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New insights into the role of NF1 in cancer
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NF1 proteins are a family of transcription factors that act either as repressors or as activators. Functional studies indicate 
that NF1 participate in signaling pathways that regulate cell viability, proliferation and differentiation. Participation in regu-
lation of genes important for tumor progression and metastasizing suggests a potential value of NF1 as a prognostic factor 
for certain types of cancer.
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NF1 (nuclear factor one) is a transcription factor involved 
in the regulation of expression of many eukaryotic genes. 
This protein has been described first in 1982 by Nagata et al.
during their studies of adenovirus replication [1]. They have
isolated a 47kD protein from HeLa nuclei which stimulated 
the replication of adenovirus in vitro. It was shown, one year 
later, that this protein binds to the origin of adenovirus replica-
tion [2]. The exact sequences needed for efficient replication
of adenovirus were identified by Guggenheimer in 1984 [3].
He identified and characterized two domains essential for
replication; a 10bp region needed for binding of viral prim-
ing protein and the other domain, 32bp long, was essential 
for NF1 binding. 

As NF1 was isolated from HeLa cells, it was suggested that 
it may play a role in the regulation of gene expression in mam-
malian cells. The first NF1 binding site in mammalian genome
was identified in 1985 in the IgM gene [4]. The authors pro-
posed that NF1 may represent a component necessary either 
for replication or for chromatin activation of the IgM gene.

Discovery of cellular NF1 target genes 

Identification of NF1 binding sites in the human genomic
DNA [5] and comparison with binding sites in adenoviral 
genome, as well as the following DNA binding tests, dem-

onstrated that NF1 protein binds as a dimer to a sequence 
TTGGC(N5)GCCAA [6]. Quantitative analysis of binding 
revealed that NF1 binds tightly to the dyad symmetric sites 
but can also bind, though with reduced affinity, to half sites
TTGGC or GCCAA [7]. Gradually, cDNAs for NF1 from 
human [8] rat [9] mouse [10] hamster [11] and porcine [12] 
tissues were isolated. The presence of multiple NF1 genes in
vertebrate genomes and the ability to form many splicing vari-
ants led to confusion in nomenclature. Finally, Rupp in 1990 
identified four NF1 genes in the chicken and suggested a NF1
nomenclature in higher eukaryotes: NF1-A, NF1-B, NF1-C 
and NF1-X, which is used today [13]. A single NF1 gene was 
identified in cephalochordate Branchiostoma lanceolatum, in 
nematode Caenorhabditis elegans and in fly Drosophila mela-
nogaster [14]. In prokaryotes, as well as in simple eukaryotes, 
no NF1 homolog was found.

The structure of NF1 protein

The number of exons in NF1 genes varies with species. The
DNA binding domains of NF1 are primarily encoded by exon 
2. This domain is also responsible for dimerization and, moreo-
ver, is sufficient for stimulation of adenovirus replication.
C-terminal domain is the transcriptional activation/repression 
domain. Alternative mRNA splicing in all NF1 genes generates 
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multiple isoforms of C-terminal transactivation/repression 
domains [15,16,17]. It was found that NF1, similar to the ma-
jority of transcription factors, is not able to bind to compact 
chromatin. It binds to DNA only after chromatin mobilization
mediated by histone acetylation [18]. 

For a long time it seemed that NF1 binding domain had 
no sequence homology to DNA binding domains of other 
transcription factors. However, sensitive Position-Specific
Iterated (PSI)-BLAST database search revealed significant
similarities between the Smad and NF1 transcription factors 
[19]. The comparison of binding domains shows that four
cystein residues are present in all NF1 isoforms. Three are
needed for DNA binding activity and the fourth cysteine is 
responsible for the oxidative inactivation of NF1 [20].

Expression of NF1 proteins and their essentiality

All four genes are predominantly expressed in the lung, 
liver and heart of adult mouse. Very low or undetectable levels 
were measured in the spleen and testes. During embryonic 
development the first isoform that appeared was NF1-A. NF1-A
was detected 9 days postcoitum in heart and in developing 
brain [21].

