathway, which promotes cell 
growth, proliferation, metabolism, migration, and secretion. 
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This aberrant activation is closely associated with tumorigen-
esis, proliferation, apoptosis, invasion, metastasis, epithelial-
mesenchymal transition, the immune microenvironment, 
and drug resistance [21–28].

Materials and methods

Cell culture. The human colon cancer cell line (HCT-15) 
(China Center for Type Culture Collection and Cell Bank of 
the Chinese Academy of Sciences, Shanghai, China; Serial: 
TCHu133) was cultured in a medium (RPMI-1640, Gibco, 
USA; #A4192301) supplemented with 1% penicillin-strepto-
mycin (Gibco, #15140122) and 10% fetal bovine serum (FBS, 
Hyclone, USA, #SH30071.03E) at 37 °C with 5% carbon 
dioxide (CO2). HCT-15 cells were placed in adriamycin 
(ADM, Med Chem Express, USA; #HY-15142) solution at a 
concentration of 10 µg/ml for 2 h and repeated several times 
until the cell death rate of tumor cells in a medium with 
ADM concentration of 0.4–0.5 µg/ml was <5% (Supplemen-
tary Figure S1).

Lentiviral transduction. Well-grown HCT-15/ADM cells 
were inoculated into 6-well plates and cultured for 24 h. The 
cells were then infected with a lentivirus pre-packaged in 
our laboratory. Flotillin-1 (NM_005803. 3) and Flotillin-2 
(NM_004475.2) were retrieved from the National Center 
for Biotechnology Information (NCBI) website. The short 
hairpin RNA refers to the previous literature [7]. Puromycin 
was added 72 h later to a final concentration of 2 μg/ml; the 
cells were cultured continuously for 4–5 days to screen for 
stabilized strains.

Lipid raft labeling and confocal microscopy imaging. 
A coverslip was placed in a 6-well plate so that the cells 
could adhere to the glass coverslip for growth; the cells 
were incubated for 24 h. Phosphate-buffered saline (PBS, 
Beijing Solarbio Science, China; #P1020) was used to wash 
the cells three times. Live cells were incubated with cholera 
toxin subunit B (recombinant), Alexa Fluor™ 555 conjugate 
(#C34776) (CT-B AF555, Vybrant Lipid Raft Labeling Kits, 
Thermo, USA) at a concentration of 1 µg/ml. The plate was 
incubated for 20 min at 4 °C, protected from light. PBS was 
used to re-wash the cells three times. After incubation with 
paraformaldehyde (4%) for 15 min at approximately 28 °C 
the cells were re-washed thrice with PBS, and Hoechst33258 
(Beyotime Biotechnology, China; #C1017) was used for 
nuclear staining while avoiding light for 15 min at room 
temperature. Finally, the cells were observed under confocal 
fluorescence microscopy (Olympus, Japan; 400× lens).

Cell Counting Kit-8. Cell viability was assessed using the 
Cell Counting Kit-8 (CCK-8) assay (Bimake, USA; #B34302) 
following the manufacturer’s instructions. The cells were 
placed into 96-well plates with 3×103 cells/well. The cells 
were incubated at 37 °C with 5% CO2 for 24 h. Furthermore, 
a gradient concentration of ADM from 0 to 64 µg/ml was 
added to the culture medium and incubated for 24 h. In 
addition, 110 µM of CCK-8 reagent and medium mixture 

were added to each well; the ratio of CCK-8 reagent to the 
medium was 10:100, and the mixture was incubated for 2 h. 
The optical density of 450 nm value was measured, and the 
proliferation inhibition rate of each group of cells was calcu-
lated.

