Home Neoplasma 2012 Neoplasma Vol.59, No.6, p.641-649, 2012

Journal info

6 times a year.
Founded: 1954
ISSN 0028-2685
ISSN 1338-4317 (online)

Published in English

Editorial Info
Abstracted and Indexed
Submission Guidelines

Select Journal

Webshop Cart

Your Cart is currently empty.

Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.

Neoplasma Vol.59, No.6, p.641-649, 2012

Title: Novel nonclassical antifolate, 2-[N-(2´-Hydroxyethyl)amino]methyl-3H-quinazolin-4-one, with a potent antineoplastic activity toward leukemia cells
Author: L. CIPAK

Abstract: This study was aimed to investigate the therapeutic potential of novel nonclassical antifolate, 2-[N-(2´-Hydroxyethyl)ami-no]methyl-3H-quinazolin-4-one (HEAMQ), toward human promonocytic U937 and murine lymphoblastic L1210 cell lines. The antiproliferative activity of HEAMQ was determined by MTT assay and its effects on cell cycle progression and apoptosis were studied by flow cytometry, and by immunoblots, respectively. In addition, combination chemotherapy of HEAMQ with cisplatin and temozolomide under in vitro and in vivo conditions was tested. HEAMQ showed concentration- and time-dependent cytotoxicity toward U937 and L1210 cells. It induced G2/M arrest that in U937 cells was associated with a marked decrease in the protein expressions of cyclin A, cyclin B, and cyclin-dependent kinase Cdk1. HEAMQ-induced apoptosis was accompanied with up-regulation of the protein expression of Bax and down-regulation of the protein expression of Bcl-2, Mcl-1, XIAP, and survivin, resulting in cytochrome c release and activation of caspases. Inhibitors of JNK (SP600125) and p38 MAPK (SB203580) suppressed HEAMQ-induced apoptosis and G2/M phase arrest, attenuated the activation of Bax, and blocked down-regulation of Bcl-2, XIAP and survivin in HEAMQ-treated U937 cells. In addition, combinations of HEAMQ with cisplatin and temozolomide resulted in synergistic inhibition of cell growth, producing long-term survivors of L1210 tumor-bearing mice. In conclusion, these results indicate that HEAMQ antineoplastic activity toward leukemia cells is associated with cell cycle arrest and apoptosis. The in vivo studies further confirmed the antitumor activity of HEAMQ and highlighted that this agent could be used to further increase therapeutic efficacies of traditional chemotherapeutic agents.

Keywords: nonclassical antifolate, quinazolinone, antineoplastic, apoptosis, cell cycle arrest, synergism
Published online: 01-Aug-2012
Year: 2012, Volume: 59, Issue: 6 Page From: 641, Page To: 649

download file

© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.