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An autonomous real-time single-channel detection of  absence seizures 
in WAG/Rij rats
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Abstract. This paper presents a real-time, completely automated and patient independent algorithm 
for detection of absence seizures in WAG/Rij rats as a valid animal model of human absence epilepsy. 
Single-channel EEG recordings containing totally 488 seizures from 8 WAG/Rij rats were analyzed 
using the real-time SWD detection algorithm. The proposed algorithms based on the variation 
of wavelet power to the background power in two specific frequency bands whose spectral power 
are highly correlated with SWDs. The wavelet powers of two specific frequency bands are calculated 
with a pattern-adapted mother wavelet and compared with an adaptive ratio of background power 
of each frequency band. The results indicate used algorithm is able to detect the whole 488 seizures 
within less than 1 s with sensitivity of 100%. The average precision for 1200, 1400 and 1600 point 
of window size was 95.2%, 98.3% and 99.17%, respectively. The present algorithm, with its high 
sensitivity and specificity, could be used for further studies of absence seizures in humans and rats 
and could be implemented as real-time system for closed loop deep brain stimulation systems.
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Introduction

Absence seizures are generalized non-convulsive seizures 
most common in childhood. These types of  seizures that 
are also referred to as petit mal seizures, have two essential 
components: clinically, disorder in consciousness (absence); 
Electroencephalography (EEG), presence of Spike and Wave 
Discharges (SWDs) in EEG signals. Duration of  absence 
seizure varies from a few seconds to half a minute and some 
epileptic patients may experience up to hundreds of attacks 
in a day (Crunelli and Leresche 2002). Knowing the number 
of seizures and duration of each seizure is a key factor to 
evaluate the efficacy of a drug or other interventional therapy 
in order to treat seizure disorders. Generally, visual detec-
tion on absence seizures is less practical due to their brief 

duration, high frequency of occurrence and subtle clinical 
manifestations (Xanthopoulos et al. 2009). So development 
of  an algorithm that is able to automatically detect these 
types of seizures with an acceptable accuracy is an effective 
support to epileptic patients. Unfortunately, 30% of epilepsy 
patients cannot be treated appropriately by any available 
therapies such as antiepileptic drugs or surgery. In such 
cases, a real-time system that capable of detecting seizures 
onset and their instant suppressing can take epilepsy under 
control. Genetic animal models with “spontaneous, episodic, 
paroxysmal and recurrent” seizures are needed to study the 
basic mechanisms of human absence epilepsies since genetic 
factors play the most important role in the research towards 
the generalized epilepsy syndromes (Löscher 1984). We 
have used WAG/Rij rats as a mostly accepted animal model 
of human absence epilepsy. They share many clinical and 
electroencephalographic characteristics with human absence 
seizures (Löscher 1984; Van Luijtelaar and Coenen 1986). In 
animals with absence seizures, SWDs usually have a mean 
frequency of 7–8 Hz. Moreover, using Fourier transform, it 
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has been revealed that the frequency of SWDs is 10–11 Hz at 
the onset and 7–8 Hz at the end of spike and wave discharges 
(Drinkenburg et al. 1993). In recent years, various methods 
have been applied to detect absence seizures in both human 
and animal subjects. The time-frequency domain approaches 
are the most appropriate method to analyze non-stationary 
signals such as EEG and electrocardiography (ECG) (Van 
Hese et al. 2003; Xanthopoulos et al. 2009; Ovchinnikov et 
al. 2010). 

In the majority of  the reported methods for detection 
of  epileptic seizures, researchers used patient-specific 
methods. These methods have higher performance com-
pared to generic methods due to consistency of  seizure 
and non-seizure EEG characteristics of  each patient and 
their great heterogeneity across patients of the same type 
of epilepsy. However, generic methods with high sensitiv-
ity and accuracy are easier and faster to apply and more 
appropriate for clinical usage. There are very few studies 
on generic detection of  absence seizures. We propose 
a real-time generic seizure detection method based on the 
power spectra of Continues Wavelet Transform (CWT) with 
pattern-adapted mother wavelet in two specific frequency 
bands that is capable to detect the onset and offset of seizures 
in WAG/Rij rats. In this generic method, the performance 
of the algorithm does not depend on the individual prop-
erties of EEG signals of each rat and the parameters of the 
algorithm are set in advance.

