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Abstract. We aimed to investigate whether environmental enrichment (EE) would alter possible 
adverse effects of chronic unpredictable mild stress (CUMS) in elderly rats regarding corticosterone 
levels, stress-related gene expressions in some brain regions, and learning and memory. Wistar  male 
rats (over 20 months) weighing 450–550 g were housed in enriched or standard cages for the dura-
tion of the study (10 weeks). After 8 weeks of CUMS application, body weight gain, adrenal weight, 
and corticosterone levels were measured. Morris water maze (MWM), and novel object recognition 
test were performed. Glucocorticoid receptor (GR), corticotropin-releasing hormone (CRH), and 
corticotropin-releasing hormone receptor 1 (CRHR1) expression levels were determined in the hy-
pothalamus and hippocampus. In the stress group, body weights decreased over time. Regarding the 
distance swum by rats to find the platform in the MWM, while there was no significant difference 
between the 3rd and 4th days in the EE+CUMS group, the decrease continued until the 4th day in the 
standard control (SC)+CUMS group. Stress application reduced the GR and CRHR1 gene expressions 
in the hypothalamus. We conclude that chronic stress and EE caused brain region-specific changes, 
thus affecting the neurobiological and cognitive functions in the elderly. In this respect, our study 
will contribute to neurobiological and neurodegenerative studies on aging.
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•	 EE has a positive effect on learning in the stressed group in MWM in aged rats
•	 Stress caused specific changes in CRH, CRHR1, and GR mRNA levels
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Introduction

Stress affects cognitive processes such as learning and 
memory (Klier and Buratto 2020) and plays a negative role 

in the quality of life of living organisms (Kim and Diamond 
2002). Chronic stress exposure causes functional and mor-
phological impairments in various brain regions such as 
the hippocampus (HC) and hypothalamus (HT) in animals 
(Lupien et al. 2009; Leite et al. 2023) and these changes have 
adverse effects on learning, memory recall, and retention as 
well as decision-making and behaviors (Herman et al. 2005; 
McEwen 2006; McCallum et al. 2024). Stress also increases 
the severity of degeneration in neuronal structures, the im-
pairments in cognitive functions, and peripheral circulation, 
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related to aging. Long-term exposure to stress hormones 
increases the effects of aging (Yau et al. 1995; Aguilera 2011; 
Borges et al. 2023). Furthermore, stress was reported to be 
associated with accelerated epigenetic aging (Harvanek et 
al. 2021).

Many studies reported the neuroprotective effects of 
environmental enrichment (EE) in neurodegenerative dis-
eases such as Parkinson’s disease. Although the molecular 
mechanisms underlying such effects are not yet completely 
understood, modulation of dopaminergic, cholinergic, gluta-
matergic, and GABAergic systems and increased expression 
of neurotrophic factors i.e. BDNF and GDNF are considered 
to play a role in these effects (Alarcón et al. 2023). EE has also 
been reported to have many positive effects on rodent models 
of dementia, with improved cognitive function i.e. learning 
and memory, and alleviated anxiety levels (Mohd Sahini et 
al. 2024). EE improves learning and memory and positively 
affects cognition in aging (Harati et al. 2011; Speisman et al. 
2013; Cortese et al. 2018). EE is the most frequently used ex-
perimental environment in rodents to show increased brain 
plasticity and neurogenesis (Speisman et al. 2013; Cortese 
et al. 2018). Moreover, EE increases glucocorticoid receptor 
(GR) expression in the hippocampus, regulates hypothalamic 
synthesis of corticotropin-releasing hormone (CRH), alters 
the hypothalamic-pituitary-adrenocortical (HPA) axis 
function (Issa et al. 1990; van Praag et al. 2000; Fox et al. 
2006). It also increases brain weight, dendritic branching, 
and synaptogenesis (Leggio et al. 2005; Rossi et al. 2006). 

In adult rats, EE is known to attenuate the detrimental 
effects of chronic stress (Leggio et al. 2005; Hutchinson et 
al. 2012). The timing and duration of the onset of EE may 
alter its impact on old age. Elderly rats exposed to lifelong 
EE show better performance in the water maze than elderly 
rats exposed to late EE. Although late-onset EE is not as 
beneficial as adult-onset EE, it does mitigate the memory 
loss associated with aging (Kumar et al. 2012). This result 
shows that late-onset EE applications also yield favorable 
results (Issa et al. 1990; Kobayashi et al. 2002; Kumar et al. 
2012; Speisman et al. 2013). 

