Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.27, p.322-337, 2008 |
||
Title: Imaging compaction of single supercoiled DNA molecules by atomic force microscopy | ||
Author: Olga Y. Limanskaya and Alex P. Limanski | ||
Abstract: Supercoiled pGEMEX DNA, 3993 bp in length, was immobilized on different substrates (freshly cleaved mica, standard amino mica and modified amino mica with increased hydrophobicity and surface charge density compared with standard amino mica) and was visualized by atomic force microscopy (AFM) in air. Plectonemically supercoiled DNA (scDNA) molecules, as well as extremely compacted single molecules, were visualized on amino-modified mica, characterized by increased hydrophobicity and surface charge density. We show four-fold increase in DNA folding on the mica surface with high positive charge density. This result is consistent with a strongly enhanced molecular flexibility facilitated by shielding of the DNA phosphate charges. The formation of minitoroids with about a 50 nm diameter and molecules in spherical conformation was the final stage of single molecule compaction. A possible model of conformational transitions for scDNA in vitro in the absence of protein is proposed based on AFM image analysis. Compaction of the single scDNA molecules, up to minitoroids and spheroids, appears to be caused by screening of the negatively charged DNA phosphate groups. The high surface charge density from positively charged amino groups on mica, on which DNA molecules were immobilized, is an obvious candidate for the screening effect. |
||
Keywords: DNA compaction — Supercoiled DNA — Amino mica — Atomic force microscopy | ||
Year: 2008, Volume: 27, Issue: 4 | Page From: 322, Page To: 337 | |
|
download file |
|