Materials and Methods

Animal

Eight adult male WAG/Rij rats with 250 g mean body weight 
and 6–8 months old were enrolled in this study. They were 
purchased from Shefa Neuroscience Research Center in 
Tehran, Iran. The animals were cared under laboratory con-
dition (temperature 22°C, light/dark 12/12 hours) cycle and 
unlimited access to food and water). Before surgery, the rats 
were housed in small groups at single cage, but after surgery 
they were housed separately. We worked on the animal ethics 
of Tabriz University of medical sciences.

Surgery

The rats were anaesthetized with injection of ketamine (60 
mg/kg, i.p.) and xylazine (20 mg/kg, i.p.) (Gorji et al. 2011). 
Two cortical monopolar stainless steel electrodes were im-
planted in the frontal (Coordinates: AP: 0.22 mm, L: 0.24 
mm) and occipital cortex (Coordinates: AP: −11.04 mm, L: 
4 mm) for EEG recording using a  stereotaxic instrument 
and Paxinos and Watson atlas (Paxinos and Watson 2006). 
The coordinates were taken with bregma zero-zero and skull 

flat position. The frontal electrode was for recording and the 
occipital one was used as ground. The electrodes were wire 
stainless steel (WPI, 0.05” bare, 0.08” coated) and fixed in 
the socket with dental cement and the socket was fixed to 
the skull.

Recording

One week after the surgery, the animals were located in 
a  Faraday cage in freely moving condition for signals 
recording. The head sockets of rat were connected to flex-
ible and shielded copper cables for EEG recording. Prior 
to signal recording, we let rats to adapt with environment 
for 30 minutes. The signals were amplified by a DAM 80 
AC amplifier (WPI Inc., USA) and filtered by a  50 Hz 
Notch filter. Then, the signals were digitized by a Powerlab 
instrument running the Chart software (ver. 05, AD Instru-
ment, Australia) with a sampling rate of 1 kHz, and finally 
saved in the lab chart formatted data. The animals were 
free to move in an isolated chamber and only restricted 
by attached cables. In these rats, SWDs occurs mainly 
during quiet awakeness and drowsiness but rarely during 
rapid eye movement (REM) sleep or active wakefulness 
(Kostopoulos 2009). 

Analysis

One-channel EEG data was analyzed over a window of a cer-
tain width with 50% overlapping between windows. The 
wavelet power of the both frequency bands were calculated 
and compared with a  ratio of  the background power for 
each window.

CWT is provided by equation (1):  
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where x (t) is the signal to be analyzed. Ψ*(t) is the complex 
conjugation of the wavelet or the basis function Ψ(t) repre-
sented by equation (2). 

The mother wavelet used to generate all the basic func-
tions is designed based on some desired characteristics asso-
ciated with that function. The translation parameter b relates 
to the location of the wavelet function as it is shifted through 
the signal. Thus, it corresponds to the time information 
in the Wavelet Transform. The parameter s  relates to the 
stretching or compressing of the wavelet function and cor-
responds to frequency information. The mother wavelet is 
a normalized function with an average of zero and limited 
energy (Mallat 1999).
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Seizure detection