Although there are many studies examining the effects 
of EE on stress-related changes, the results vary widely and 
the mechanisms underlying such effects are not fully under-
stood (Joushi et al. 2021; Dandi et al. 2023, 2024; Vaquero-
Rodríguez et al. 2023). Furthermore, the effects of EE on 
stress-related changes in elderly rats are not well known, 
and studies in this area are limited. Therefore we aimed 
to investigate the possible impact of EE on chronic stress-
related behavioral, physiological, and molecular changes 
in elderly rats. We hypothesize that EE will mitigate the 
adverse effects of chronic unpredictable stress on the physi-
ological, behavioral, and molecular aspects of aged rats. By 
testing these hypotheses, we aim to provide insights into the 
potential therapeutic effects of EE in counteracting the nega-

tive consequences of chronic stress on both physiological 
parameters and molecular processes, ultimately influencing 
cognitive function in aged rats. For this purpose, data such 
as body weights, corticosterone levels, and adrenal weights 
were measured after a mild stress protocol applied to aged 
rats housed in standard cages and in EE conditions. Molecu-
lar mechanisms related to stress response were examined in 
brain regions such as the hypothalamus and hippocampus. 
CRH, CRHR1, and GR gene expression levels were deter-
mined in the same regions. Furthermore, the learning and 
memory abilities of rats were evaluated using MWM and 
new object recognition (NOR) tests.

Materials and Methods

Experimental animals and housing conditions

The experimental study was approved by the Local Ethics 
Committee for Animal Experiments of Bagcilar Training 
and Research Hospital (Project 95. board/2019-48 dated 
29.12.2019). Experiments were conducted following the 
National Institutes of Health (NIH) Guide for the Care and 
Use of Laboratory Animals.

The study involved 32 male Wistar Hannover rats aged 
21 months with an average weight of 450–550 g. The aver-
age laboratory rat lives approximately three years (Suter et 
al. 1979; Ghasemi et al. 2021) and 20–22 months of rats 
are considered aged and used in the experimental studies 
(Stanley and Shetty 2004; Kumar et al. 2012). All animals 
were born and maintained in the same laboratory under the 
same housing conditions until the study. 

The rats were housed under standard laboratory condi-
tions with 50–60% humidity, 22 ± 2°C temperature, 15 cycles 
of ventilation per hour, and 12 hours of light and dark cycle 
(lights on, 06:00 to 18:00). Animals were fed ad libitum. Food 
pellets and 750 ml drinker cups were placed on a stainless-
steel wire grid (PLEXX, Netherlands). Body weights were 
measured (Kern FCB 12K1, Germany) every ten days. 
Thirty-two rats were randomly divided into 4 groups with 8 
animals in each group (Table 1). The standard cage (SC) and 
SC+chronic unpredictable mild stress (CUMS) groups were 
housed in 425×265×180 mm polycarbonate conventional 
Type 3H cages (PLEXX, The Netherlands) in pairs. The EE 
and EE+CUMS groups were housed in a plastic living area 
measuring 110×75×70 cm with 8 rats. Animals had 2 weeks 
adaptation period to standard and enriched housing condi-
tions. After the 15 day adaptation period, the EE+CUMS 
and SC+CUMS groups were taken to another room until 
the end of the experiment to prevent other groups from be-
ing affected by stressors and exposed to CUMS for 8 weeks 
starting at the same time. Afterwards behavioral experiment 
was carried out for 2 weeks. Blood samples were taken before 
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the behavioral experiments and after the behavioral experi-
ments finished, animals were killed. The exact dates of each 
procedure in the experiment are shown in the Table S1 in 
Supplementary material. 

Chronic unpredictable mild stress protocol

The chronic unpredictable mild stress protocol described 
by Willner et al. (1987) was modified and applied (Willner 
et al. 1987, 1992). The following stressors (Table 2) were 
alternated to prevent adaptation. Care was taken to ensure 
that the same stressor was not applied on two consecutive 
days and that the order of stressors was different. 

