Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.39, No.5, p.461–470, 2020 |
||
Title: miR-129-5p ameliorates ischemia-reperfusion injury by targeting HMGB1 in myocardium | ||
Author: J. Xing, J. Liu, J. Liu, Z. Xu | ||
Abstract: Globally, acute myocardial infarction (AMI) is a serious condition affecting millions of individuals. While AMI therapy improves blood flow during surgery, reperfusion-induced injury may also occur, leading to secondary cardiac damage or even death. Here, we investigated miR-129-5p in myocardial ischemia-reperfusion (I/R) injury in rats, to explore reperfusion-related molecular mechanisms in myocardium. We used Sprague Dawley rats to establish a myocardial I/R model, with agomiR-129-5p injection, and used rat cardiomyocytes (H9c2) treated with anoxia-reoxygenation (A/R) to mimic myocardial I/R injury in vitro. A dual-luciferase reporter assay determined miR-129-5p binding to high mobility group box-1 (HMGB1) in H9c2 cells. We showed that exogenous miR-129-5p restored cardiac function indices, alleviated cardiac injury, relieved inflammatory effects and reduced infarct size and cell apoptosis in rat myocardium after I/R treatment. Elevated miR-129-5p induced a reduction in HMGB1 expression in rat I/R myocardium. miR-129-5p also targeted HMGB1, and negatively regulated its expression in H9c2 cells. Moreover, miR-129-5p overexpression in the cardiomyocytes reduced cell apoptosis and recovered cell viability after A/R injury, which was reversed by subsequent HMGB1 overexpression. These findings suggest miR-129-5p plays a cardioprotective role in ameliorating myocardial I/R injury in rats, by negatively targeting HMGB1. This mechanism provides new insights into the treatment of myocardium reperfusion-related damage. |
||
Keywords: Myocardial reperfusion, I/R injury, miR-129-5p, HMGB1, Myocardial infarction | ||
Published online: 05-Oct-2020 | ||
Year: 2020, Volume: 39, Issue: 5 | Page From: 461, Page To: 470 | |
doi:10.4149/gpb_2020021 |
||
|
download file |
|