Developing a valid wavelet based on a desired pattern al-
lows exploiting the advantages of matched filtering in the 
framework of the CWT. Since, the EEG signals of epileptic 
seizure epochs contain a  superposition of  dilated and 
translated versions of SWD patterns, these patterns and the 
values of the scale-position pairs should be identified. Hec-
tor Mesa (2005) has illustrated the capability of the pattern 
adapted wavelet procedure to detect the epileptic spikes in 
EEG signals. We have constructed a pattern adapted wavelet 
approximating form spike and wave discharges using one 
of the available methods in Matlab Wavelet toolbox. Pat-
tern adapted wavelet was constructed based on the method 
proposed by Mesa and the constructing procedure has 
been given in the Matlab as an example entitled “Epileptic 
Spikes in EEG Signals- Constructing Adapted Wavelets from 
a  Single EEG Channel”. The constructed mother wavelet 
fulfills the requirements for wavelet bases (e.g., continuity, 
zero mean amplitude, and finite or near finite duration). 
This wavelet is real and appropriate for CWT. We used 
wavelets without FIR filter and scale function. The prede-
fined families of such wavelets include Morlet and Mexican 
hat. Moreover, the detection algorithm based on complex 
Morlet wavelet resulted in precise detection of seizures in 
EEG of WAG/Rij rats (Sitnikova et al. 2009; Ovchinnikov 
et al. 2010).

Figure 1 illustrates the pattern adapted mother wavelet 
constructed from the spike and wave discharges of the EEG 
signals recorded from the WAG/Rij rats. We have calculated 

the CWT of  the EEG signals using the pattern adapted 
wavelet and complex Morlet wavelet (Cmor) for specific 
frequency bands. We compared seizure detection perform-
ance of the adapted wavelet to the complex Morlet wavelet. 
For early detection of seizures, among all the scales usually 
used in the decomposition of EEG signal, we are interested 
in the frequency band in which the onset of SWDs activity 
appears (~10–11 Hz). By focusing on this low frequency 
range, the high frequency artifacts are neglected. Moreover, 
the spectral analysis of EEG signal demonstrated that some 
high frequency components (30–80 Hz) also appear in the 
EEG during SWDs. Therefore, the other artifacts such as 
movement artifacts and normal physiological state changes 
(e.g. sleep episodes) are ignored by considering this high 
frequency band. Sleep episodes are characterized by high-
voltage synchronized activity and often accompanied by 
sleep spindles (7–14 Hz) (Sitnikova et al. 2009). The wavelet 
power in the mentioned frequency ranges in each window 
was calculated and the spectrogram of SWDs is depicted in 
Figure 2 where these two frequency bands are also shown. 
The sum of the calculated wavelet power in each individual 
frequency gives the absolute wavelet power over the whole 
frequency range. The absolute wavelet power for the both fre-
quency bands were calculated in each window and compared 
with a ratio (R(i)) of the background power of each frequency 
range. When the values of absolute wavelet power in both 
frequency bands are greater than the ratio times of back-
ground power, a seizure was detected. The background power 
for each frequency range, BP(i), was estimated as the mean 
of absolute wavelet powers in a non-epileptic region. The 

Figure 1. SWDs (spike and wave discharges) pattern and mother wavelet used in SWDs recognition algorithm.
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value of background power for each frequency band was 
updated in each window for normal EEGs and this value was 
retained for seizure epochs. Figure 3 depicts the mechanism 
of seizure detection in the two frequency bands.

Firstly, the value of R(i) was determined for each animal 
individually and the results of pattern-adapted-based and 
Cmor-based seizure detection algorithms were compared. 
After finding the best mother wavelet, we improved the algo-
rithm by automatic calculation of detection ratio. The value 
of the R(i) was varied during seizure and normal epochs for 

accurate determination of seizure onset and offset. Then, the 
algorithm automatically identifies its incorrect detections 
with calculating the duration of last seizure and adjusting the 
value of R(i) for more precise detection in the next epochs.

Results

The results of  pattern-adapted-based and Cmor-based 
seizure detection algorithms for a window size of 1400 ms 

Figure 2. Two specific frequency 
bands used for seizure detection and 
changes of  wavelet power in these 
bands.

Figure 3. EEG signals and detected 
seizure events by our algorithm. 
A.  Wavelet power and background 
power for frequency range of  30–
80 Hz. B. Wavelet power and back-
ground power for frequency range 
of 10–11 Hz. C. EEG signals of rat 1 
and seizures realm detected by al-
gorithm.
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are given in Table 1 and 2 for 6 rats, respectively. We have 
compared the performance of  each detection algorithm 
versus visual scoring. 

