Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.28, No.4, p.371–383, 2009 |
||
Title: Ca2+ signaling in mouse cardiomyocytes with ablated S100A1 protein | ||
Author: Konstantin Gusev, Gabriele E. Ackermann, Claus W. Heizmann and Ernst Niggli | ||
Abstract: S100A1 is a Ca2+-binding protein expressed at high levels in the myocardium. It is thought to modulate the Ca2+ sensitivity of the sarcoplasmic reticulum (SR) Ca2+ release channels (ryanodine receptors or RyRs) and its expression has been shown to be down regulated in various heart diseases. In this study we used S100A1 knock-out (KO) mice to investigate the consequences of chronic S100A1 deficiency on Ca2+ cycling in ventricular cardiomyocytes. Confocal Ca2+ imaging showed that field-stimulated KO myocytes had near normal Ca2+ signaling under control conditions but a blunted response to β-adrenergic stimulation with 1 µmol/l isoproterenol (ISO). Voltage-clamp experiments revealed that S100A1-deficient cardiomyocytes have elevated ICa under basal conditions. This larger Ca2+ influx was accompanied by augmented Ca2+ transients and elevated SR Ca2+ content, without changes in macroscopic excitation-contraction coupling gain, which suggests impaired fractional Ca2+ release. Exposure of KO and WT cells to ISO led to similar maximal ICa. Thus, the stimulation of the ICa was less pronounced in KO cardiomyocytes, suggesting that changes in basal ICa could underlie the reduced β-adrenergic response. Taken together, our findings indicate that chronic absence of S100A1 results in enhanced L-type Ca2+ channel activity combined with a blunted SR Ca2+ release amplification. These findings may have implications in a variety of cardiac pathologies where abnormal RyR Ca2+ sensitivity or reduced S100A1 levels have been described. |
||
Keywords: Calcium — Excitation-contraction coupling — Sarcoplasmic reticulum — Ryanodine receptors — L-type Ca2+ channels — S100 proteins — EF-hand | ||
Year: 2009, Volume: 28, Issue: 4 | Page From: 371, Page To: 383 | |
doi:10.4149/gpb_2009_04_371 |
||
|
download file |
|