Journal info
Aims and Scope |
||
Select Journal
Journals
Acta Virologica 2023 2022 Ahead of print 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics Neoplasma Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
Acta Virologica Vol.63, No.2, p.129-138, 2019 |
||
Title: A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness | ||
Author: K. E. YODER | ||
Abstract: The integrated proviral genome is the major barrier to a cure for HIV-1 infection. Genome editing technologies, such as CRISPR/Cas9, may disable or remove the HIV-1 provirus by introducing DNA double strand breaks at sequence specific sites in the viral genome. Host DNA repair by the error-prone non-homologous end joining pathway generates mutagenic insertions or deletions at the break. CRISPR/Cas9 editing has been shown to reduce replication competent viral genomes in cell culture, but only a minority of possible genome editing targets have been assayed. Currently there is no map of double strand break genetic fitness for HIV-1 to inform the choice of editing targets. However, CRISPR/Cas9 genome editing makes it possible to target double strand breaks along the length of the provirus to generate a double strand break genetic fitness map. We identified all possible HIV-1 targets with different bacterial species of CRISPR/Cas9. This library of guide RNAs was evaluated for GC content and potential off-target sites in the human genome. Complexity of the library was reduced by eliminating duplicate guide RNA targets in the HIV-1 long terminal repeats and targets in the env gene. Although the HIV-1 genome is AT-rich, the S. pyogenes CRISPR/Cas9 with the proto-spacer adjacent motif NGG offers the most HIV-1 guide RNAs. This library of HIV-1 guide RNAs may be used to generate a double strand break genetic fragility map to be further applied to any genome editing technology designed for the HIV-1 provirus. |
||
Keywords: HIV-1; genome editing; CRISPR; genetic fitness; guide RNAs | ||
Year: 2019, Volume: 63, Issue: 2 | Page From: 129, Page To: 138 | |
doi:10.4149/av_2019_201 |
||
|
![]() |
|