Journal info
Aims and Scope |
||
Select Journal
Journals
Acta Virologica Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.42, No.2, p. 169–177, 2023 |
||
Title: Protective effects of NF-κB inhibitor and continuous perfusion of pulmonary arteries on pulmonary injury in piglet models of deep hypothermia low flow | ||
Author: Yewei Xie, Rufang Zhang and Jia Li | ||
Abstract: Deep hypothermia with low flow perfusion (DHLF) is a common cardiopulmonary bypass (CPB) technique. The associated lung ischemia/reperfusion injury is a major cause of postoperative morbidity and mortality in patients undergoing DHLP; we aimed to investigate the effects of nuclear factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC) with continuous perfusion of pulmonary arteries (CPP) on DHLF-induced lung injury and the related molecular mechanisms. Twenty-four piglets were randomly divided into the DHLF (control), CPP (with DHLF), or CPP+PDTC (intravenous PDTC before CPP with DHLF) groups. Lung injury was evaluated by respiratory function measurement, lung immunohistochemistry, and serum levels of TNF, IL-8, IL-6, and NF-κB before CPB, at CPB completion, and at 1 h post-CPB. Western blot was used to detect NF-κB protein expression in lung tissues. After CPB, decreased parcial pressure of oxygen (PaO2) and increased parcial pressure of carbon dioxide (PaCO2) and serum levels of TNF, IL-8, IL-6, and NF-κB were observed in the DHLF group. Both CPP and CPP+PDTC groups showed better indices of lung function, decreased levels of TNF, IL-8, and IL-6, and less severe pulmonary edemas and injuries. PDTC with CPP further improved pulmonary function and mitigated pulmonary injury than did CPP alone. PDTC with CPP better attenuates DHLF-induced lung injury than does CPP alone. |
||
Keywords: Deep hypothermia low flow — Continuous perfusion of pulmonary arteries — Cardiopulmonary bypass — NF-κB inhibitor — Inflammation | ||
Published online: 14-Mar-2023 | ||
Year: 2023, Volume: 42, Issue: 2 | Page From: 169, Page To: 177 | |
doi:10.4149/gpb_2022058 |
||
|
![]() |
|