The stressors were applied randomly to the animals in 
the SC+CUMS group and the EE+CUMS group, for 8 weeks 
(Jeong 2006; Castelhano-Carlos et al. 2014). The CUMS 
protocol was performed in a separate room to avoid affecting 
the SC and EE groups with stressors.

Environmental enrichment protocol

A 110×75×70 cm living area was created for the EE groups 
(Bakos et al. 2009; Castelhano-Carlos et al. 2014), which 
included materials that increased physical activity and social 
interaction (Fig. S1). A standard cage (425×265×180 mm) 
was placed there to provide them with food and water. For 

the adaptation period, the EE protocol was started 2 weeks 
before the 8-week stress protocol in the EE and EE+CUMS 
groups. The EE materials were cleaned once a  week. The 
location of the materials was changed after each cleaning.

Behavioral experiments

At the end of the experiment, the Morris Water Maze 
(MWM) test (Morris 1984) and the Novel Object Recogni-
tion (NOR) test (Bevins and Besheer 2006) were performed 
to evaluate hippocampus-dependent learning and memory 
processes. Three days before the start of the tests, rats were 
kept in the experimental room for 15 minutes a  day and 
moved to the room 1 hour before the tests. The animals in 
different groups were tested in random order. Recordings 
were analyzed using the NOLDUS video tracking system 
and appropriate software (Ethovision XT, Noldus Informa-
tion Technology, Netherlands). To check the accuracy of 
the results obtained from video tracking software, some 
recordings, which were chosen randomly, were scored by 
an observer blind to experimental conditions. 

MWM test

MWM test was performed in a standard pool with a diameter 
of 150 cm and a depth of 60 cm (Morris 1984). The pool was 

Table 2. Stressors applied in the chronic unpredictable mild stress protocol

Applied stressors Duration of 
applications (h)

Crowded grouping in a limited area 4
Holding in a tilted cage (30°) 4
Exposure to cat noise 3
Stay on wet bedding (100 g corn cobs + 200 ml water) 24
Housing in a 15 cm high cage with hot water (40°C) without the bedding material 0.5
Housing with a different group of animals by swapping partners 14
Cage housing without a water bottle 15
Food deprivation followed by 1 h exposure to inaccessible food 14
Water deprivation followed by exposure to an empty bottle for 1 h 14
Light/dark cycle reversal 24
Light/dark application at 30-min intervals 10

Table 1. Animal groups and the procedures 

Group Protocols applied
SC Housed in standard cages.
SC+CUMS Housed in standard cages + stressors in the chronic unpredictable mild stress protocol were applied.
EE Environmental enrichment protocol was applied. They were not exposed to any stressors during the experiment.
EE+CUMS Environmental enrichment protocol was applied + stressors in the chronic unpredictable mild stress protocol were 

applied.
SC, standard cage; CUMS, chronic unpredictable mild stress; EE, environmental enrichment.
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hypothetically divided into four equal quadrants which were 
numbered. The pool was filled with water to rise 1.5 cm above 
a 15 cm wide platform placed equidistant from the center and 
walls into the center of one of the quadrants (number 4). The 
water temperature was kept at 24°C and the platform was made 
invisible by adding a non-toxic paint to the water. The MWM 
consisted of learning exercises and memory testing phases. 
During the learning phase, each rat was tested four times a day 
at 10-minute intervals. In each exercise, the rats were released 
into the water from a different quadrant, facing the wall of the 
pool. The rats were supposed to find the platform by swimming. 
Once the rats found the platform they were allowed to stay on 
the platform for 30 s. Each exercise lasted a maximum of 60 s. 
At the end of this time, the rat that could not find the platform 
was directed to the platform and was expected to stay on the 
platform for 15 s. In the memory test, the platform was removed 
from the pool on the day following the learning exercises (day 
5). Rats started to swim from the quadrant (number 2) furthest 
from the platform in the learning exercises. Rats were allowed 
to swim for the duration of the test (60 s).

