Journal info
|
||
Select Journal
Journals
Bratislava Medical Journal Endocrine Regulations General Physiology and Biophysics 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudbaWebshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
General Physiology and Biophysics Vol.43, No.2, p. 103–120, 2024 |
||
Title: Mobile telephony radiation exerts genotoxic action and significantly enhances the effects of gamma radiation in human cell | ||
Author: Dimitris J. Panagopoulos | ||
Abstract: I previously reported chromosomal damage in human peripheral blood lymphocytes (HPBLs) induced by: a) mobile telephony (MT) electromagnetic fields (EMFs)/electromagnetic radiation (EMR), b) a high caffeine dose, and c) the combination of the two stressors. HPBLs from the same subjects exposed to gamma radiation at doses 0.1, 0.3, or 0.5 Gy, displayed more aberrations than those exposed to MT EMFs or the high caffeine dose in a dose-dependent manner. When the cells exposed to these gamma radiation doses were pre-exposed to a single 15-min MT EMF exposure, the number of aberrations increased significantly more than the sum number of aberrations induced by the individual stressors in all subjects. Thus, MT EMF exposure at a power density ~136 times below the latest International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure limit, apart from the fact that it is genotoxic by itself, significantly enhanced the genotoxic action of gamma radiation. Since gamma radiation at similar doses is applied for diagnostic and therapeutic purposes, people should be aware of the increased risk during treatment periods. Comparison of the genotoxic action between MT EMF and gamma radiation shows that the ICNIRP limits are, at least, ~4.5×104 times less stringent than the limits for gamma radiation. |
||
Keywords: Electromagnetic fields — Mobile phone radiation — Gamma radiation — Human lymphocytes — Chromatid aberrations — DNA damage | ||
Published online: 07-Mar-2024 | ||
Year: 2024, Volume: 43, Issue: 2 | Page From: 103, Page To: 120 | |
doi:10.4149/gpb_2023036 |
||
|
download file |
|