ADM accumulation. Cells were spread in 6-well plates 
with 5 × 105 cells/well and 3 replicate wells. The cells were 
incubated at 37 °C with 5% CO2 for 24 h. ADM concentra-
tion of 20 µg/ml was added; 0.1% DMSO (MP biomedicals, 
USA) was added to the control group. After the incubation 
for 2.5 h, the cells were washed three times with PBS buffer, 
trypsin-digested, collected, and centrifuged at 1,000×g/4 °C 
for 5 min. The supernatant was discarded and washes were 
repeated 3 times with PBS buffer. Finally, the cells were 
resuspended with 1 ml of PBS buffer (pre-cooled at 4 °C). 
ADM fluorescence intensity was detected by flow cytom-
etry (excitation wavelength: 488 nm, emission wavelength: 
575 nm).

Enzyme-linked immunosorbent assay. PIP3 (#JL19768) 
and PIP2 (#JL13826) levels were assayed using an enzyme-
linked immunosorbent assay kit (Jianglai Biotechnology Co. 
Ltd. Shanghai, China) manual. The cells were washed with 
PBS 3 times, trypsin digestion was performed to collect 
the cells that were resuspended with 1ml of PBS. The cells 
were then broken by ultrasonic waves and centrifuged at 
4 °C; 3,000×g for 20 min; the supernatant was collected. 
Sequentially horseradish peroxidase (HRP)-labeled antibody 
(100 µl), substrate A (50 µl), and substrate B (50 µl), were 
incubated at 37 °C for 15 min away from light. The optical 
density of each well was then measured at 450 nm.

Western blot. The cells were lysed with a mixture of 
radioimmunoprecipitation assay buffer (Beyotime, China; 
#P0013B), Protease Inhibitor (Applygen, China; #P1265-1), 
and Phosphatase Inhibitor (Applygen; #P1260-1) (100:1:1) 
and quantified using the bicinchoninic acid (Beijing Solarbio 
Science; #PC0020) assay. The protein lysate was mixed with 
loading buffer and boiled at 100 °C for 10 min. Equal amounts 
of protein lysates were separated by electrophoresis on a 10% 
sodium dodecyl sulfate-polyacrylamide gel and transferred 
into a polyvinylidene difluoride membrane. The membrane 
was immersed in Tween-20 (Beyotime Biotechnology, 
China; #ST828) triple buffered saline (TBST) containing 5% 
skimmed milk powder for 2 h at room temperature; then the 
primary (overnight incubation) and secondary antibodies 
(2 h) were added. The protein bands were detected by a 
chemiluminescent horseradish peroxidase substrate. The 
assayed proteins included PI3K p110 α (#4249s), PI3K p110 
β (#3011s), AKT (pan) (#4691s), Phospho-AKT(Ser473) 
(#4060s), PTEN (#9559s) (Cell Signaling Technology, USA; 
dilution ratio 1:1000), anti-flotillin 1 (#15571-1-AP), anti-
flotillin 2 (#28208-1-AP), P-gp antibodies (#22336-1-AP) 
(Proteintech Group, China; dilution ratio 1:1000), GAPDH 
monoclonal antibody (#60004-1-Ig) (Proteintech Group, 
China, dilution ratio 1:10000), and Phospho-PI3K p85 
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(Tyr458) [Tyr467]/p55 (Tyr199) (#AF3242) (Affinity Biosci-
ences, USA; dilution ratio 1:1000).

Statistical analyses. The data obtained in this experiment 
are expressed as mean ± standard deviation (S) and were 
statistically analyzed using GraphPad Prism version 8.0 (San 
Diego, USA). Statistical results were tested for significance 
using a t-test or one-way analysis of variance. Statistical 
significance was set at p<0.05.

Results

Knockdown of flotillin-1 and flotillin-2 inhibits lipid 
raft formation and reverses drug resistance in HCT-15-
resistant cell lines with CRC. Empty vector, knockdown 
flotillin-1, and knockdown flotillin-2 cell lines were denoted 

as Con, Flot1-RNAi, and Flot2-RNAi, respectively. First, we 
used cholera toxin subunit B (recombinant), Alexa Fluor™ 
555 conjugate (CT-B AF555), a lipid raft staining marker, 
to detect the expression of lipid rafts after flotillin knock-
down; the results showed that the expression of lipid rafts 
was downregulated after flotillin knockdown (Figure 1A). 
Flotillin-1 and flotillin-2 knockdown resulted in increased 
sensitivity of resistant cells to ADM (Figures 1B, 1C), and 
resistance reversal.

