Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.41, No.5, p. 447–455 |
||
Title: The role of Sirt3 in the changes of skeletal muscle mitophagy induced by hypoxic training | ||
Author: Chunwei Ma, Yongcai Zhao, Xiaoqing Ding, Binghong Gao | ||
Abstract: We aimed to explore the role of Sirt3 in the regulation of skeletal muscle mitophagy with hypoxic training. C57BL/6J mice were randomly divided into four groups: C group (control), HT group (mice performed a hypoxic training of living in an environment with an oxygen concentration of 13.8% and treadmill exercise under normoxia for 6 weeks), T group (mice were subjected to an intraperitoneal (i.p.) injection of the Sirt3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) 50 mg/kg three times per week for 6 weeks) and THT group (the hypoxic training of HT group with i.p. injection of 3-TYP in T group). The results showed that 6 weeks of hypoxic training could improve ATP synthesis in skeletal muscle. After the combined intervention of 3-TYP injection and hypoxic training, Sirt3, FOXO3a, and SOD2 protein contents were still lower than those in hypoxic training group. Hypoxic training cannot improve the negative effect of Sirt3 inhibition on muscle PINK1/Parkin signal. This study demonstrated that Sirt3 plays a key role in mediating skeletal muscle mitophagy by hypoxic training. The results of our study also provided the first evidence that mitophagy caused by hypoxic training might be transduced through the Sirt3-FOXO3a signaling pathway. |
||
Keywords: Hypoxic training — Sirt3 — Mitophagy — Skeletal muscle — Mitochondria | ||
Published online: 27-Sep-2022 | ||
Year: 2022, Volume: 41, Issue: 5 | Page From: 447, Page To: 455 | |
doi:10.4149/gpb_20220231 |
||
|
download file |
|