Novel object recognition test

The novel object recognition test was conducted in 
a  50×50×50  cm Plexiglas open-top setup in a  semi-dark 
environment. The test was conducted over a three-day period 
including acclimatisation, exercise (E) and test (T) days. 
During the familiarisation period, the rats were allowed to 
acclimatise to the apparatus for 10 min without any objects 
in the environment. Training and testing consisted of a three-
minute period each and were repeated at 24-h intervals. In 
the training phase, the same two objects were placed in the 
apparatus and the animal was allowed to recognize these 
objects by moving freely (E). After 24 h, one of the objects 
presented in E was changed and the rat was again placed in 
the same apparatus and allowed to spend free time with the 
two objects (T). At T, the duration and the frequency of the 
interest in both objects were measured. The NOR discrimi-
nation index was calculated by using the following formula; 
time of novel object exploration minus time of familiar object 
exploration divided by time of novel plus familiar object 
exploration, multiplied by 100 (Brivio et al. 2020).

Collection of blood and tissue samples

Before the behavioral experiments, blood samples (0.5–1 ml) 
were taken from the jugular vein, at the onset of darkness 
(18:00–19:00 h) to determine the highest corticosterone level 
(zenith) and at the onset of light (06:00–07:00 h) to determine 
the lowest corticosterone level (nadir). Serum was obtained 
by centrifugation at 14,000 rpm for 10 min. 

After the behavioral experiments finished the animals 
were killed (by decapitation without anesthesia). Afterwards, 

the brain was removed and placed on dry ice and then in the 
brain matrix (Electron Microscopy Sciences, Hatfield, PA, 
catalog No. 69026-C). From 2 mm thick brain slices whole 
hypothalamus and hippocampus sections were removed 
(Paxinos and Watson 2007), and stored at −80°C.

Determination of corticosterone levels

Serum corticosterone levels were measured in serum sam-
ples by the ELISA method according to the manufacturer’s 
protocol (ENZO Corticosterone ELISA Kit Cat No. ADI-
901-097, PA, USA). 

Real-time polymerase chain reaction (RT-PCR)

Real-time PCR was carried out to determine CRH, GR, 
and CRHR1 mRNA levels in relevant brain regions. RNA 
isolation from tissues was performed using a commercial 
kit (Jena Bioscience Cat. No. PP-210L) according to the kit 
protocol. A260/A280 and A260/A230 ratios were used to 
determine the purity and quality of the nucleic acid samples 
(Lucena-Aguilar et al. 2016). Total RNA was measured using 
a nanodrop spectrophotometer (Implen NanoPhotometer 
NP80) prior to cDNA synthesis. After RNA quantification, 
cDNA synthesis was performed using 1 ng/µl RNA from 
each sample. Jena Bioscience brand SCRIPT cDNA Synthesis 
Kit (Cat. No. PCR-511S) was used to sythesise first-strand 
complementary DNA (cDNA) from total RNA. The real-time 
gene expression was performed on an RT-PCR instrument 
(ABI 7500 Real-Time PCR Systems, Applied Biosystems) 
using the qPCR ProbesMaster (Jena Bioscience, Germany) 
kit (Cat. No. PCR-360L). TaqMan Gene Expression assay 
kits (Thermofisher Scientific, Waltham, USA) (https://www.
thermofisher.com/tr/en/home/life-science/pcr/real-time-
pcr/real-time-pcr-assays/taqman-gene-expression.html) 
containing the primer-probe mix for each gene were as 
follows; GAPDH(Rn01775763-g1), GR (Rn00561369-m1), 
CRH (Rn01462137-m1) and CRHR1 (Rn00578611-m1). 
GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) gene 
was used as a housekeeping gene. 

The samples were amplified in the RT-PCR device accord-
ing to the conditions in the protocol. And threshold cycle 
(Ct) values were determined. The mRNA expression levels 
of tested genes were normalized to those of GAPDH (ΔCt). 
The data were analyzed using the ΔΔCt method (Livak and 
Schmittgen 2001). Fold changes of genes were calculated 
using the expression 2−ΔΔCt with respect to the mean value 
of ΔCt in the control group.