The PI3K/AKT pathway is involved in regulating drug 
resistance in CRC cells. Therefore, to verify whether the PI3K 
pathway could regulate the drug resistance in CRC cells, we 
inhibited and activated the PI3K pathway and observed each 
group’s changes in drug resistance. However, to ensure that 
the inhibition and activation were effective, we measured 

Figure 1. Effect of flotillin-1 or flotillin-2 knockdown on lipid rafts, proliferation, and ADM resistance in HCT-15/ADM cells. A) CT -B AF555 staining 
was used to label lipid rafts, and nuclear staining (Hoechst 33258) and confocal microscopy analysis (magnification: 400×) were performed. B) Flotil-
lin-1 and flotillin-2 knockdown HCT-15/ADM cells show increased sensitivity to the effects of ADM treatment. C) IC50 ADM values are decreased 
in flotillin-1 and flotillin-2 knockdown HCT-15/ADM cells. D) Flotillin-1 and flotillin-2 expressions significantly decrease after the flotillin-1 knock-
down, and the flotillin-1 and flotillin-2 expressions are markedly depressed after the flotillin-2 knockdown.
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tion was 0.5–8 µM; the cell viability significantly decreased 
with increasing concentration. However, at 8 µM, there was 
excessive cell death. Therefore, we selected a concentration 
of 4 µM (Figure 2B). After adding 740Y-P, PIP3/PIP2 values 
were upregulated in the HCT-15, Con, flotillin-1-RNAi, and 
flotillin-2-RNAi groups, with the most significant upregu-
lation occurring in the flotillin-2-RNAi group. However, 
there was no significant change in the HCT-15/ADM group 
(Figure 2C, Supplementary Table S1). Conversely, drug resis-
tance was upregulated in the flotillin-1-RNAi and flotillin-

the PIP3/PIP2 values to represent the PI3K pathway activity. 
First, we tested the appropriate time and concentration of the 
PI3K activator (740Y-P) in group flotillin-1 RNAi. The results 
showed that 50 μM 740-YP increased the survival of HCT-15/
ADM cells cultivated in gradually increasing concentra-
tions of ADM (0.25, 1, 4, 16, and 64 μg/ml) (Figure  2A). 
Furthermore, we tested for the appropriate concentration 
of the PI3K inhibitor (GDC-0941) (the selected time was 
24 h) to ensure the comparability of the results of the subse-
quent experiments. The results showed that the concentra-