In these tables, False Negative (FN) is the number of sei-
zures not detected by seizure detection algorithm. False 
Positive (FP) is the number of events recognized as seizure in 
a wrong way and True Positive (TP) is the number of seizures 
detected correctly by seizure detection algorithm. Sensitiv-
ity and precision are also calculated as follows (Altman and 
Bland 1994; Fawcett 2006): 

Precision = TP/(FP + TP) *100 
Sensitivity = TP/(FN + TP) *100
The results of Cmor-based detection algorithm were the 

same as the ones obtained by Ovchinnikov et al. (2010). This 
comparison has demonstrated that the pattern-adapted-
based algorithm has more precision and sensitivity than 

Table 1. Results of pattern-adapted-based seizure detection algo-
rithm with individual ratio of background power 

Rat 
Number FN TP FP Sensitivity

(%)
Precision

(%)
1 0 24 1 100 96
2 0 78 1 100 98.7
3 0 22 1 100 95.65
4 0 69 1 100 98.6
5 0 84 0 100 100
6 0 47 1 100 97.9
Average 0 54 0.83 100 97.8

FN, False Negative (the number of seizures not detected by seizure 
detection algorithm); TP, True Positive (number of seizures detected 
correctly by seizure detection algorithm); FP, False Positive (the 
number of events recognized as seizure in a wrong way).

Table 2. Results of Cmor-based seizure detection algorithm with 
individual ratio of background power 

Rat 
Number FN TP FP Sensitivity

(%)
Precision

(%)
1 0 24 1 100 92.3
2 0 78 1 100 98.7
3 0 22 1 100 100
4 0 69 1 100 98.6
5 0 84 0 100 100
6 2 45 4 95.75 91.8
Average 0.33 53.67 1.16 99.29 96.9

For abbreviations see Table 1.

Figure 4. Results of seizure detection algorithm for three sizes of window (Series1, Series2 and Series3 indicate the result of size of 1200, 
1400 and 1600 ms, respectively). A. Average of time required to detect seizure of each rat. B. Number of False Positive Detection for 
each rat.

A B

Cmor-based detection algorithm. So, we have used the 
pattern adapted mother wavelet to increase sensitivity and 
precision of the detection algorithm. 

In the last pattern-adapted-based detection algorithm, 
the value of  R(i) was automatically adapted in real-time 
manner. In this algorithm, we have reduced the number 
of characteristics that may have impact on algorithm per-
formance such as individual properties in the amplitude 
of  background EEG and the individual threshold value. 
Therefore, the speed of detection as well as its sensitivity 
and precision are only depended on the size of  window. 
Since detection of  all seizures is crucial, we have tested 
this algorithm for three lengths of  window in which the 
algorithm has the highest sensitivity. The sensitivity of these 
sizes of window was 100% and the number of false positive 
detections and detection delay values were compared. Fig-
ure 4 shows the histogram of the false positive detections 
and detection delay values of the all eight rats for window 
size of 1200, 1400, and 1600 ms.
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As shown in these figures, the window length directly af-
fects speed and precision of SWD detection. If a shorter win-
dow is used, it takes less time to detect SWDs, however, the 
probability of false detection increases. On the other hand, 
a wider window yields a better precision and, in change, it 
takes longer time to detect a seizure. It was found that the 
window sizes of 1400 and 1600 ms are the optimal choices 
(acceptable speed and highest sensitivity and precision) and 
provide a reasonable compromise between speed of SWD 
detection and number of  errors. The average precision 
of  the window size of  1200 ms is 95.2% and the seizures 
are detected after 0.5–0.87 s of visual detection. The results 
obtained from application of the final pattern adapted-based 
detection algorithm on the EEG signals recorded from eight 
different WAG/Rij rats are presented in Table 3. In this table, 
the sizes of window (W) are 1400 ms and 1600 ms with an 
overlapping of 50%.

