Journal info
Aims and Scope |
||
Select Journal
Journals
Acta Virologica Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.42, No.2, p. 123–133, 2023 |
||
Title: Construction of a novel lncRNA-miRNA-mRNA competing endogenous RNA network in muscle in response to exercise training | ||
Author: Mingkun Nie, Qingling Liu, Cheng Yan | ||
Abstract: Physical inactivity has evidently been a hazard factor for many diseases, including cardiovascular disease, diabetes, cancer, etc. Rising evidence indicates that RNA, as competitive endogenous RNA (ceRNA), plays an important role in adaptive changes in skeletal muscle in response to exercise training. Although the effects of exercise-induced fitness on skeletal muscle have been well established, the mechanisms underlying are not fully understood. The purpose of this study is to construct a novel ceRNA network in skeletal muscle in response to exercise training. Skeletal muscle gene expression profiles were downloaded from the GEO database. Then, we identified differentially expressed lncRNAs, miRNAs, and mRNAs between the pre-exercise and post-exercise samples. Subsequently, we constructed lncRNA-miRNA-mRNA regulatory networks based on the ceRNA theory. 1153 mRNAs (687 upregulated and 466 downregulated), 7 miRNAs (3 upregulated and 4 downregulated), and 5 lncRNAs (3 upregulated and 2 downregulated) were identified as differentially expressed genes. 3 lncRNAs, 5 miRNAs and 227 mRNAs were obtained to build miRNA-mediated ceRNA networks. We constructed a novel ceRNA regulatory network in muscle in response to exercise training, which provides insights into molecular mechanisms underlying the health benefits brought by physical activity. |
||
Keywords: ceRNA— Muscle — Exercise Training — Hub Genes — PPI | ||
Published online: 13-Mar-2023 | ||
Year: 2023, Volume: 42, Issue: 2 | Page From: 123, Page To: 133 | |
doi:10.4149/gpb_2022062 |
||
|
![]() |
|