Home Bratislava Medical Journal 2017 Bratislava Medical Journal Vol.118, No.1, p.3-8, 2017

Journal info


Published Monthly, in English
Founded: 1919
ISSN 0006-9248
(E)ISSN 1336-0345

Impact factor 1.564


Aims and Scope
Editorial Info
Submission Guidelines

Select Journal

Webshop Cart

Your Cart is currently empty.

Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.

Bratislava Medical Journal Vol.118, No.1, p.3-8, 2017

Title: Heart rate variability as a biomarker for epilepsy seizure prediction
Author: M. K. Moridani, H. Farhadi

Abstract: OBJECTIVE: Epilepsy is a neurological disorder that causes seizures of many different types. Recent research has shown that epileptic seizures can be predicted by using the electrocardiogrami instead of the electroencephalogram. In this study, we used the heart rate variability that is generated by the fluctuating balance of sympathetic and parasympathetic nervous systems to predict epileptic seizures.
METHODS: We studied 11 epilepsy patients to predict the seizure interval. With regar tos the fact that HRV signals are nonstationary, our analysis focused on linear features in the time and frequency domain of HRV signal such as RR Interval (RRI), mean heart rate (HR), high-frequency (HF) (0.15–0.40 Hz) and low-frequency (LF) (0.04–0.15 Hz), as well as LF/HF. Also, quantitative analyses of Poincaré plot features (SD1, SD2, and SD1/SD2 ratio) were performed. HRV signal was divided into intervals of 5 minutes. In each segment linear and nonlinear features were extracted and then the amount of each segment compared to the previous segment using a threshold. Finally, we evaluated the performance of our method using specificity and sensitivity.
RESULTS: During seizures, mean HR, LF/HF, and SD2/SD1 ratio significantly increased while RRI significantly decreased. Significant differences between two groups were identified for several HRV features. Therefore, these parameters can be used as a useful feature to discriminate a seizure from a non–seizure The seizure prediction algorithm proposed based on HRV achieved 88.3% sensitivity and 86.2 % specificity.
CONCLUSION: These results indicate that the HRV signal contains valuable information and can be a predictor for epilepsy seizure. Although our results in comparison with EEG ares a little bit weaker, the recording of ECG is much easier and faster than EEG. Also, our finding showed the results of this study are considerably better than recent research based on ECG (Tab. 1, Fig. 10, Ref. 17).

Keywords: epileptic seizure, heart rate variability, linear and non–linear analysis, prediction.
Published online: 26-Jan-2017
Year: 2017, Volume: 118, Issue: 1 Page From: 3, Page To: 8

download file

© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.