Figure 2. Effects of adding PI3K activator and inhibitor on PI3K pathway activity, resistance to ADM in various tumor cells. A) IC50 values of flotillin-
1-RNAi in the ADM concentration of 0, 0.25, 1, 4, 16, 64 µg/ml, respectively, after 740Y-P is added at 12 h, 24 h, and 48 h and concentrations of 0, 10, 
30, and 50 µM, respectively. B) IC50 values of flotillin-1-RNAi in the ADM concentration of 0, 0.25, 1, 4, 16, 64 µg/ml, respectively, after GDC-0941 
is added at concentrations of 0, 0.5, 1, 2, 4, and 8 µM, respectively, for 24 h. C) ELISA is used to detect the values of PIP3 and PIP2 after adding the 
PI3K activator for 24 h (740Y-P, at a concentration of 50 µM) and inhibitor (GDC-0941, at a concentration of 4 µM) in each group, and their ratios are 
compared. D) CCK-8 assay in the ADM concentration of 0.25, 1, 4, 16, 64 µg/ml, respectively, with or without the addition of 740Y-P (concentration 
of 50 µM), with or without adding GDC-0941 (concentration of 4 µM), the role of 24 h, and the absorbance of the cells in each group is used to obtain 
the changes in the IC50 of the tumor cells in each group after calculating the inhibition rate of proliferation.
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2-RNAi groups (Figure 2D). Moreover, the drug resistance 
of the flotillin-2-RNAi group was significantly (p<0.001) 
upregulated or even exceeded that of the corresponding Con 
group after adding the activator. The remaining three groups, 
HCT-15, HCT-15/ADM, and Con, showed no significant 
changes (Figure 2D, Supplementary Table S2). After adding 
GDC-0941, PIP3/PIP2 values decreased in all groups except 
for the HCT-15 group, whereas there was no significant 
difference between the flotillin-1 and flotillin-2 knockdown 
(Figure 2C, Supplementary Table S3). Simultaneously, drug 
resistance was downregulated in all resistant cell lines, with or 
without flotillin protein knockdown, except for the HCT-15 
group. Among them, the HCT-15/ADM and Con groups 
showed downregulation to a similar extent; the flotillin-1 cell 
line knockdown was significantly (p<0.001) downregulated 
after adding the PI3K inhibitor. It was less resistant than the 
HCT-15 group without ADM induction. The knockdown 
flotillin-2 cell line was partially downregulated and to a lesser 
extent than the knockdown flotillin-1 cell line (Figure 2D, 
Supplementary Table S4).

Flotillin knockdown reverses drug resistance in CRC 
cells through the PTEN/PI3K/AKT pathway. These results 
showed that inhibition of PI3K activity reversed tumor cell 
resistance, whereas activation of PI3K activity in knock-
down flotillin cells increased tumor cells’ resistance to ADM 
(Figure  2D), which demonstrated that the PI3K pathway 
regulated drug resistance in CRC cells. Furthermore, we 
identified the specific molecules involved in the PI3K pathway 
and examined critical molecules in various parts of the PI3K 
pathway. First, p-AKT expression was downregulated after 
flotillin knockdown (Figures 3A, 3B). Notably, the PI3K 
expression was not changed. In knockdown flotillin cells, 
we confirmed the downregulation of PI3K pathway activity 
by detecting the PIP3/PIP2 value, which was downregu-
lated (Figure 2C). Therefore, we detected the expression of 

PTEN, a critical antagonist of the PI3K pathway, and found 
that it was upregulated (Figures 3A, 3B). Additionally, 
PTEN expression was not significantly downregulated in the 
flotillin-1-RNAi group after adding PI3K inhibitor, whereas 
it was significantly downregulated in the flotillin-2-RNAi 
group (Figure 3A). Expressions in the flotillin-1-RNAi and 
flotillin-2-RNAi groups were significantly upregulated after 
adding the PI3K activator, whereas P-AKT was significantly 
upregulated in the flotillin-2-RNAi group and to a lesser 
extent in the flotillin-1-RNAi group (Figure 3B).

Flotillin knockdown reverses drug resistance in CRC 
cells by downregulating P-gp expression. One of the charac-
teristics of MDR cells is increased drug efflux, a substrate 
for the drug-resistant protein ABCB1 (P-gp). Therefore, 
we investigated the accumulation of ADM in parental and 
MDR cells and changes after flotillin knockdown. The results 
showed that ADM accumulation in drug-resistant cells was 
significantly smaller than that in parental cells after 2.5 h 
of incubation with ADM, suggesting that drug efflux was 
more pronounced in drug-resistant cells. In contrast, in the 
flotillin knockdown group, ADM accumulation increased 
than that in the Con group, indicating that ADM efflux was 
reduced in knockdown flotillins. ADM accumulation was 
significantly increased in all tumor cell groups after P-gp 
activity was inhibited (Figure 4A, Supplementary Table S5). 
However, the change in ADM accumulation indicated a 
change in drug efflux, which might be associated with P-gp 
expression. Therefore, we examined the P-gp expression 
after flotillin knockdown. Furthermore, the downregula-
tion of P-gp expression was observed after flotillin knock-
down (Figure 4B). In addition, flotillin knockdown reversed 
drug resistance in CRC cells, which was significantly reduced 
in all tumor cell groups after the inhibition of P-gp activity 
(Figure  4C, Supplementary Table S6). The above results 
revealed that P-gp was crucial for regulating drug resistance 

