Journal info
|
||
Select Journal
Journals
Acta Virologica Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics Neoplasma Ahead of print 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
Neoplasma Vol.70, No.1, p. 58–70, 2023 |
||
Title: Zerumbone combined with gefitinib alleviates lung cancer cell growth through the AKT/STAT3/SLC7A11 axis | ||
Author: Jin-Guo Wang, Da-Lei Li, Rong Fan, Meng-Jun Yan | ||
Abstract: Zerumbone had been verified as a potential anti-cancer agent. Our research aimed to investigate the effect of zerumbone combined with gefitinib in lung cancer. Human pulmonary alveolar epithelial cells (HPAEpiC), A549, and H460 cell lines were used to detect the efficacy of zerumbone. BALB/c nude mice were randomly divided into five groups, including model, gefitinib (Gef, 10 mg/kg), low dose zerumbone (L-Zer, 20 mg/kg), high dose zerumbone (H-Zer, 40 mg/kg), and H-Zer + Gef groups. , and the tumor growth in each group was monitored. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect cell apoptosis. Immunohistochemistry (IHC), immunofluorescence, and western blot were used to analyze the protein expressions in tumor tissues. Glutathione (GSH) and malondialdehyde (MAD) were detected by special kits. Zerumbone inhibited the proliferation of lung cancer cells in vitro. Tumor volume and weight were reduced after Gef or zerumbone treatment. Gefitinib and zerumbone treatment significantly promoted the apoptosis of tumor cells. The expression of Bcl-2, Bax, and P53 proteins confirmed the cell apoptosis. IHC results indicated that zerumbone and gefitinib treatment decreased tumor angiogenesis. Consistent with this result, the expression of EGFR, VEGFR2, and Ki-67 proteins decreased, while the expression of angiostatin and endostatin proteins increased. Interestingly, zerumbone treatment increased the level of MDA while decreasing GSH. Next, the levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) decreased after zerumbone and gefitinib treatment. Our study suggested that zerumbone combined with gefitinib could effectively inhibit lung cancer for multi-model therapies, including the inhibition of tumor growth, angiogenesis, induce cell apoptosis, and ferroptosis. |
||
Keywords: tumor angiogenesis; cell apoptosis; EGFR; STAT3; ferroptosis | ||
Published online: 13-Jan-2023 | ||
Year: 2023, Volume: 70, Issue: 1 | Page From: 58, Page To: 70 | |
doi:10.4149/neo_2022_220418N423 |
||
|
![]() |
|