Statistics

SPSS 22.0 program was used for statistical analysis. Accord-
ing to Shapiro-Wilk and histogram graphs, it was determined 
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whether the data were normally distributed. Where the 
normality assumption was not met, the Mann-Whitney 
U  test (corticosterone levels at each point, hypothalamus 
gene expressions, hippocampus CRH expression) and Wil-
coxon Test (corticosterone repeated measures) were used. 
If the normality assumption was met, a  two-way analysis 
of variance (relative adrenal weight, NOR and MWM tests, 
hippocampus GR, and CRHR1 expressions) and a two-way 
analysis of variance for repeated measures (body weight, 
MWM learning parameters) were used. A factorial design 
was applied 2×2 (stress effect: CUMS (+) − CUMS (−)) × 
(housing effect: enriched cage − standard cage). The signifi-
cance value was set at p ≤ 0.05.

Results

Body weight gain

The main effect of time on body weight gain was significant 
(F(4,112) = 25.92, p = 0.000). However, stress (F(1,28) = 1.74, 
p = 0.20) and EE (F(1,28) = 0.27, p = 0.61) had no significant 
effect on body weights. The interaction of stress and time was 
significant regarding body weights (F(4,120) = 20.92, p = 0.000).

The change in body weight over time in the unstressed 
(F(4,27) = 5.38, p = 0.003) and stressed (F(4,27) = 56.38, p = 
0.000) groups was statistically significant. The body weight 
in the stressed group decreased over time. However, there 
was no periodic decrease in the body weights of non-stressed 
rats and no significant difference between the initial and 
final weights (Fig. 1).

Relative adrenal weight

Stress and enrichment had no significant effect on the 
relative adrenal weights of animals (F(1,28) = 1.01, p = 0.32), 
(F(1,28) = 0.18, p = 0.67). Furthermore, the interaction be-
tween stress and EE was not significant, (F(1,28) = 3.68, p = 
0.65) (Fig. S2A). 

Corticosterone levels

A statistically significant difference was observed between 
the nadir and zenith corticosterone levels (Z = −3.4, p = 
0.001) (Fig. 2). Zenith’s corticosterone levels were higher 
than those of nadir levels. Stress did not affect nadir (U = 
63, p = 0.18) and zenith corticosterone levels (U = 71.5, 
p = 0.51). Similarly, EE did not affect nadir (U = 81, p = 
0.68) and zenith corticosterone levels (U = 75.5, p = 0.65) 
(Fig. 2). 

Behavioral tests

NOR test 

The main effects of stress (F(1,28) = 1.23, p = 0.28) and EE 
(F(1,28) = 1.53, p = 0.23), and also stress X EE interaction 
(F(1,28)  = 0.01, p  = 0.94) were not significant on NOR 
discrimination index and the time spent exploring novel 
and familiar objects (Fig. S2B, S2C). Data are presented as 
mean ± s.e.m.

Figure 1. Change of body weight averages over time. 
The stress-time interaction is significant, p = 0.000. 
A. The body weight of animals decreased over time 
in the stressed groups, p  = 0.000. B. The effect of 
time was significant on body weights of unstressed 
groups, p = 0.003. However, there was no periodic 
decrease in the body weight of unstressed animals. 
Differences between the letters show the significance 
of the body weight measurements. Data are presented 
as mean ± S.E.M.

A B

Figure 2. Serum corticosterone levels (ng/ml) at the end of the 
experimental period at nadir (6–7 a.m.) and zenith (6–7 p.m.). 
Corticosterone levels of animals were higher at the zenith than 
the nadir; xx p = 0.000 indicating the general effect of time. Data is 
presented by box plots where the central lines represent the median, 
and the whiskers represent the minimum and maximum values. 
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Figure 4. MWM probe test. Stress and EE had no significant effect on the parameters measured in the probe test. A. Distance trave-
led in the MWM probe test. B. Time spent in the target quadrant in the MWM memory test. C. MWM probe test average velocity 
parameter. Data is presented by box plots where the central lines represent the median, and the whiskers represent the minimum and 
maximum values. 

Figure 3. Morris water maze (MWM) training test. A. Distance traveled before finding the platform in MWM test. Stress×housing×time 
interaction is significant, a,b,c,d p = 0.032. Different letters (a,b,c,d) show significant differences in distance traveled between the days for 
each group. The decrease in distance between days in each group was different. B. Time to find the platform in MWM training trials. 
The main effect of time was significant for all groups. Escape latency decreased over the days of training trials for all groups, xx p ≤ 0.001, 
indicating the main effect of the time C. MWM training trials’ average velocity values. Data are presented as mean ± s.e.m.

