Journal info
Aims and Scope |
||
Select Journal
Journals
Acta Virologica Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.42, No.2, p. 201–208, 2023 |
||
Title: Molecular mechanism of the protective effect of adenosine triphosphate against paracetamol-induced liver toxicity in rats | ||
Author: Alparslan Koç, Mustafa Gazi, Ali Caner Sayar, Didem Onk, Muhammet Ali Arı, Bahadır Süleyman, Ahmet Gökhan Ağgül, Fikret Altındağ, Durdu Altuner,Halis Süleyman | ||
Abstract: Toxic doses of paracetamol are also known to be close to therapeutic doses. This study aimed to biochemically investigate the protective effect of ATP against paracetamol-induced oxidative liver injury in rats and to examine the tissues histopathologically. We divided the animals into the paracetamol alone (PCT), ATP + paracetamol (PATP), and healthy control (HG) groups. Liver tissues were examined biochemically and histopathologically. Malondialdehyde level, AST and ALT activity in the PCT group were significantly higher than those in the HG and PATP groups (p < 0.001). The glutathione (tGSH) level, superoxide dismutase (SOD) and catalase (CAT) activity in the PCT group was significantly lower than that in the HG and PATP groups (p < 0.001), while animal SOD activity was significantly different between the PATP and HG groups (p < 0.001). The activity of CAT was almost the same. In the group treated with paracetamol alone, lipid deposition, necrosis, fibrosis, and grade 3 hydropic degeneration were observed. No histopathological damage was observed of the ATP-treated group, except for grade 2 edema. We discovered that ATP reduces the oxidative stress caused by paracetamol ingestion and protects against paracetamol-induced liver injury at the macroscopic and histological levels. |
||
Keywords: Paracetamol — Liver toxicity — ATP — Pain | ||
Published online: 14-Mar-2023 | ||
Year: 2023, Volume: 42, Issue: 2 | Page From: 201, Page To: 208 | |
doi:10.4149/gpb_2022055 |
||
|
![]() |
|