Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.32, No.1, p.1–22, 2013 |
||
Title: Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans | ||
Author: Katalin Módis, Katarzyna Wolanska, Roman Vozdek | ||
Abstract: Hydrogen sulfide (H2S), long viewed as a toxic gas and environmental hazard, is emerging as a biological mediator with remarkable physiological and pathophysiological relevance. H2S is now viewed as the third main gasotransmitter in the mammalian body. Its pharmacological characteristic possesses similarities to the other two gasotransmitters – nitric oxide (NO) and carbon monoxide (CO). Many of the biological effects of H2S follow a bell-shaped concentration-response; at low concentration or at lower release rates it has beneficial and cytoprotective effects, while at higher concentrations or fast release rates toxicity becomes apparent. Cellular bioenergetics is a prime example for this bell-shaped dose-response, where H2S, at lower concentrations/rates serves as an inorganic substrate and electron donor for mitochondrial ATP generation, while at high concentration it inhibits mitochondrial respiration by blocking the Complex IV in the mitochondrial electron transport chain. The current review is aimed to focus on the following aspects of H2S biology: 1) a general overview of the general pharmacological characteristics of H2S, 2) a summary of the key H2S-mediated signal transduction pathways, 3) an overview of role of H2S in regulation of cellular bioenergetics, 4) key aspects of H2S physiology in C. elegans (a model system) and, finally 5) the therapeutic potential of H2S donating molecules in various disease states. |
||
Keywords: Signal transduction — Bioenergetics — Oxygen sensing — Nematodes — H2S donors | ||
Year: 2013, Volume: 32, Issue: 1 | Page From: 1, Page To: 22 | |
doi:10.4149/gpb_2013001 |
||
|
download file |
|