A B C

MWM test 

In the training part of the test, the interaction of stress, 
EE, and time was significant regarding the distance moved 
until the rats found the platform in the learning exercises 
(F(3,81) = 3,51, p = 0.03). In terms of groups, the decrease 
in distance between days in each group was different. 
Regarding stressed groups, while there was no significant 
difference between the 3rd and 4th days in the EE group, 
the decrease continued until the 4th day in the SC group. 
Among the non-stress groups, there was no significant dif-
ference between the 3rd and 4th days in the EE group and 
between the 2nd, 3rd, and 4th days in the SC group (Fig. 
3A). The main effect of time for rats to find the platform 
(escape latency) was significant (F(3,84) = 33.16, p = 0.000). 

However, stress (F(1,28)  = 0.94, p  = 0.34) and housing 
(F(1,28) = 0.22, p = 0.64) had no significant effect on the 
time to find the platform (Fig. 3B). The effect of time on 
rats’ average velocity was insignificant (F(3,63) = 1.71, p = 
0.20). Also, stress (F(1,21)  = 3.93, p  = 0.06) and housing 
(F(1,21) = 1.37, p = 0.25) had no significant effect on mean 
velocity (Fig. 3C). 

Stress (F(1,27)  = 0.02, p  = 0.90) and housing (F(1,27)  = 
1.2, p = 0.28) had no statistically significant effect on the 
distance traveled in the probe test (Fig. 4A). Stress (U = 112, 
p = 0.77) and housing (U = 118.5, p = 0.95) did not affect the 
time spent in the target quadrant (Fig. 4B). Stress (F(1,27) = 
0.01, p = 0.93) and housing (F(1,27) = 1.28, p = 0.27) had no 
statistically significant effect on the average speed of rats in 
the probe test (Fig. 4C).

A B C
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Gene expressions

Hypothalamic GR, CRH, and CRHR1 gene expressions 

Stress factor had a significant effect on HT-GR gene expres-
sion (U = 55, p = 0.02) (Fig. 5) and HT-CRHR1 gene expres-
sion (U = 47, p = 0.01); stress decreased the expression of 
these genes. However, EE did not have a significant effect on 
GR (U = 102, p = 0.68) and CRHR1 gene expressions (U = 
91, p = 0.56) in the hypothalamus (Fig. 5A). Stress (U = 89, 
p = 0.5) and EE (U = 82, p = 0.33) had no significant effect 
on HT-CRH gene expression (Fig. S2D). 

Hippocampus GR, CRH, and CRHR1 gene expressions 

Stress had no significant effect on HC-CRH (U = 117, p = 
0.92) expression. Although not statistically significant, HC-
CRH gene expression tended to decrease with EE treatment 
(U = 71, p = 0.08) (Fig. 5B). 

Stress had no significant effect on HC-GR (F (1,28) = 0.07, 
p = 0.79), HC-CRHR1 (F(1,28) = 0.15, p = 0.70) and EE had 
no significant effect on HC-GR (F(1,28) = 0.01, p  = 0.96) 
and HC-CRHR1 (F(1,28) = 0.14, p = 0.72) gene expressions 
(Fig. S2E,F). 

Discussion

We found that CUMS exposure affected BW, learning in 
MWM and stress-related gene expressions in a brain region 
specific manner in aged rats. EE application had a positive 
effect on learning in MWM in stressed animals but did not 
show any other impact on the adverse effects of CUMS 
exposure. 

A decrease in body weight gain was observed over time 
compared to the initial weight in the animals subjected to 
CUMS group. A decrease in body weight indicates the impact 
of stress exposure (Westenbroek et al. 2005). In line with our 
findings, it has been reported in previous studies that body 
weight decreased in the animals subjected to CUMS (Forbes 
et al. 1996; Nielsen et al. 2000). 

