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Self-consistent equation of plant cell growth
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Abstract. We introduce a transcendental equation, describing the subsequent stages of plant cell/organ 
growth. Starting from empirically verified conclusions originating from the central limit theorem we 
also insert the influence of temperature on elongation growth to receive a time-dependent equation 
of growth parameterized by temperature. This self-consistent equation evolves with time using three 
cardinal parameters: t0, T0 and V0. They represent the time of maximum expansion rate, the growth 
optimum temperature and the corresponding volume, respectively. Experimental determination of 
these cardinal values enables evaluation of the dynamic extensibility coefficient Φ = ΦT(t) in time 
and temperature domain.
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Introduction

As yet we have seen that much of experimental work dealing 
with plant growth has been elucidated by the Lockhart-type 
of equation (e.g. Lockhart 1965; Ortega 1985). Even though it 
could satisfactorily report on global properties of growth (in 
case of homogeneous and isotropic growth), it was not able 
to account for the local changes arising due to unidirectional 
stimulus (anisotropic growth). Also its applicability was 
quite limited to the linear in time mid-phase of elongation. 
However, with increasing time the exponential solution of 
this equation fails since it anticipates infinite cell extension. 
Our intent in this paper is to complete this equation with an 
equation capable of accounting for the elongation (and elon-
gation rate) in the course of time and for the wall dynamics 
through calculation of the extensibility coefficient Φ.

Theory

In order to construct a global equation of growth, two em-
pirical facts are taken into account: i) the sigmoid character 
of growth in the course of time (the sigmoid curve is followed 
by most plant organs) and ii) the absorption character of 

growth as a function of temperature. Thus, two main pre-
requisites form the foundations of the model Ansatz: one 
of these concerns the evolution in time (i) while the other 
– short-term cell expansion growth to temperature (ii).

i) It is a well-known fact in plant physiology, yet not very 
often used in a strict mathematical form, growth is described 
by the law of great growth. It is also commonly accepted that 
a sigmoid function, as having a non-negative first derivative 
in positive domain and exactly one inflection point, properly 
reproduces the large-scale evolution in time. In fact, growth 
of any plant organ can be split into three basic phases: the 
initial phase of slow growth, the intense growth phase and, 
eventually, the final phase of slow growth ending with satura-
tion. Such regularity can be represented by a sigmoid curve 
that characterizes the course of individual cell growth, the 
growth of plant organs, and the growth of the plant as a whole 
as a function of time. The sigmoid function is expressed by 
the hyperbolic tangent f(t) = ½ [1 + tanh(t – t0)/t0] where 
t0 denotes the characteristic (inflection) time. This repre-
sentation of the sigmoid function is called standard logistic 
cumulative distribution function (CDF). A textbook example 
concerning sigmoid character of growth as a function of time 
can be found in Fogg (1975) – its reproduction obtained by 
CDF interpolation (Levenberg-Marquardt procedure) is 
shown in Fig. 1A.

ii) Empirical data (Lewicka and Pietruszka 2008) suggest 
that in a quite wide range of about 5–40°C, elongation, as 
a function of temperature T, can be adequately described 
by the normal (Gauss) distribution (at least in the non-
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membrane leakage regime). Briefly, from the theoretical 
point of view, the argument utilized therein is as follows. 
The central limit theorem (CLT) expresses the fact that any 
sum of many independent random variables will tend to be 
distributed according to a particular “attractor distribution”. 
It states that if the sum of the variables has finite variance, 
then it will be approximately normally distributed, i.e. fol-
lowing a normal distribution. Since many real processes yield 
distributions with finite variance, this explains the ubiquity 
of the normal distribution. This may also apply to many 
different phenomena contributing to plant growth. From 
CLT we learn that even though the mechanisms underlying 
growth phenomena are often unknown, the use of the normal 
distribution g(T) ≅ exp[–((T – T0)/T0)2] can be theoretically 
justified by assuming that many small (or even negligible), 
independent or weakly coupled effects contribute to each 
temperature response. In order to fulfill CLT condition we 
assume that the individuals in the original population are 
normally distributed. Indeed, in a wide range of tempera-
tures, the chemical reactions, such as metabolic processes, 
enzyme activity, photosynthesis, biomass production, protein 
denaturing etc., donate at a given temperature to the elonga-
tion growth resulting in the Gaussian dependence. At very 
low or high temperatures, the departure from the scenario 
is noticeable and CLT cannot be applied then. This is mainly 
expressed by asymmetric data distribution within the whole 
temperature range. However, as long as we are confined to 
~ 5–40°C temperature interval, the acceptance of symmetric 
Gaussian is justified.