Discussion and Conclusions

This study presents a generic algorithm that is capable of au-
tomatic real-time detection of  absence epileptic seizures 
in WAG/Rij rats, as an animal model of  human absence 
seizures. It was found that the proposed algorithm is able to 
detect SWDs with a high sensitivity and precision as seizure 
occurs. The algorithm uses the baseline as a reference level 
to avoid excessive false detections due to noise artifacts that 
tend to change the overall amplitude of recordings for longer 
periods of time. Moreover, employing the two frequencies 
bands whose power spectra changes are highly correlated 
with SWDs can reduce false detection probabilities during 

physiological or non-physiological artifacts. Using an adap-
tive ratio to handle the variability of SWDs amplitude and 
considering a pattern of SWDs as a mother wavelet have 
increased the ability of seizure detection.

Generally, very few studies have focused on real-time detec-
tion of absence seizures in rats. Only one study by Ovchin-
nikov et al. (2010) proposed a real-time detection algorithm 
for WAG/Rij rats. In their report, a real-time reliable algorithm 
was described for seizure detection in WAG/Rij rats. Although 
the reported sensitivity was 100% for real-time detection 
of  seizures, the results of 24-h recording analysis showed 
some missed SWDs. Moreover, the only purpose of  their 
algorithm was to determine the moment of onset of SWDs 
and the duration of seizures was not measured. Furthermore, 
their method was only partly automatic since it requires an 
individually threshold setting for each rat and the precision 
and sensitivity of method are critically dependent on the ap-
propriate threshold selection.

We have used variable window size and the results 
of  three different window sizes confirmed that accuracy 
and detection time can be increased by broadening the 
window size. Therefore, based on the desired application, 
a tradeoff between the precision and detection delay can be 
accomplished. The window size of 1600 ms has the high-
est precision (99.17%) and SWDs can be detected within 
0.6–1.4  s  after the visual determination of  seizure onset. 
Moreover, the window size of 1400 ms also has more preci-
sion and sensitivity than the previous presented works with 
less than one second detection time. 

In conclusion, our seizure detection algorithm, with its 
high sensitivity and specificity, can be applied for further 
studies of spontaneous SWDs in humans and rats and can 

Table 3. SWD detection results of 8 WAG/Rij rats for two size of window (W)

Rat Number
Average

1 2 3 4 5 6 7 8
Number of visual detection 24 78 22 69 84 47 58 106 61

W = 1400

FN 0 0 0 0 0 0 0 0 0
TP 24 78 22 69 84 47 58 106 61
FP 1 0 0 2 2 2 0 0 0.87
Sensitivity (%) 100 100 100 100 100 100 100 100 100
Precision (%) 96 100 100 97.2 97.7 95.9 100 100 98.3
Detection time after the onset (s) 0.77 0.89 0.71 0.66 0.73 0.92 0.98 0.62 0.79

W = 1600

FN 0 0 0 0 0 0 0 0 0
TP 24 78 22 69 84 47 58 106 61
FP 1 0 0 1 1 0 0 0 0.37
Sensitivity (%) 100 100 100 100 100 100 100 100 100
Precision (%) 96 100 100 98.5 98.8 100 100 100 99.17
Detection time after the onset (s) 0.85 1.42 1.03 0.79 0.93 0.93 1.08 0.6 0.99

For abbreviations see Table 1.
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be implemented as a real-time system for closed loop deep 
brain stimulation systems. All features needed for imple-
mentation of a deep brain stimulation closed loop systems 
(high sensitivity and precision, real-time detection of SWDs, 
no need to individual setting for each rats) were included. 
Moreover, our algorithm has adequate onset detection time 
for real-time seizure detection applications. Furthermore, 
our generic single-channel seizure detection algorithm is 
very appropriate to clinical use due to its auto-matching 
with patient-specific characteristics which reduce patient 
handling tasks and lower data processing rate using a single 
channel EEG data.
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