Journal info
|
||||
Select Journal
Journals
Bratislava Medical Journal 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Ekologia - Ecology Endocrine Regulations General Physiology and Biophysics Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudba 2025Webshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
Bratislava Medical Journal Vol.116, No.3, p.166–170, 2016 |
||
Title: MicroRNA-146a and its adapter proteins are affected by diabetes in rat’s heart | ||
Author: E. Eftekhar, M. Doustaki Zaboli, M. Katebi, F. Ghadiri Soufi | ||
Abstract: OBJECTIVES: This study was conducted to explore whether microRNA-146a and its adapter proteins (TNF-α receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1)) are affected by diabetes in the rat heart. METHODS: Twelve male Sprague-Dawley rats were randomized into control and diabetic groups (n = 6). Streptozotocin-nicotinamide experimental model was used to induce type 2 diabetes. The gene expression of MicroRNA-146a, nuclear factor-κB (NF-κB), IRAK1 and TRAF6, as well as NF-κB activity, IRAK1 and TRAF6 protein levels were measured. Moreover, NF-κB activity was measured in response to miR-146a mimic transfection (20 nmol) in human umbilical vein endothelial cells (HUVECs) under hyperglycemic condition (25 mM D-glucose for 24 h). RESULTS: The expression of MicroRNA-146a was increased in the heart tissue, 2 months after diabetes induction and in HUVECs. Also, the mRNA and protein levels of NF-κB, IRAK1 and TRAF6 were increased in the heart of diabetic rats. Moreover, transfection of miR-146a mimic prevented from a significant increase of NF-κB activity in hyperglycemic HUVECs. CONCLUSION: Presumably, a defect in the regulation of IRAK1 and TRAF6 can weaken miR-146a regulatory effect and provides a situation for sustained activation of NF-κB and its targets to promote cardiac cells toward abnormalities (Fig. 3, Ref. 28). |
||
Keywords: diabetes, heart, microRNA-146a, NF-κB, IRAK1, TRAF6 | ||
Published online: 24-Feb-2016 | ||
Year: 2016, Volume: 116, Issue: 3 | Page From: 166, Page To: 170 | |
doi:10.4149/BLL_2016_031 |
||
|
![]() |
|