Aiming to validate the outlined approach, a series of 
experiments with different species in a broad temperature 
range were performed (Lewicka and Pietruszka 2008). The 
experiments were carried out with maize (Zea mays L.), 
barlow (Hordeum vulgare L.), wheat (Triticum vulgare Vill.), 
millet (Panicum miliaceum L.), bean (Phaseolus vulgaris L.) 
and pumpkin (Cucurbita pepo L.). In all cases the determina-
tion coefficient R2 for the Gaussian exceeded 0.98. R2 allows 
us to determine how certain one can be in making predic-
tions from a considered model (here: Gauss distribution). 
Since it represents the percent of the data that is the closest 
to the line of best fit, it is a measure of how well the regres-
sion line represents the data. Therefore, it seems that the very 
high value of coefficient R2 for Gauss distribution is by no 
means accidental. As a typical plot, one result is presented in 
Fig. 1B that is based on the early work by Lehenhauer (1914) 
– quoted by Shaykewich (1995).

Also recent single cell measurements (Lewicka 2008, PhD 
thesis) on internode Nitellopsis obtusa L. revealed exactly the 
same regularity as the described above for monocotyledons 
and dicotyledones (a symmetric Gaussian). As it was an-
ticipated in our papers (previously introduced as heuristic 
hypothesis) the elongation growth versus temperature plot 
should follow a kind of a resonance curve (Lorentzian or 

Gaussian) centered at kBT0. Here, kB stands for the Boltz-
man constant, and T0

 for the temperature of the optimum 
growth. (The interpretation for kBT0 is that maximum 
energy absorption is needed for the activation of internal 
biochemical processes responsible for the fastest growth). 
Indeed, according to our expectations, it turned out that the 
elongation growth versus temperature plot for Nitellopsis can 
be successfully described by either Lorentzian or Gaussian 
(both symmetric) in a broad region about the optimum 
temperature T0.

Giving together arguments (i) and (ii) results in a proposal of 
time and temperature dependent phenomenological equation 
of growth. One remark concerning cell inner pressure needs 

Figure 1. A. The calculated height of lupin (Lupinus albus) as 
a function of time (dotted line). The sigmoid fit yields very high 
squared determination coefficient R2 = 0.99 for the data adapted 
from Fogg (1975). For clarity we present only a few original data 
points in the plot; t 0 indicates the characteristic time (the inflection 
point). B. Relative elongation of maize (Zea mays L.) coleoptile seg-
ments plotted against temperature. The experimental data points 
measured by Lehenhauer (1914), cited by Shaykewitch (1995), are 
interpolated by the normal distribution (solid line) with R2 = 0.99 
(χ2 = 0.0001). Normalization results from the division by the value 
of elongation at Tmax = 29.07 ± 0.20.
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to be made. In most plant cells, turgor pressure (P) is required 
for growth (Proseus et al. 2000). Pressure must be above certain 
minimum (Y), and growth appears as a steady increase in size 
if P is steady (Cleland 1971). Hence we put P(t) – Y = const(t), 
since we assume a constant water intake. However, no formal 
constraints limit the value either of P or Y during growth. Both 
magnitudes can vary slightly during time evolution.

Recalling the argumentation presented above, we receive 
(step 1) the approximate expression for the expanding vol-
ume in the form v = v0f(t)g(T) which explicitly reads:
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The form-factor f(t) is time-dependent, in accordance 
with point (i) of our derivation, while all temperature modi-
fications, that enter through the reduced volume v, are due 
to the exponential term (point (ii)). In the exponential term 
we have already inserted the thermodynamic relations P – Y 
= nRT/V, P0 – Y = nRT0/V0 into g(T); R is the universal con-
stant, and n is the number of moles. We have also attributed 
v = V/V0 and τ = t/t0. The thermodynamic relations can be 
received from the equation of state at zero-th approximation. 
We accommodate here the argumentation given by Stanley 
(1971) concerning the linear term of the virial theorem we 
followed in all our recent papers where the full justification 
of the use of these state equations is presented (e.g. Pietruszka 
et al. 2007, p. 18). In Eq. (1) V stands for the volume of 
elongating plant cell/organ at temperature T. The value of P 
can be taken from experiment. It approximately equals 0.5 
MPa, while Y is usually of about 0.1 MPa.