Figure 3. Effects of adding PI3K activator and inhibitor on protein expression of key molecules of the PI3K pathway. A) The expression of key molecules 
of the PI3K pathway in each group and changes after adding the PI3K inhibitor (GDC-0941, at a concentration of 4 µM). B) The expression of key 
molecules of the PI3K pathway in each group and changes after adding the PI3K activator (740Y-P, at a concentration of 50 µM).
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in CRC cells. Furthermore, flotillin knockdown could reverse 
drug resistance in intestinal cancer cells by downregulating 
the expression of P-gp.

Discussion

Based on our preliminary experiments, we investigated 
the mechanisms through which disruption in lipid rafts could 
reverse drug resistance in CRC cells, which might be associ-
ated with the PI3K pathway [7]. In this study, drug resistance 

was downregulated in all groups (with or without resis-
tance, flotillin knockdown) in the presence of GDC-0941. 
GDC-0941 (pictilisib) is a selective class I PI3K inhibitor 
that potently inhibits all four isoforms of class I PI3K and the 
activity of the PI3K/AKT pathway without inhibiting other 
molecular targets. The PI3K pathway is involved in forming 
and reversing drug resistance in several malignant tumors 
[29–32]. However, whether the pathway could be involved 
in flotillin knockdown to disrupt the structure of lipid rafts 
remains unclear, thereby reversing drug resistance in CRC 

Figure 4. Expression of P-gp protein and changes in ADM accumulation and resistance to ADM after inhibition of P-gp activity in various tumor cells. 
A) ADM accumulation changes after the addition of the P-gp inhibitor (Tariquidar, concentration of 1 µM), ADM (concentration of 20 µg/ml), for 2.5 
h. ADM accumulation increased after flotillin knockdown and decreased significantly after P-gp inhibition. B) Expression of P-gp. C) IC50 values of 
tumor cells in the ADM concentration of 0, 0.25, 1, 4, 16, and 64 µg/ml, respectively, after the inhibition of P-gp activity (Tariquidar, concentration of 
1 µM, time 24 h).
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cells. Notably, to investigate this further, a PI3K activator 
(740Y-P is an EGFR analog that activates the PI3K/AKT 
pathway through the cell membrane) was used inside the 
experimental group; if flotillin knockdown reverses resis-
tance by inhibiting PI3K pathway activity, the resistance will 
then be restored in the flotillin knockdown experimental 
group. As expected, flotillin-1 knockdown and the activa-
tion of PI3K activity partially restored resistance. Flotillin-2 
knockdown completely restored resistance, whereas the 
other groups without flotillin knockdown showed no signifi-
cant change in resistance. In addition, the results showed that 
flotillin-1 knockdown was inconsistent with the degree of 
recovery from drug resistance after adding PI3K activator to 
flotillin-2 knockdown. Therefore, the critical role of the PI3K 
pathway in this process was confirmed; the specific molec-
ular targets of the PI3K pathway were further explored. Two 
crucial catalytic PI3K subunits, p110α and p110β (p110γ 
and p110δ are mainly present in lymphocytes and could not 
be detected in these present experiments). In addition, the 
regulatory subunit (p85) and active forms of PI3K (p-PI3K) 
and p-AKT were detected. We found that p-AKT expres-
sion was downregulated; however, notably, the PI3K-related 
molecules were not changed; this contradicts our previous 
experimental results [7], which showed a downregulation 
of the expression of PI3K p110β when the flotillins were 
knocked down. This could be associated with the different 
experimental conditions in our previous experiments, where 
low ADM concentrations were still used to maintain resis-
tance. However, in this experiment, to better reflect clinical 
reality, ADM was no longer added after flotillin knockdown. 
Furthermore, the value of PIP3/PIP2 was examined, which 
could be used as a more sensitive indicator of PI3K activity 
[33]; the ratio was downregulated after flotillin knockdown. 
The PI3K pathway is positively and negatively regulated [17, 
34]. Therefore, we assessed PTEN expression and found 
that flotillin knockdown downregulated PTEN expression. 
This explains why there was no change in PI3K-related 
molecules after flotillin knockdown, whereas the PI3K/AKT 
pathway activity was downregulated. Therefore, we propose 
that tumor cells reverse drug resistance in CRC cases after 
flotillin knockdown by upregulating PTEN expression, 
downregulating PIP3/PIP2, and further inhibiting the PI3K/
AKT pathway activity. Notably, the activation of PI3K after 
flotillin-2 knockdown resulted in a complete recovery of 
drug resistance, which was significantly higher than that 
after activating PI3K in the null group. However, activating 
PI3K after flotillin-2 knockdown resulted in a higher value of 
PIP3/PIP2 than that of the corresponding null group, which 
was not observed with flotillin-1 knockdown. This indicated 
that PI3K was better activated after flotillin-2 knockdown. 
This could be because, in our experiments, we observed 
that the PI3K pathway was reactivated after flotillin-1 and 
flotillin-2 knockdown, and the upregulation of PTEN in the 
flotillin-2 knockdown group was smaller than that in the 
flotillin-1 knockdown group: the antagonism to the activa-

