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Prothymosin α is an extremely abundant nuclear oncoprotein-transcription factor essential for cell cycle progression and

proliferation that has been recently suggested as an anti-apoptotic factor. Similarly to other oncoproteins, prothymosin α is

overexpressed in a variety of cancer tissues and cell lines. The present review highlights on the proliferation and

anti-apoptotic properties of prothymosin α and its possible role in cancer development.
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Prothymosin α (ProTα) is a 12.5 kDa acidic nuclear pro-

tein, first isolated from rat thymus as the putative precursor of

thymosin α1, and initially considered as a thymic immuno-

regulatory hormone [1, 2, 3]. In humans, ProTα is encoded

by a gene family of six members. One of them contains

introns, exons and classic regulatory signals, while the re-

maining five are intronless [4]. ProTα gene is upregulated by

c-myc [5–8], E2F-1 [8] and human papilloma virus type 16

E6 oncogene [9], and downregulated by p53 tumor suppres-

sor protein [10]. The wide distribution among mammalian

tissues as well as the high conservation during evolution indi-

cate an essential biological role of the protein [11, 12]. Previ-

ous studies performed during the last two decades have dem-

onstrated a plethora of intracellular and extracellular

functions of ProTα [13]. Today is widely accepted that the

fundamental effects of the protein are closely related to cell

proliferation and cell death (apoptosis). The present review

highlights on the proliferation and anti-apoptotic properties

of ProTα and its possible involvement in cancer develop-

ment.

Prothymosin α and proliferation

Previous studies have demonstrated the crucial intra-

cellular role of ProTα in cell cycle progression, proliferation

and differentiation. ProTα is considered a chromatin-remod-

eling protein that modulates the interaction of histone H1

with chromatin [14]. The association of ProTα with the

oncoprotein SET has been implicated in chromatin decon-

densation [15]. In the interphase nucleus the protein exhibits

a punctuated nuclear distribution associated with transcrip-

tion sites (PML and CstF64 proteins), while during mitosis

ProTα is colocalized with alpha-tubulin in the mitotic spindle

[16, 17]. ProTα mRNA expression is induced at the end of S

and G2/M phases of cell cycle, in parallel with cyclin B levels

[3]. ProTα transcripts are induced by growth stimulation of

resting lymphocytes, NIH3T3 fibroblasts [4], thymocytes,

and hepatocytes during liver regeneration [18]. ProTα
mRNA expression is increased during the early post-

implantation stages of mouse embryogenesis. ProTα gene is

expressed exclusively in ectodermal and mesodermal struc-

tures, but not in endodermal regions [19]. Overexpression of

ProTα has been shown to accelerate proliferation and retard

differentiation in HL-60 cells [20]. Knockdown of ProTα
synthesis by antisense oligonucleotides leads to cell division

arrest [21].

ProTα has been linked to various transcriptional activation

events that mediate critical stages of cell proliferation. The

protein interacts with the CREB-binding protein, a versatile

transcription co-activator, and stimulates AP1- and

NF-κB-dependent transcription [22]. NF-κB activation is a

well known transcription factor that mediates cellular trans-

formation and induces tumorigenesis [23]. Epstein-Barr vi-

rus nuclear antigen 3C and ProTα interact with the p300
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transcriptional coactivator and cooperate in the regulation of

transcription [24]. ProTα selectively enhances estrogen re-

ceptor (ER) transcriptional activity and increases cell prolif-

eration, while is itself upregulated by the estrogen-ER com-

plex [25–27]. Furthermore, ProTα transcriptional activation

by estradiol E2 has been implicated in the differentiation of

human neuroblastoma SK-ER3 cells [28]. The tyro-

sine-phosphorylated signal transducer and activator of tran-

scription-3 (STAT3) has been implicated in the induction of

cell cycle progression and cellular transformation and pre-

vention of apoptosis [29, 30]. ProTα interacts with STAT3

leading to STAT-3 translocation from the cytoplasm to the

nucleus [10]. The phosphorylated STAT3 enter the nucleus

and working coordinately with other transcriptional co-acti-

vators or transcription factors lead to increased tran-

scriptional initiation. Activation of STAT3 signalling is ac-

companied by upregulation of target genes implicated in cell

proliferation (cyclin D1, c-myc) [8, 30, 31].

ProTα has been suggested as an oncoprotein inducing

transformation in rodent fibroblasts [32]. Similarly to other

oncoproteins-transcription factors, ProTα is overexpressed

in a variety of cancer tissues and cell lines, including colon

[12, 33], hepatocellular [34], breast [35, 36], lung [33], ovar-

ian [37], and thyroid cancer [38], as well as in human

neuroblastoma [39] suggesting an essential role in

tumorigenesis. Downregulation of ProTα gene with coinci-

dental overexpression of connective tissue growth factor at-

tenuates cell growth in human oral squamous cell carcinoma

[40]. The inhibition of progression of prostatic intra-epithe-

lial neoplasia to carcinoma by isoflavones has been attributed

among the others to downregulation of ProTα expression

[41]. Estradiol E2 upregulates ProTα mRNA and protein ex-

pression. Inhibition of nuclear ProTα expression in breast

cancer cells using antisense methodology resulted in the inhi-

bition of estradiol E2-induced breast cancer cell proliferation

[42].

Prothymosin and apoptosis

The most important transcription factors that are related to

apoptosis can be divided into the following groups: (a) tran-

scription factors that induce apoptosis such as E2F-1 [43],

c-myc [44], p53 [45], c-Jun [46], and AFX [47]; (b) tran-

scription factors that prevent apoptosis such as STAT3 [48],

STAT5 [49], and ProTα [50]. NF-κB can be either

pro-apoptotic or anti-apoptotic, depending on the timing of

the modulating NF-κB activity relative to the death stimulus

[51, 52].