However, Eq. (1) is incomplete yet. In order to bring 
the wall mechanics into it we need to perform (step 2) the 
“rescaling” of the time variable in the logistic function f. 
This is accomplished by recalling the Lockhart equation and 
assuming that the extensibility coefficient Φ is temperature-
dependent Φ = Φ(T)
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In Eq. (2) we have introduced the unknown temperature- 
and volume-dependent function G instead of P – Y (such 
change of variables can be accomplished by virtue of a state 
equation). Integrating Eq. (2) yields
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Denoting the definite integral on the left side by I(v) we 
get I(v,T) = Φ(T)t. By solving Eq. (3) with respect to v, we 
formally obtain v(t,T) = I–1(Φ(T)t).

In order to introduce time scaling in Eq. (1) we may 
rewrite it to the following form 
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where the left side we have denoted as F(v). By expanding 
the hyperbolic tangent on the right to the linear term about 
one (tanh(x) ≈ x + O(x)3 – such approximation is fully justi-
fied in the broad linear range of growth) the above equation 
reads F(v) = τ. By inverting this relation we get v = F–1(τ). 
On the other hand we have already obtained from Eq. (3) 
the relation v = I–1(Φ(T)τ). Then, by comparing the latter, 
we see that the time argument differs by a factor of Φ(T). 
Therefore, in order to introduce Φ into Eq. (1) we may pos-
tulate its final form as
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where Φ0 = Φ(t0, V0) has been introduced for normaliza-
tion. Equation Eq. (5) represents an irreversible increase in 
the volume at fixed temperature. Here t0 denotes the time of 
the maximum expansion rate and V0 = V(t0).

At a first glance, Eq. (5) acquires reasonable interpretation. 
The time-evolution of the volume V in Eq. (5) is governed 
by two factors, namely the cell wall extensibility properties 
entering the logistic-like function through Φ and cell sap 
thermodynamics represented by the exponential (tempera-
ture enters implicitly by V = V(Φ(T)). Because parameters 
t0 and V0 can be taken from experiment, Eq. (5) may serve 
as an equation to determine Φ as a function of time.

Solutions and Applications

Eq. (5) can be solved either by graphical methods (see the 
drawing in Fig. 3) or iterations (we will discuss later). Plotting 
separately left hand side and right hand side of Eq. (5) we 
can see that they intersect exactly at one point (the volume 
V is always a positive quantity). This means that Eq. (5) has 
always a unique solution for the volume V.

The internal “degrees of freedom” are represented im-
plicitly by the dependence of the volume on the cell wall 
extensibility V = V(Φ) in Eq. (5). In particular, the “material 
coefficient” Φ can be dependent on temperature, Φ = ΦT. 
The specific functional form of V(ΦT), as taken from ex-
periments, can either be inserted to Eq. (5) to report on 
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elastic/viscoelastic/plastic phases of elongation (Pietruszka 
and Lewicka 2007, Fig. 2) and the discussion therein) or 
deduced from the solution of Eq. (5) completed with the 
empirically estimated cardinal values. Beneath, we consider 
the case when Φ = ΦT(t) is unknown.

The main merit of Eq. (5) concerns the possibility of 
numerical evaluation of cell extensibility coefficient Φ in 
function of temperature and time. The procedure is straight-
forward, yet it demands a) growth experimental data and 
b) numerical investigations. Eq. (5) is a deterministic equa-
tion, it means – the knowledge of its parameters (t0, V0) 
returns the whole VT (t) plot. However, in what follows we 
leave Φ as an unknown function that must be determined.

In order to accomplish this issue, the following algorithm 
is to be performed. The average turgor pressure P – Y differ-
ence may be assigned constant throughout, say 0.4 MPa. 

The credibility of this assumption is justified at least for the 
linear in time phase of growth (Kutschera and Kohler 1993, 
Fig. 1 where the authors conclude that the linear phase of 
growth in darkness, days 4 and 5 after sowing, is character-
ized by a constant cell turgor pressure). However, for special 
purposes the turgor pressure P or turgor threshold Y may 
vary, since Eq. (5) imposes no limitations with respect to 
this issue.

The simple procedure is as follows:
1. Measure the (volumetric) growth of an organ (or cell) at 

fixed temperature in the course of time {ti, Vi = V(ti)}, 
i = 1,..., n. This step also yields the set of unknown opti-
mum parameters.

2. Use the values measured in 1 to solve numerically the 
nonlinear Eq. (5) with respect to ΦT=const(t) in the course 
of time. Adopt iteration method (see the paragraph be-
neath), to extract Φ.

