Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.31, No.3, p.343-350, 2012 |
||
Title: The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines | ||
Author: Jin-Chul Ahn, Phil-Sang Chung | ||
Abstract: Photodynamic therapy (PDT) is a treatment modality that destroys the tumor. It activates the photosensitizer with the light of a specific wavelength, where the light is well absorbed by the photosensitizer, thus causing a fatal injury and thereby leading to a tumor necrosis. To date, a hematoporphyrin-derived photosensitizer has been widely used. It is disadvantageous, however, in that it causes a long-term photo-toxicity and has a poor selectivity for the tumor. This had led to the development of a chlorophyll-derived photosensitizer. We conducted this study to elucidate the mechanisms by which the activity of ROS is involved in the PDT using a novel type of chlorophyll-derived photosensitizer, 9-hydroxypheophorbide-α (9-HpbD-α), for the HeLa cell lines. Besides, we also attempted to determine which reaction plays a predominant role in the synthesis of ROS, either Type I reaction or Type II one, when both reactions are involved in the synthesis of ROS during the PDT using 9-HpbD-α. Our results showed not only that the activity of ROS is involved in the PDT using 9-HpbD-α in human uterine cervical cancer cell lines but also that the mechanisms of PDT are based on Type II reaction where the singlet oxygen is involved. |
||
Keywords: Photodynamic therapy — 9-hydroxypheophorbide-α — Reactive oxygen species | ||
Year: 2012, Volume: 31, Issue: 3 | Page From: 343, Page To: 350 | |
doi:10.4149/gpb_2012_040 |
||
|
download file |
|