ProTα has been recently associated with programmed cell

death. Inhibition of ProTα synthesis and expression by

antisense oligonucleotides and RNA interference, respec-

tively, sensitizes cells to apoptosis [50, 53]. Ectopic produc-

tion of human ProTα and its mutants with nuclear or nu-

clear-cytoplasmic localization confers increased resistance

of HeLa cells toward the tumor necrosis factor-induced

apoptosis [54]. WANG et al have shown that ProTα gene is

upregulated in the early stages of retinoic acid-induced

apoptosis in T-cell lymphoma cells [55].

The protein has been suggested as an anti-apoptotic factor

that negatively regulates caspase-9 activation by inhibition of

apoptosome formation (Apaf-1/cytochrome c complex) [50].

The mitochondrial pathway is thought to be the principal tar-

get of survival signaling pathways, which act by stabilizing

mitochondrial function and integrity and suppressing release

of cytochrome c. Once cytochrome c has been released from

the mitochondrion, it orchestrates assembly of an intra-

cellular apoptosome complex that recruits caspase 9 via the

adaptor protein Apaf-1 [56]. Apaf-1 is the molecular core of

the apoptosome, a multiproteic complex mediating the

so-called mitochondrial pathway of cell death. Apaf-1 is con-

sidered an essential downstream molecule of p53 to induce

apoptosis, functioning as a tumor suppressor. Apaf-1 defi-

cient, c-myc expressing cells are resistant to p53-depended

apoptosis, indicating the interrelationship between Apaf-1

and p53 [57]. p53-induced apoptosis is mediated mainly

through the Bcl-2/Bax pathway via activation of bax gene

[58]. ProTα expression is downregulated by p53 [59], a fact

possibly critical in the p53-dependent pathway of apoptosis.

Bcl-2 survival factor negatively modulates the formation of

the apoptosome by blocking the release of cytochrome c from

mitochondria [60]. We have recently showed a direct correla-

tion between ProTα and Bcl-2 immunoexpression patterns in

thyroid carcinomas, and thus ProTα may promote cell sur-

vival through the Bcl-2 anti-apoptotic pathway [38]. An al-

ternative anti-apoptotic program involving ProTα has been

recently reported to be mediated by the RNA-binding protein

HuR, a critical regulator of the post-transcriptional fate of

target transcripts. In HeLa cells, treatment with the apoptotic

stimulus triggered the mobilization of ProTα mRNA to the

cytoplasm and onto heavier polysomes, where its association

with the RNA-binding protein HuR increased dramatically.

The anti-apoptotic action of HuR was shown to be vitally de-

pendent on ProTα expression, since use of oligomers that

blocked ProTα translation abrogated the protective effect of

HuR [61].

Different activation pathways of NF-κB may cause the ex-

pression of proteins that induce apoptosis (Fas, c-myc, p53)

or inhibit apoptosis (TRAF2, IAP proteins, Bcl-2-like pro-

teins) [62]. ProTα through the CREB-binding protein stimu-

lates the NF-κB-dependent transcription [22], and therefore

may participate in the NF-kB anti-apoptotic pathway. In ad-

dition, the association of ProTα with the anti-apoptotic pro-

tein STAT3 may be involved in a different anti-apoptotic pro-

gram implicating the transcriptional activation of the Bcl-xl

protein [10, 29].

In apoptotic HeLa cells, caspase-3 cleaves ProTα at one

major carboxyl terminal [DDVD (99)] and several

suboptimal sites. The major caspase cleavage disrupts the nu-

clear localization signal of ProTα leading to a profound alter-

ation in subcellular localization of the truncated protein
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which becomes deficient in phosphate

[54, 63, 64]. During apoptosis the nega-

tively charged truncated ProTα interact

with the positively charged cytochrome

c. In the complexes formed, ProTα inhib-

its cytochrome c oxidation and abolish its

operation as electron carrier between the

outer and inner mitochondrial mem-

branes [65]. These data suggest that dis-

abling of ProTα is a significant part of

apoptosis.

ProTα has been considered as one of

the molecules mediating the physiologi-

cal switch between apoptosis and

autophagic cell death in terminally differ-

entiated cells such as neurons. Over-

expression of ProTα with or without

other caspase inhibitors has been re-

ported to induce autophagic cell death

possibly in association with cytochrome c

release secondary to endogenous stress

[66]. Additionally, ProTα has been re-

cently demonstrated to exhibit a protecting role against oxi-

dative stress by releasing the Nrj2 transcription factor from

the Nrf2-Keap1 inhibitory complex [67].

Conclusion

ProTα seems to exhibit a strategic role in continuous cell

growth and cancer development. The available evidence

clearly indicates that ProTα acts pleiotropically in various

transcriptional activation events that mediate critical stages

of cell proliferation and apoptosis (Fig. 1). However, many

questions remain to be answered: (a) a full picture of

ProTα-target genes; (b) a better understanding of ProTα-de-

pendent pathways that lead to cellular transformation and

tumorigenesis; (c) the mechanisms of how ProTα through as-

sociation with other factors increase transcriptional initia-

tion; and (d) a more comprehensive definition of pathways

leading to cell survival by inhibiting apoptosis.

Further studies are necessary to establish ProTα as a mo-

lecular marker for early detection of certain types of cancers

as well as a prognostic index for determining tumor aggres-

siveness and the response to various treatments. The essential

participation of ProTα in the proliferation and apoptotic pro-

cesses is opening up new prospects regarding the detection of

new molecular targets for the development of future cancer

therapy.
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