To study the essentiality of NF1 genes, germline knock-
out studies were performed. Nf1a-/- mice have mainly 
neuro-anatomical defects (changes in brain development, 
hydrocephalus). More than 95% homozygote mice die within 
two weeks after birth. Surviving animals are sterile but have
an approximately normal life span [22]. Nf1b-/- mice have 
also neuro-anatomical defects and die soon after birth due
to defects in lung development [23]. Nf1c-/- develop normally 
except unique pathological defects in teeth development 
[24]. They have no brain defects. NF1x-/- mice gain poorly 
weight what indicates an important role of NF1-X in gut and 
intestine development. The defects in eye and ear opening
in these animals indicate an important role of NF1-X also in 
the development of epithelia of other organs. They have also
defects in brain development [25].

Participation of NF1 proteins in various cell functions

The presence of four ubiquitously expressed distinct NF1
isogenes and the possibility to form a wide range of splicing 
variants, together with the ability to associate with different
partners, allow the NF1 to exert diverse biological effects.
Detailed studies of regulation of transcription have shown that 
NF1 can function either as an activator or as a repressor [26]. 
Thus, NF1 affects a broad range of biological activities: a) cell
differentiation in embryogenesis [27]; b) regulation of proteins
involved in cell-cell (28) and cell-extracellular matrix interac-
tions important in epithelial-mesenchymal transition (EMT) 
[28]; c) participation in the regulation of environmental stress 
genes CYP1A1 [29], CYP1A2 [30], CYP2A3 [31]; d) regulation 
of expression of mitochondrial adenine nucleotide transloca-
tor-2 gene (ANT2), indicating the possibility that NF1 might 

be involved in the regulation of cell energy metabolism [32]; 
e) cell cycle regulation and growth arrest due to transcription 
regulation of genes encoding cyclin D [33], GAAD153 [34], 
p53 [35] and p21 [36].

Recently, a very interesting feature of NF1 was discovered. 
Consensus NF1 binding sequences function in the genome 
as insulators [37]. This function could be used in gene trans-
fer-based therapeutic approaches. These insulators limit the
activation of nearby cellular genes by the enhancers present in 
viral vectors and can function as barrier elements that would 
stop the spreading of silent chromatin to ensure transgene 
expression. 

Post-translational modifications of NF1

Post-translational modifications (phosphorylation, O-or
N-glycosylation) of NF1 can significantly influence their ac-
tivities. It had been shown that insulin represses the glucose 
transporter GLUT4 through NF1. However, only phosphor-
ylated NF1 acts as a repressor of GLUT4 [38]. Interestingly, it 
was found that biological properties of gliomas are influenced
by the phosphorylation status of NF1. The genes coding the
glial fibrillary acid protein (GFAP) and the brain fatty acid
binding protein (B-FABP), which are the markers of glial 
differentiation, are regulated by NF1. The ability of NF1 to
activate expression of these genes is dependent on its phospho-
rylation status [39,40], but there is little information available 
on the kinases or phosphatases that catalyze its phosphoryla-
tion/dephosphorylation. However, a genome-wide screening 
to identify substrates of ATM/ATR kinases did reveal NF1-A 
as a potential substrate [41].

O-linked glycosylation has been reported to stimulate the 
binding of NF1-B to DNA resulting in activation of the whey 
acidic protein transcription [42]. Similarly, N-glycosylation 
of NF1-C has been postulated to improve the potential to re-
cruit co-activator/co-repressor to cluster in promotor during 
early involution in the mouse mammary gland [43]. Recently, 
during the study of regulatory influence of an irradiated 3T3
cells feeder layer on proliferation of human keratinocytes, 
it was found that glycosylation of NF1 and Sp1 delayed the 
induction of terminal differentiation of keratinocytes. The
reason for this is the prevention of proteasome degradation 
of glycosylated proteins. The resulting increase of Sp1 and
NF1 levels plays a positive role in keratinocytes proliferation 
inhibiting differentiation [44].