tion of the PI3K/AKT pathway was weaker. Furthermore, the 
interaction between flotillin-1 and flotillin-2 in this experi-
ment showed that flotillin-1 expression was downregu-
lated after flotillin-2 knockdown, whereas flotillin-2 was 
downregulated more significantly after flotillin-1 knock-
down. Similarly, the experimental results after flotillin-1 
and flotillin-2 knockdowns were inconsistent. p-AKT and 
p-extracellular signal-regulated kinase 1 (pERK) expression 
was downregulated after flotillin-2 knockdown in the breast 
cancer MCF7 cell line. However, p-AKT and p-ERK did not 
change significantly after flotillin-1 knockdown. Similar 
results were observed in the breast cancer SKBR3 cells [35]. It 
has been suggested that this discrepancy is because flotillin-2 
can directly or indirectly affect flotillin-1, as flotillin-1 was 
destabilized after flotillin-2 knockdown in experiments 
[36]. This is not entirely consistent with our experimental 
results, suggesting that the interactions between flotillins 
may be mutual. This interaction resulted in different results 
for flotillin-1 and flotillin-2 under the same experimental 
conditions; this interaction requires further investigation. In 
addition, flotillin-1 knockdown followed by the use of PI3K 
inhibitor PI3K inhibitor resulted in the downregulation of 
tumor cell resistance to a level similar to that in the parental 
cell line after using PI3K inhibitor, suggesting that flotillin-1 
knockdown combined with using PI3K inhibitor resulted in 
the complete reversal of drug resistance. Further in-depth 
studies might be a high-quality solution for reversing tumor 
cell resistance in clinical practice.