A statistically significant difference was observed between 
the nadir and zenith corticosterone levels. This shows that 
diurnal corticosterone secretion works in its normal rhythm 
(Lightman et al. 2020). However, in our study, no statisti-
cally significant effect of stress and housing on the nadir and 
zenith corticosterone levels was observed (Bourke and Neigh 
2011). It is known that stress and EE may affect corticoster-
one levels in rats (Moncek et al. 2004; Castelhano-Carlos 
et al. 2014). However, we may fail to capture the dynamic 
nature of the HPA axis drive by only conducting end-point 
hormone sampling. Nevertheless, neurochemical and endo-
crine changes may not always reflect the impact of chronic 
stress (Harris 1997; Moncek et al. 2004; Westenbroek et al. 
2005). Similar to our results, some studies have shown that 
stress did not affect adrenal weight and corticosterone levels 
in rats subjected to CUMS (Harris 1997; Bourke and Neigh 
2011). Although there is no change in adrenal weight and 
corticosterone levels, decreased body weight is used as an 
indicator of stress exposure (Häidkind et al. 2003; Westen-
broek et al. 2005; Eraslan et al. 2023). In our study, although 
corticosterone levels and adrenal weights did not increase 
after the stress treatment, weight loss over time in the CUMS 
exposed group indicates that the applied stress was effective.

It was found that the effect of time was statistically sig-
nificant on the distance traveled until finding the platform, 
time to find the platform, and time spent on the platform 
quadrant during the learning phase of the MWM test. 

Figure 5. Effects of stress and EE on gene expressions in the brain. A. Hypothalamus glucocorticoid receptor (GR) and corticotropin-
releasing hormone receptor 1 (CRHR1) expressions. Stress decreased the expression of GR, * p = 0.02, and CRHR1, ** p = 0.01, indicating 
the main effect of stress. B. EE tended to decrease hippocampus corticotropin-releasing hormone (CRH) gene expression, p = 0.08. Data 
is presented by box plots where the central lines represent the median, and the whiskers represent the minimum and maximum values. 
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The decrease in the values of these parameters over time 
shows that learning has taken place in all animals (Morris 
1984). In the stressed animals, while a significant decrease 
continued until the last day in the SC+CUMS group, the 
average distance traveled decreased until the third day in the 
EE+CUMS group. T﻿his shows that learning was completed 
earlier in the stressed EE group, whereas, learning was 
prolonged until the last day in the SC group. These results 
suggest that EE applications may have a positive impact on 
learning in stressed animals. On the other hand, there was 
no significant difference in the mean distance traveled until 
finding the platform between the third and fourth days in the 
non-stressful EE group and between the second, third, and 
fourth days in the SC group. This finding may indicate that 
in the absence of stress, the application of EE does not affect 
learning processes. Previous studies have shown that late-
term and early-term EE applications have different effects 
on learning processes in aged rats (Simpson and Kelly 2011; 
Fuchs et al. 2016).These differences can be explained by the 
fact that the other studies started the EE application at an 
earlier period or applied it for a longer period. In addition, 
the distance traveled in the non-stressed SC group did not 
change after the second day, but the decrease in the distance 
traveled in the stressed SC group continued until the last 
day can be evaluated in the direction that stress prolongs the 
learning process. Similarly, studies are reporting that stress 
prolongs the learning process in MWM (Hölscher 1999; 
Hu et al. 2017). In the NOR test, no statistically significant 
difference was found between the groups as a result of the 
CUMS and EE treatments. This may be related to the nature 
of the stressors and EE applications and the period of ap-
plication (Burke et al. 2010). 

Various results have been reported about the effect of 
stress and EE on gene expressions in different brain regions 
(Olsson et al. 1994; Kentner et al. 2018). While some of 
these results support our results (Francis et al. 2002; Fan 
et al. 2021), some of them are not in accordance with ours 
(Sampedro-Piquero et al. 2014; Wang et al. 2014). From the 
results of previous and our studies, we suggest that changes in 
gene expressions are specific to the type and duration of treat-
ments, and brain region investigated. We found that chronic 
stress decreased GR gene expression in the hypothalamus in 
aged rats, whereas EE did not have an effect. Although some 
studies have reported that chronic stress does not change 
GR mRNA levels in the hypothalamus (Sapolsky et al. 1984; 
Mizoguchi et al. 2003), there are studies in which stress ap-
plication decreased GR gene expression in the hypothalamus 
(Herman et al. 1995; Lu et al. 2015). Different results in 
mRNA GR levels in the hypothalamus after different stress 
treatments reveal that receptor expression levels are stressor-
specific. Changes in GR and corticosterone levels may not be 
parallel to each other. Similar to our results it has also been 
shown that changes in GR levels in brain regions may not be 

related to the HPA axis, ACTH and corticosterone responses 
(Wei et al. 2004; Gądek-Michalska et al. 2013). 