A SUMO consensus motif in the NF1 gene was identified
through a SWISSPROT database search, and SUMOylation 
of the NF1 has been detected both in vitro and in vivo [45]. 
So far, no physiological role for the SUMO-modified NF1 had
been identified.

NF1 protein in signaling pathways

The importance of NF1 in regulatory functions was first
suggested when it was discovered that these proteins might 
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participate in the TGF-β signaling pathway [46]. TGF-β 
signaling controls a diverse set of cellular processes includ-
ing cell proliferation, differentiation, apoptosis and cellular
homeostasis. TGF-β mediated signaling is propagated by two 
main pathways: a) through phosphorylation of Smad proteins 
[47]; and, b) through the activation of MAPK pathways which, 
in turn, may or may not include the Smad proteins [48].

Involvement of NF1 in the TGF-β signaling pathway was 
first demonstrated in the study of transcriptional activation
of type I collagen promotor. It was shown that TGF-β stimu-
lated the activity of the mouse α2 (I) collagen promotor [46]. 
A detailed analysis identified a region needed for stimulation
as the NF1 binding site. TGF-β represses the expression human 
adenine nucleotide translocator-2 (ANT2) and this repression 
is NF1-dependent [49,50]. Another set of data identify the 
growing importance of NF1 in TGF-β signaling during skin 
wound healing and hair follicule cycling [51,52]. During in 
vitro odontoblast differentiation, NF1-C expression level is
inversely proportional to the level of TGF-β signaling mol-
ecules. Increase in TGF-β decreases the level of NF1-C due to 
its degradation. The degradation is dependent on interaction
between NF1-C and phosphorylated Smad2/3 complex [53].

NF1 also plays a role in MAPK signaling. NF1-dependent 
repression of ANT2 in growth-arrested human diploid fibrob-
lasts is mediated by p38 [50], NF1-C2 is activated by prolactin 
signaling via the Janus kinase (Jak2) [54], and stress-induced 
transcription of insulin receptor substrate 2 (IRS2) depends 
on NF1 binding and activation of ERK pathway [55].

NF1 in cancer development and progression

Identification of NF1-specific binding elements in the
human p53 promotor provided the first indication that NF1
might be involved in the development and/or progression of 
cancer. p53 is a well characterized tumor suppressor, mutations 
and/or disruptions of which are often associated with human
cancer. Mutation of the NF1 site reduced the activity of the 
p53 promotor by 64% [35]. In addition, direct physical interac-
tions between NF1 and p53 and p73 have been reported. p53 
activity is increased when bound to NF1, whereas p73 activity 
is decreased [56]. However, studies on the NF1 binding to the 
p53 promotor in breast cancer suggest that, though NF1 plays 
a role in breast cancer formation, it is not through p53. The
data show differential binding of NF1 to the p53 promotor and
a depletion or low levels of NF1 in the majority of breast cancer 
samples with no effect on the level of p53 mRNA [57].

Another data indicating the involvement of NF1 in cell 
growth processes was the finding that over-expression of
NF1-X prevented the TGF-β mediated growth arrest of mink 
lung epithelial cells [58]. The data showing that over-expres-
sion of NF1 can influence cell proliferation indicate its role in
DNA replication and thus in cancer development. Another 
article supporting the role of NF1 in tumor formation was 
published in 2004 by Johansson [59]. These authors injected
a recombinant mouse Moloney virus encoding PDGF into 

