Home General Physiology and Biophysics 2012 General Physiology and Biophysics Vol.31, No.3, p.261–270, 2012

Journal info


Founded: 1982
ISSN 1338-4325 (online)
ISSN 0231-5882 (print)
Published in English,
6 times per year

Aims and Scope
Editorial Info
Submission Guidelines

Select Journal







Webshop Cart

Your Cart is currently empty.

Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.

General Physiology and Biophysics Vol.31, No.3, p.261–270, 2012

Title: Prolonged oxytocin treatment in rats affects intracellular signaling and induces myocardial protection against infarction
Author: Maria Ondrejcakova, Miroslav Barancik, Monika Bartekova, Tana Ravingerova, Daniela Jezova

Abstract:

Oxytocin is a hormone, which is released into the circulation in response to acute or chronic stress stimuli. One of the important targets of oxytocin is cardiovascular system. Present studies were aimed at testing the hypothesis that prolonged treatment with oxytocin (simulation of stress-induced rise in circulating oxytocin) activates intracellular signaling pathways playing a role in ischemia/reperfusion injury. Furthermore, we tested protective effects of oxytocin treatment in vivo against cardiac injury induced by ischemia/reperfusion of isolated hearts. Male Wistar rats were treated with oxytocin or vehicle continuously via osmotic minipumps for 2 weeks. The hearts were used for biochemical measurements or isolated for Langendorff perfusion. Treatment with oxytocin resulted in a significant increase in specific phosphorylation (activation) of p38-MAPK and Akt kinase, an increase in phosphorylated Hsp27 and an elevation in atrial natriuretic peptide (ANP) levels in left ventricular heart tissue. There were no significant changes in the activation of MMP-2 and ERK in the left heart ventricle of oxytocin-treated rats. Postischemic recovery of functional parameters LVDP, RPP, +dP/dtmax and -dP/dtmax was better in the hearts of oxytocin-treated rats compared to that in the controls.

Oxytocin treatment significantly reduced infarct size to 15.1 + 3.2% as compared to 32.4 + 3.5% in vehicle-treated rats (p < 0.01).

This is the first evidence for cardioprotective effects of oxytocin administered in vivo simulating chronic stress-induced elevation in plasma oxytocin. The present results show that positive effects of oxytocin that may ameliorate negative consequences of stress on the heart are, at least in part, mediated through p38-MAPK and Akt kinase pathways.



Keywords: Oxytocin — Stress — Myocardial infarction — Protein kinases
Year: 2012, Volume: 31, Issue: 3 Page From: 261, Page To: 270
doi:10.4149/gpb_2012_030


download file



© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.