Journal info
Aims and Scope |
||
Select Journal
Journals
Acta Virologica Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.42, No.2, p. 149–158, 2023 |
||
Title: Hypoxic cardiomyocyte-derived exosomes regulate cardiac fibroblast activation, apoptosis, migration and ferroptosis through miR-208a/b | ||
Author: Ying Guo, Zi-dong Bie, Xi Li | ||
Abstract: Studies have found that cardiomyocytes and cardiac fibroblasts (CFs) can communicate through exosomes, thereby affecting each other’s biological functions, but there are few studies on the mechanism. miR-208a/b are specifically expressed in the heart and highly expressed in exosomes derived from various myocardial diseases. Hypoxia induced cardiomyocytes to secrete exosomes (H-Exo) with high expression of miR-208a/b. When H-Exo were added to CFs for co-culture, it was found that CFs took up exosomes, thereby upregulating the expression of miR-208a/b. H-Exo significantly promoted the viability and migration of CFs, enhanced the expression of α-SMA, collagen I and III, and promoted the secretion of collagen I and III. miR-208a or/and miR-208b inhibitors significantly attenuated the effects of H-Exo on CF biological functions. miR-208a/b inhibitors significantly enhanced the levels of apoptosis and caspase-3 activity in CFs, while H-Exo significantly attenuated the pro-apoptotic effects of miR-208a/b inhibitors. Further treatment of CFs with ferroptosis inducer Erastin found that H-Exo further enhanced the accumulation of ROS, MDA and Fe2+, the main indicators of ferroptosis, and inhibited the expression of GPX4, a key regulator of ferroptosis. miR-208a or/and miR-208b inhibitors significantly attenuated the effects of Erastin and H-Exo on ferroptosis. In conclusion, hypoxic cardiomyocyte-derived exosomes can regulate the biological functions of CFs through highly expressed miR-208a/b. |
||
Keywords: Cardiac fibroblasts — Exosome — miR-208a/b — Hypoxia — Ferroptosis | ||
Published online: 13-Mar-2023 | ||
Year: 2023, Volume: 42, Issue: 2 | Page From: 149, Page To: 158 | |
doi:10.4149/gpb_2022061 |
||
|
![]() |
|