Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.33, No.4, p.393–401, 2014 |
||
Title: Biotransformation and nitroglycerin-induced effects on antioxidative defense system in rat erythrocytes and reticulocytes | ||
Author: Snežana D. Marković, Nataša Z. Đorđević, Milena G. Ćurčić, Andraš Š. Štajn, Mihajlo B. Spasić | ||
Abstract: The effects of nitroglycerin (glyceryl trinitrate – GTN) are mediated by liberated nitric oxide (NO) and formed reactive nitrogen species, which induces oxidative stress during biotransformation in red blood cells (RBCs). The aim of this study was to evaluate effects of GTN on antioxidative defense system (AOS) in rat erythrocytes (without) and reticulocytes (with functional mitochondria). Rat erythrocyte and reticulocyte-rich RBC suspensions were aerobically incubated (2 h, 37°C) without (control) or in the presence of different concentrations of GTN (0.1–1.5 mM). After incubation, concentrations of non-enzymatic components of AOS, activities of antioxidative enzymes and oxidative pentose phosphate (OPP) pathway activity were followed in RBC suspensions. In rat reticulocytes, GTN decreased the activity of mitochondrial MnSOD and increased the activity of CuZnSOD. In rat RBCs, GTN induced increase of Vit E concentration (at high doses), but decreased glutathione content and activities of all glutathione-dependent antioxidative enzymes; the OPP pathway activity significantly increased. GTN biotransformation and induction of oxidative stress were followed by general disbalance of antioxidative capacities in both kinds of RBCs. We suggest that oxidative stress, MnSOD inhibition and depletion of glutathione pool in response to GTN treatment lead to decreased bioavailability of NO after GTN biotransformation in rat reticulocytes. |
||
Keywords: Antioxidative defense system — MnSOD — Nitric oxide — Nitroglycerin — Red blood cells | ||
Year: 2014, Volume: 33, Issue: 4 | Page From: 393, Page To: 401 | |
doi:10.4149/gpb_2014018 |
||
|
download file |
|