According to our study, chronic stress did not affect 
CRH gene expression but decreased CRHR1 gene expres-
sion in the hypothalamus in aged rats. In contrast to our 
findings, chronic stress has been reported to increase CRH 
and CRHR1 gene expression in the hypothalamus (Herman 
et al. 1995; Imaki et al. 1996; Eraslan et al. 2015). However, 
CRH mRNA level in the PVN of mice subjected to acute 
restraint stress increased after 2 h and decreased to basal 
level after 4 h (Greetfeld et al. 2009). In a stress comparison 
study between mice and rats, CRHR1 mRNA expression in 
the PVN increased in rats but did not change in mice (Imaki 
et al. 2003). These results are compatible with our data. In 
our study, the decrease in HT CRHR1 in the stress group 
and the prolongation of learning until the last day in the 
stressed SC group in the MWM test may be related. In sup-
port of this interpretation, a study in mice reported that the 
interaction of CRH with CRHR1 is not necessary to affect 
memory performance (Contarino et al. 1999). EE factor has 
no significant effect on CRH and CRHR1 gene expression in 
our study. Consistent with our results, studies have reported 
that EE does not affect CRH (Francis et al. 2002) and CRHR1 
(Fan et al. 2021) gene expression in the hypothalamus. 

In previous studies, it was reported that different stress 
treatments decreased GR gene expression in HC (Kitraki et 
al. 1999; Park et al. 2015; Shilpa et al. 2017). Consistent with 
our study, stress application did not alter GR gene expres-
sion in HC (Lam et al. 2019; Palumbo et al. 2020; Osacka 
et al. 2021). 

In support of the lack of effect of EE on GR mRNA in 
the hippocampus in our study, another study reported that 
EE did not affect GR gene expression (Francis et al. 2002). 

In our study, chronic stress had no significant effect on 
GR, CRH, and CRHR1 gene expression in the hippocam-
pus. Previous studies had various results about the effect of 
stress on these gene expressions. The effects of stress on the 
hippocampus are variable and complex and are affected by 
the duration of stress, age, and gender (McEwen et al. 2011). 

In our study, EE application tended to reduce CRH gene 
expression in the hippocampus of aged rats. Moreover, learn-
ing in the MWM was completed on the 3rd day in the EE 
groups. It was observed to continue until the last day in the 
non-EE groups. The increase in hippocampus-dependent 
cognitive function may be related to the decreasing trend in 
CRH gene expression in HC after EE application. Further 
studies are needed (Bakshi and Kalin 2000) to elucidate the 
reasons for this situation. 

This study has potential limitations. Corticosterone levels 
could have been measured at various sampling points dur-
ing the stress application period. Comparing male rats with 
females and aged rats with younger groups would make 
this work more comprehensive. Furthermore, we detected 
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receptor mRNA levels which are not necessarily predictive of 
protein levels. Dif﻿ferences in mRNA do not always translate 
to differences in proteins. Therefore, further studies are re-
quired to determine whether or not the alterations detected 
in gene expressions are linked with the functional receptors. 

In our study, the decrease in body weights over time in the 
stress-treated groups indicates that the CUMS was effective. 
In MWM, the EE treatment was found to have a positive ef-
fect on learning in the stressed group. It was observed that 
the effects of stress and EE on GR, CRH, and CRHR1 mRNA 
levels occurred in different ways specific to brain region, 
type, and duration of stress, nature of EE, and application 
period. In conclusion, we can say that chronic stress and EE 
affect neurobiological and cognitive functions in the elderly. 
More studies are needed to explain exactly how these effects 
occur in terms of the underlying mechanisms. We believe 
that this study may make a contribution to neurobiological 
and neurodegenerative research on aging.
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