the brain of mice to induce gliomas. Due to the synergistic 
action between PDGF and genes that were inactivated by 
insertional mutations, several genes involved in gliomagen-
esis could be identified. Among the identified genes were
NF1-X, NF1-A, NF1-B and NF1-C. Later, published data 
confirmed the participation of NF1, especially the NF1-A, in
gliomagenesis but with conflicting results [60,61]. Therefore,
it is not clear yet, if higher expression of NF1 is a good or bad 
prognostic factor in gliomas. In the following years, several 
articles appeared that showed the association of NF1 with the 
development and, especially, with the progression of tumors. 
Most data have been published on the role of NF1 in breast 
cancer. The first information that initiated further studies
on breast cancer was obtained in Nilsson’s laboratory [54]. 
As prolactin is the hormone regulating the mammary gland 
development, it is a candidate for the control of initiation and 
progression of breast cancer. Studies from the Nilsson group 
show that NF1C-2 is the main transcription factor involved 
in prolactin signaling, and that NF1-C2 levels in the nucleus 
are regulated by prolactin via a Janus kinase (Jak2) targeted 
for proteolytic degradation in the nucleus. Subsequent clini-
cal studies showed that patients with primary breast tumors 
expressed lower levels of NF1C-2 than healthy donors [28]. 
However, patients expressing NF1-C2 had better prognosis 
compared to those without a detectable NF1-C2 in the nucleus. 
Moreover, virtually no NF1-C2 was detected in metastatic 
lymph nodes suggesting that NF1-C2 is lost during tumor 
progression, raising the question whether this loss facilitates 
metastasis. A regulatory role for NF1-C2 in metastasis is 
strengthened by the findings that NF1-C2 strongly represses
the expression of the FoxF1 gene which induces epithelial-
mesenchymal transition (EMT) and invasiveness. FoxF1, when 
expressed at relatively high levels, suppresses the expression 
of E-cadherine, components of tight junctions (occludin and 
claudin-1) and desmosomes (desmocollin, desmoplakin and 
desmoglein). The expression of these proteins can prevent
metastases of some types of tumors [62,63]. Thus, NF1-C2 and
FoxF1 appear to be two novel potential prognostic factors in 
breast cancer invasion. 

However, this is probably valid only for breast cancers 
in which prolactin plays an important role. In contrast to 
NF1-C2, the NF1-B isoform was shown to be an unfavorable 
factor in other subtypes of breast cancer. Triple negative breast 
cancer (TNBC), which is defined by the lack of expression
of estrogen, progesterone and HER-2 receptors, exhibits 
recurrent amplification of regions on chromosome 9p24.1
[64]. This is the region in which the NF1-B gene is located.
Furthermore, the copy number of the NF1-B gene is ampli-
fied and its expression is increased in TNBC. Recently, the
relationship between the NF1-B mRNA and protein expres-
sion levels and various molecular subtypes of breast cancer 
was demonstrated showing an association between the NF1-B 
expression and nuclear grading of tumors [65]. A significantly
higher level of NF1-B mRNA has been detected in the estrogen 
receptor (ER) negative cancer tissues and cancer cell lines as 
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compared to the ER positive samples. Moreover, a significant
reduction in cell proliferation rate and an increase in apoptotic 
signalization followed the knock-down of NF1-B expression 
with specific siRNA in the ER negative cell lines. A change
in cell cycle distribution with an increased arrest of cells 
in the G2/M phase was detected by flow cytometry of the
siRNA-transfected cells. These results indicate that elevated
expression of NF1-B is an unfavorable prognostic factor for 
the ER negative breast cancers.

NF1 protein is also a negative prognostic factor for human 
uveal melanoma. Data obtained with cell lines derived from 
four individual donors diagnosed with uveal melanoma show 
that increased expression of NF1 leads to a more invasive phe-
notype of uveal melanoma [66]. Aggressiveness of melanomas 
(as well as of many types of cancers) is related to their ability to 
interact with the components of the extracellular matrix [67], 
such as membrane bound receptors and integrins (especially 
the α5β1 form and its ligand fibronectin). The expression of
α5 integrin is regulated by NF1 in cooperation with Sp1 and 
AP1. High expression of NF1 represses the α5 expression and, 
thus, leads to a more tumorigenic phenotype [66].

