Journal info
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
Metallic Materials Vol. 49 (2011), no. 2, pp.143-153 |
||
Title: Modeling of macrosegregation in steel ingot: Influence of mold shape and melt superheat | ||
Author: LIU, D. R., KANG, X. H., FU, P. X., LI, D. Z. | ||
Abstract: A continuum model for the transport phenomena in solidification systems is used to investigate the formation mechanism of macrosegregation in a 3.3 t steel ingot. Numerical scheme with explicit time stepping in solidification problems is developed for solving coupled temperature and concentration fields, and equations of momentum. Experimental measurements and numerical results in the literature are used as indications of the validity of present prediction. Influences of the mold shape and the melt superheat upon macrosegregation are investigated. Results show that for ingots with the same weight, reducing the size of hot top favors a pronounced positive-negative-positive concentration distribution along the centerline. A-segregates and positive-negative-positive concentration distribution are not found in the ingot with a modified hot top that has a more uniform section area. Higher superheat reduces the height of bottom negative segregation cone. For cases with superheat larger than zero, positively segregated patches are observed at the ingot bottom. |
||
Keywords: macrosegregation, steel ingot, mold shape, melt superheat | ||
Year: 2011, Volume: 49, Issue: 2 | Page From: 143, Page To: 153 | |
doi:10.4149/km_2011_2_143 |
||
Price:
5.50 €
|
||
|
||