The presence of P-gp, a transmembrane protein, outside 
the lipid raft region has been reported. However, more studies 
have suggested that P-gp is present within the lipid rafts 
[37]. Changes in membrane structure-lipid rafts have been 
found to modulate P-gp activity: inducing P-gp out of the 
lipid raft region inhibits its activity [38]. Moreover, disrup-
tion in the lipid raft structure by methyl-β-cyclodextrin 
leads to P-gp displacement and loss of function [39]. This 
may be due to changes in the membrane microenvironment 
[40]. However, the use of methyl-β-cyclodextrin disrupts 
the structure of lipid rafts and simultaneously disrupts the 
fluidity and permeability of cell membranes. Previously, no 
effect of flotillin knockdown on P-gp has been reported in 
the literature. However, in our study, drug resistance was 
downregulated in all resistant tumor cells (with or without 
flotillin knockdown) after the P-gp inhibitor was applied. 
Furthermore, we found that flotillin knockdown resulted in 
the downregulation of P-gp expression. Simultaneously, an 
increase in ADM accumulation was observed, indicating a 
decrease in drug efflux, which we hypothesized to be associ-
ated with a reduction in P-gp activity. Conversely, it has been 
shown that PI3K/AKT can regulate P-gp expression; the 
exact mechanism of this regulation is not known [41, 42]. 
Therefore, further research is needed to explore the specific 
mechanisms of P-gp changes.

This study has some limitations. First, these results were 
only validated in the HCT-15 cell line; whether the same 
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results can be found in other cell lines with CRC needs 
further verification. Second, we did not obtain data using 
clinical patient specimens; therefore, additional studies are 
required. Furthermore, we found that after flotillin knock-
down, P-gp expression was downregulated, and drug resis-
tance was reversed simultaneously. At present, whether the 
P-gp change could be due to changes in lipid raft structure or 
the inhibition of the PI3K pathway is unclear; further clari-
fication is needed. Furthermore, the mechanism underlying 
the PTEN regulation of PIP3 could not be directly demon-
strated. Other modes of PIP3 regulation, such as inositol 
polyphosphate 5 phosphatase, convert PIP3 to PIP2 [43]. 
In addition, revealing the mechanism through which flotil-
lins regulate PTEN was not possible, with some studies 
suggesting that PTEN is localized in the non-lipid raft 
region and separated from signaling molecules such as PI3K 
and AKT, which are localized in lipid rafts [10, 44]. There-
fore, disrupting the lipid raft structure may lead to PTEN 
translocation and thus antagonize the PI3K/AKT pathway. 
However, the direct interaction mechanism between flotil-
lins and PTEN remains clear and will be further explored in 
subsequent experiments. In addition, studies to observe the 
effect of drug resistance reversal after flotillin knockdown 
in PTEN expression-deficient tumors and drug resistance 
reversal flotillin knockdown in vivo are lacking and need to 
be conducted.

Supplementary information is available in the online version 
of the paper.
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Supplementary Information

 
Supplementary Figure S1. HCT-15/ADM showed a significant increase in drug resistance compared with HCT-15. The application of a high dose of 
ADM (10 µg/ml) induced the recovery of resistance in the resistant cell line (HCT-15/ADM), compared with the parental strain (HCT-15). The resis-
tance index (Half-maximal inhibitory concentration (IC50) of HCT-15/ADM /IC50 of HCT-15) of HCT-15/ADM was 8.4, which indicates moderate 
resistance and can be used for subsequent experiments.

Supplementary Table S1. Effect of PI3K activator 740Y-P (50 µM) on 
PIP3/PIP2 values.
Cell line PIP3/PIP2 (×10–3) Upward Fold
HCT-15 2.5±0.1
HCT-15+740Y-P 2.9±0.3 1.1*
HCT-15/ADM 2.9±0.1
HCT-15/ADM+740Y-P 3.0±0.4 1.1 (ns)
Con 2.8±0.1
Con+740Y-P 3.1±0.3 1.1*
Flotillin-1-RNAi 2.6±0.1
Flotillin-1-RNAi+740Y-P 3.0±0.3 1.2**
Flotillin-2-RNAi 2.6±0.1
Flotillin-2-RNAi+740Y-P 3.2±0.3 1.2***