Considering the fact that NF1-A is the critical regula-
tor of brain development and that glial cells show dynamic 
patterns of NF1 gene expression during development (see 
above), a change in the expression of NF1-A was investigated 
in gliomas. Gene expression analysis performed by Scrideli 
(60) compared normal and neoplastic tissues to identify genes 
associated with gliomagenesis. Genes that were differentially
expressed in primary glioblastomas were identified. Twenty
overexpressed genes were selected and their expression was 
validated by real time PCR. NF1-A was one of 18 genes found 
to be more highly expressed in glioblastomas than in control 
non-neoplastic tissue [60]. However, when NF1-A expression 
was investigated in low and high grade pediatric malignant 
astrocytomas and the expression was correlated with the 
progression-free survival, NF1-A proved to be a favorable 
prognostic factor [61]. NF1-A was differentially expressed
in astrocytomas: it was highly expressed in the low-grade 
astrocytomas (WHO classification grades I and II) compared
with the high-grade astrocytomas (WHO grades III and IV). 
Moreover, there was a significant association between the
level of NF1-A expression and progression-free survival in 
patients with high-grade astrocytomas (WHO III and IV), 
higher levels of NF1-A had a beneficial effect on progres-
sion-free survival.

Further data on the role of NF1 in tumorigenesis were 
obtained in studies in which the genetic alterations that oc-
curred during tumor progression were investigated. Genetic 
manipulation was used to prepare a mouse model for meta-
static prostate cancer [68]. The model uses mutations in p53
and Rb, as these proteins are the best characterized tumor 
suppressors. Mutation of the p53 most probably occurs early in 
carcinogenesis as approximately 50 (or more) % of cancers has 
mutations in p53. The main function of Rb is the control of cell
cycle progression and its inactivation facilitates uncontrolled 

growth. p53 and Rb genes in prostate cells of model animals 
were deleted and primary tumors, which then appeared 
in prostate epithelium, were subjected to further analysis. 
Comparative genomic hybridization assay was performed to 
determine if specific genetic aberration were associated with
p53 and Rb deficient prostate cancer. Indeed, a set of genetic
alterations associated with prostate cancer was found. The
amplifications at the loci 4qC3 and 4qD2.2 have been con-
sistently detected. These loci contain cancer-related genes
NF1-B and L-myc. The results raised an intriguing possibility
that the progression of prostate neoplasm associated with an 
inactivation of p53 and Rb may, to some extent, depend also 
on activation of NF1-B and L-myc.

A similar approach was used to study DNA alterations in 
small cell lung carcinoma (SCLC) [69]. Again, experiments 
were based on known data, including loss-of-function muta-
tions in p53 and Rb which are observed in 75% and 90% of 
SCLC cases, respectively [70]. A mouse model that involved 
the inactivation of p53 and Rb using conditional (“floxed”)
alleles in these genes was used. After infection of lung with
adenovirus carrying the Cre recombinase, mice developed 
lung carcinoma that histopathologically resembled human 
SCLC. To determine the genetic alterations that occurred in 
mice primary tumors and metastases, genome amplifications
and/or deletions were evaluated. Mostly, amplification of a part
of chromosome 4 was detected. Within this amplified region,
NF1-B was the only gene amplified in each tumor sample. To
support the role of NF1-B in this type of tumor, cell lines de-
rived from human SCLC were investigated. It was found that, 
from 46 investigated human SCLC cell lines, 16 had NF1-B 
copy number gains. Interestingly, 11 of the cell line with NF1-B 
amplification also had L-myc amplification. Additionally,
NF1-B amplification detected by FISH, was present in 15% of
primary human tumors samples [69].

Conclusion

In recent years, accumulated data suggest that expression 
of NF1 plays an important role in the regulation of cell growth 
and in tumorigenesis. However, changes in NF1 expression are 
not the primary cause of tumor formation. For example, over-
expression of NF1 in chicken embryo fibroblasts showed that,
though NF1 induced morphological changes and rendered the 
cells resistant to transformation by some nuclear oncogenes, 
its overexpression did not induce oncogenic transformation 
of cells. Thus, NF1 can not be considered as a true oncogene
[71]. However, NF1 affects the expression of numerous genes
important for tumor progression and metastasis. Therefore, it
had been suggested that the determination of NF1 expression 
may be a good prognostic factor for certain types of cancer.

Taken together, there is an increasing body of data impli-
cating NF1 in the regulation of cell growth. NF1 proteins, per 
se, are not involved directly in the regulation of cell cycle or 
differentiation but they often affect the expression of genes
which are important for these processes.
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