3. Change the temperature in the experiment. Go to step 1, 
or exit.
Eq. (5) is, in fact, a complicated transcendental equation, 

since it involves the implicit time (and fixed temperature) de-
pendence not only on its left side but also in the exponential 
term (via V = VT=const(t)), and therefore it must be solved 
by self-consistent (iterative) numerical methods. Solution 
by simple iterations is the procedure that serves our pur-
pose best. Thus, the convergence (self-consistent solution) 
is reached while |V(n)(t) – V(n-1)(t)| < ε where V(n)(t) cor-
responds to the nth iteration for the volume at a given time 
and fixed temperature and ε denotes the accepted accuracy. 
However, it turns out, that a few iteration steps are required 
to converge to a very high accuracy of the order of 10–4 that 
is even superfluous in the case of plant cell/organ extensibility 
measurements. In the first iteration we can simply insert the 

Figure 2. Numerical solutions of transcendental equation Eq. (1). 
The calculated relative elongation is plotted in function of time for 
different values of the turgor pressure difference P – Y. A. A typical 
sigmoid curve for P – Y = 0.5 MPa (the insert in the upper plot 
presents the corresponding solution of Eq. (1) for the elongation 
rate). B. Example solutions for the lower and greater (inset) P – Y 
value. The turgor pressure difference (in MPa) is indicated in all 
plots for the relative elongation, respectively.

Figure 3. Schematic diagram of a graphic solution for transcendental 
equation Eq. (5) with Φ/Φ0 = 1. The solution is found where the two 
lines representing left (lhs) and right (rhs) side of Eq. (5) intersect.
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initial volume of the cell V(0) = V(t = t0) in the right side of 
Eq. (5). Then the iteration process continues by introducing 
the output of such calculation to the right side of this equa-
tion until the convergence condition is reached.

Some possible solutions are presented in Figs. 2A,B. It 
turns out, a moderate pressure difference P – Y results in 

a kind of sigmoid curve (Fig. 2A) while the low pressure 
reveals linear growth with characteristic saturation ending 
(Fig. 2B) also present in Fig. 2A (compare with Mohr and 
Shopfer 1995). When turgor pressure P – Y is too high a kind 
of discontinuity starts to appear (see the inset in Fig. 2B). The 
numerically calculated elongation rate corresponding to the 

Figure 4. Elongation of maize coleoptile segments (APW – artificial pond water) in function of time (solid squares) as interpolated by 
Eq. (1) (hyperbolic tangent – solid line). The original data (ambient temperature) for the elongation rate are plotted in the inset (right). 
The dashed line representing the corresponding Lockhart solution is shown for comparison. The squared determination coefficient R2 
equals 0.9996 for Eq. (1) and 0.8909 for the Lockhart model. The extensibility coefficient Φ (arbitrary units) is plotted as a function of 
time in the inset (left) where the calculated through equation Eq. (5) data points are represented by the solid squares.

Figure 5. Elongation of maize coleoptile segments (APW + Al) in function of time (solid squares) as interpolated by Eq. (1) (hyperbolic 
tangent – solid line). The calculated through Eq. (5) extensibility coefficient Φ for APW+Al medium is slightly suppressed compared to 
APW (see the insets in Figs. 4 and 5).
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elongation plotted in Fig. 2A is shown in the inset and repro-
duces qualitatively the usually obtained data (also compare 
with the inset in Fig. 4, where the data for the elongation 
rate of maize is shown).

Furthermore, in Figs. 4–5 we present the possible applica-
bility of Eq. (5) for typical data analysis like e.g. for elonga-
tion growth of maize (coleoptile segments). The solid line is 
obtained from the raw data for the elongation rate (see the 
inset in Figs. 4–5) through the following procedure. These 
data (elongation rate) has been numerically integrated to re-
construct of the primordial function – the elongation points 
(solid squares in the main plot). Then the elongation points 
were interpolated (solid line) with the use of Eq. (5). Similar 
procedure has been performed for the Lockhart model. The 
resulting curve (dashed line) is plotted in order to compare 
with our result. It looks as though, the exponential growth 
due to Lockhart equation is less adequate when noticing 
that the elongation data (solid squares) almost coincide with 
continuous curve. The discrepancy is pronouncedly bigger 
at greater times due to exponential increase of the Lockhart 
solution, contrary to saturation effect (exponential decay 
corresponding to maturation) observed in experiments and 
more properly described by logistic function. The high deter-
mination coefficient R2 also favors the presented approach 
(see the caption of Fig. 4). Last but not least, the calculated 
through Eq. (5) extensibility coefficient Φ is shown in the 
inset in both figures.