*p<0.05; **p<0.01; ***p<0.001

Supplementary Table S2. Effect of PI3K activator 740Y-P (50 µM) on 
IC50 ADM values.
Cell line IC50 (ADM µg/ml) Upward Fold
HCT-15 1.3±0.7
HCT-15+740Y-P 1.9±1.0 1.4 (ns)
HCT-15/ADM 11.1±2.3
HCT-15/ADM+740Y-P 14.1±2.5 1.3 (ns)
Con 11.8±1.9
Con+740Y-P 11.6±1.1 1.0 (ns)
Flotillin-1-RNAi 4.8±1.3
Flotillin-1-RNAi+740Y-P 7.0±1.5 1.5*
Flotillin-2-RNAi 5.9±1.3
Flotillin-2-RNAi+740Y-P 18.9±2.8 3.2***

*p<0.05; **p<0.01; ***p<0.001
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Supplementary Table S3. Effect of GDC-0941 (4 µM) on PIP3/PIP2 ratio 
values.
Cell line PIP3/PIP2 (×10–3) Downward Fold
HCT-15 2.5±0.1
HCT-15+GDC-0941 2.4±0.2 1.0 (ns)
HCT-15/ADM 2.9±0.1
HCT-15/ADM+GDC-0941 2.5±0.1 1.2*
Con 2.8±0.1
Con+GDC-0941 2.5±0.1 1.1*
Flotillin-1-RNAi 2.6±0.1
Flotillin-1-RNAi+GDC-0941 2.3±0.05 1.1*
Flotillin-2-RNAi 2.6±0.1
Flotillin-2-RNAi+GDC-0941 2.2±0.05 1.1*

*p<0.05; **p<0.01; ***p<0.001

Supplementary Table S4. Effect of GDC-0941 (4 µM) on IC50 ADM  
values.
Cell line IC50 (ADM µg/ml) Reverse Fold
HCT-15 1.3±0.7
HCT-15+GDC-0941 0.5±0.3 2.6 (ns)
HCT-15/ADM 11.1±2.3
HCT-15/ADM+GDC-0941 1.4±0.3 7.8***
Con 11.9±1.9
Con+GDC-0941 1.6±0.3 7.4***
Flotillin-1-RNAi 4.8±1.3
Flotillin-1-RNAi+GDC-0941 0.3±0.2 16.8***
Flotillin-2-RNAi 5.9±1.3
Flotillin-2-RNAi+GDC-0941 2.2±1.0 2.7**

*p<0.05; **p<0.01; ***p<0.001

Supplementary Table S5. Effect of P-gp inhibitor Tariquidar (1 µM) on 
ADM cellular accumulation.

Cell line ADM level  
(Fluorescence units)

Increasing  
Multiple

HCT-15 63.2±8.9
HCT-15+ Tariquidar 146.0±11.8 2.3***
HCT-15/ADM 6.1±1.7
HCT-15/ADM+Tariquidar 134.0±9.1 22.0***
Con 4.3±0.8
Con+ Tariquidar 133.2±6.3 31.0***
Flotillin-1-RNAi 7.3±0.7
Flotillin-1-RNAi+Tariquidar 144.5±3.8 19.8***
Flotillin-2-RNAi 9.2±1.6
Flotillin-2-RNAi+Tariquidar 175.7±4.3 19.1***

*p<0.05; **p<0.01; ***p<0.001

Supplementary Table S6. Effect of P-gp inhibitor Tariquidar (1 µM) on IC50 
ADM values.
Cell line IC50 (ADM µg/ml) Reverse Fold
HCT-15 0.25±0.06
HCT-15+Tariquidar 0.16±0.06 1.6 (ns)
HCT-15/ADM 7.6±0.1
HCT-15/ADM+Tariquidar 0.11±0.04 69.1***
Con 9.8±2.1
Con+ Tariquidar 0.09±0.03 108.9***
Flotillin-1-RNAi 3.1±0.7
Flotillin-1-RNAi+Tariquidar 0.13±0.02 23.8***
Flotillin-2-RNAi 2.8±1.1
Flotillin-2-RNAi+Tariquidar 0.22±0.09 12.7***

*p<0.05; **p<0.01; ***p<0.001


