Home FOR AUTHORS Kovove Materialy-Metallic Materials 2017 Metallic Materials Vol. 55 (2017), no. 4, pp.279-289

Journal info

Select Journal







Webshop Cart

Your Cart is currently empty.

Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.

Metallic Materials Vol. 55 (2017), no. 4, pp.279-289

Title: Microscopic analysis of the stainless steel weld metal after long-term thermal exposition in the primary circuit of the nuclear power plant
Author: D. GRGAC, Ľ. ČAPLOVIČ, M. DOMÁNKOVÁ, P. GRGAČ

Abstract: In the paper, results of microscopic analyses of the weld metal taken from weld joint of the thick-walled austenitic stainless steel pipeline of the primary circuit of the nuclear power plant WWER-440 are presented. The weld joint has been exposed in the main circulation pipeline approximately 180,000 h at temperatures approaching 300 °C. A sample taken from a top part of the multi-pass weld joint has been analyzed by scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy and high-resolution transmission electron microscopy. The analyzed weld metal exhibited a duplex microstructure consisting of the austenite phase and a semi-continual network of δ-ferrite phase. The mean hardness of the weld metal was 195 HV1. In the weld metal, globular non-metallic inclusions, as well as carbonitride particles of the MX type and chromium based carbide particles of M23C6 type, were identified. At the phase interfaces of δ-ferrite/austenite, the presence of particles of σ-phase placed in the volumes of δ-ferrite network was detected. The presence of σ-phase and M23C6 carbide particles in the top part of the weld can be explained as a consequence of the short-term expositions of the weld metal in the temperature range from about 900 to 600 °C during the multi-pass welding process of the primary circuit of the nuclear power plant. High-resolution transmission electron microscopy analysis of the ferrite phase regions revealed in thin foils the presence of mottled contrast indicating the spinodal decomposition of the δ-ferrite to Cr-rich α’- and Fe-rich α-phases. It is supposed that the decomposition of the δ-ferrite phase started during final stages of the multi-pass welding process at thermal expositions around 475 °C and continued during long-term exposition at the operation temperatures of the primary circuit.

Keywords: stainless steel, weld metal, low-temperature thermal aging, σ-phase, carbide phase, α’-phase
Published online: 22-Aug-2017
Year: 2017, Volume: 55, Issue: 4 Page From: 279, Page To: 289
doi:10.4149/km_2017_4_279


download file



© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.