Discussion

In this article a nonlinear equation for growing plant cell/
organ has been introduced. This transcendental equation 
incorporates a number of features necessary to describe 
growth in the presence of environmental temperature or 
additional external/internal positive or negative pressure. It 
is quite easy to anticipate that Eq. (5) can be correspondingly 
supplemented to report on the implementation of phytohor-
mons or influence of abiotic factors on the growth of plants. 
This can be accomplished by inserting proper terms in Eq. (5) 
in a similar fashion as in our recently published papers (see 
e.g. Pietruszka et al. 2007). Furthermore, careful analysis of 
Eq. (5) may deliver a new tool to extract information about 
the extensibility coefficient Φ.

Closer examination of Eq. (5) reveals that both terms on 
the right can be identified as corresponding to the Lockhart 
equation. The exponential part can serve simultaneously as 
a “higher order correction” due to the temperature-volume-
dependence (V depends both on time and temperature). 
Notwithstanding, the correction term is difficult to overes-
timate since it should be present to describe the elongation 
growth (and elongation growth rate) properly. Indeed, both 
terms are required to describe different phases of elongation 

growth: acceleration of growth with maximal velocity up to 
saturation and, next, cessation of cell expansion (see also 
Fogg 1975 and Cosgrove 2000 regarding large-scale growth). 
We also realize that the validity of the above solution for elon-
gation growth ranges for the whole time interval, contrary 
to the Lockhart equation which is valid only for the linearly 
ascending interval of elongation. In addition, we notice that 
the applied constant pressure in the Lockhart equation im-
plies exponential growth and, formally, the solution “blows 
up” with increasing time (Fig. 4).

It would be interesting to explain how the equation 
proposed here differ (except that it includes temperature 
effects) from the Lockhart equation in which the cell wall 
extensibility would not be constant. The answer is as follows. 
Providing that Φ = Φ(t) then the solution of the Lockhart 
equation reads 

dtYPt
init eVV ∫ −Φ= ))((

and the time dependence of the coefficient Φ must be known 
in order to calculate V.

Another point is that in Eq. (5) two experimental facts 
are included, namely the sigmoid character of growth as 
a function of time and the Gaussian dependence of growth as 
a function of temperature. This additional input is reflected 
by the existence of some cardinal numbers that anchor 
Eq. (5) to experiment.

Moreover, we should recall that the growth process is 
a non-equilibrium process and, in principle, should not 
be described by a Lockhart time differential equation. In 
contrary, the transcendental Eq. (5), through its struc-
ture, must be solved self-consistently, i.e. its subsequent 
solutions with increasing time are being found for quasi-
equilibrium conditions at a given temperature. This fact 
may be interpreted as corresponding to such physiological 
situation that many internal processes must coincide to 
let the plant grow.

It is also important to mention that in the original Lock-
hart equation the coefficient Φ is independent of time and 
temperature, which is obviously not the case. In contrary, 
the extensibility coefficient Φ, decisive for the mechanical 
properties during growth, depends strongly on time (see 
Liu et al. 2007, Fig. 1A) and temperature (Nakamura et al. 
2002, Figs. 1 and 2). Therefore, Eq. (5) can also serve as 
a new mathematical tool to determine the behavior of Φ in 
function of time at a given temperature.

In Eq. (5) the elongation (volumetric) growth can be ad-
equately described by two characteristic parameters, namely 
t0 (corresponding to the maximum rate of elongation) and 
the volume V0 at t0. Further development of this model may 
assimilate some other “material constants” bound with the 
elastic/viscoelastic/plastic properties of plant cell wall (Pi-
etruszka and Lewicka 2007) through the coefficient Φ.
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Last but not least, Lockhart equation has been derived for 
elongation growth in a particular (cylindrical) geometry and 
was intended to describe a single cell elongation. Since no 
geometrical assumptions are imposed onto Eq. (5), not only 
it can describe the single cell growth, but also some single cell 
simulations. A good example presents a Fishman and Genard 
model (Fishman and Genard 1998), where the growing fruit 
is assimilated to one big cell separated from the exterior by 
a composite membrane (see also Liu et al. 2007).

In this article we have presented an equation to describe 
cell or organ growth as a function of time, which includes 
the influence of temperature. This kind of development can 
be useful to describe complex processes with fairly simple 
equations integrating different levels of knowledge. Since it 
has the advantage to yield the temporal dynamic of cell wall 
extensibility, it seems this equation may be used instead of 
the Lockhart equation largely used in plant sciences.
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