Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.28, No.4, p.347–355, 2009 |
||
Title: Influence of pyridoxylidene aminoguanidine on biomarkers of the oxidative stress and selected metabolic parameters of rats with diabetes mellitus | ||
Author: Zuzana Országhová, Anna Liptáková, Jana Muchová, Oľga Uličná, Oľga Vančová, Monika Sivoňová, Peter Božek, Jozef Čársky and Zdeňka Ďuračková | ||
Abstract: Oxidative damage is considered to play an important role in the pathogenesis of several diseases, such as diabetes mellitus (DM), atherosclerosis, cardiovascular complications and chronic renal failure. DM is associated with the oxidative stress and formation of advanced glycation end products (AGEs). Different drugs inhibit oxidative stress and formation of advanced glycation end products. Aminoguanidine (AG) has been proposed as a drug of potential benefit in prophylaxis of the complications of DM. Recent reports show a pro-oxidant activity of AG. Therefore we examined the effect of structural analogue of AG, its Schiff base with pyridoxal – pyridoxylidene aminoguanidine (PAG) on the level of selected markers of oxidative stress. We found that PAG decreased total damage to DNA in controls as well as in diabetic group of rats. However, we also found that PAG supplementation increases susceptibility of lipoproteins to oxidation and formation of conjugated dienes in both, diabetic as well as control animals. Its administration to diabetic rats decreases antioxidant capacity of plasma. Therefore, it is necessary to search for other structural modifications of AG that would combine its higher anti-diabetic activity with less toxicity. |
||
Keywords: Oxidative stress — Free radicals — Diabetes mellitus — Pyridoxylidene aminoguanidine | ||
Year: 2009, Volume: 28, Issue: 4 | Page From: 347, Page To: 355 | |
doi:10.4149/gpb_2009_04_347 |
||
|
download file |
|