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PreviousColorectal cancer (CRC) is a well-recognized complication of Ulcerative colitis (UC) and patients with UC 
have a higher incidence of CRC than the general population. Early detection and mechanism of colitis-associated colorectal 
cancer (CAC) is still challenging. The aim of present study is to identify genes associated with CAC by centrality analysis 
of co-expression networks. Co-expression networks of CRC and UC were constructed by empirical Bayes approach based 
on top 200 gene signatures which identified by the model of genome-wide relative significance and genome-wide global 
significance across multiple datasets. Centrality of degree, stress centrality, betweenness centrality and closeness centrality 
of co-expression networks were selected to explore hub genes presented in CRC and UC. Validation of mRNA expression 
in CRC patients was conducted by real-time quantitative Polymerase Chain Reaction (qPCR). Pathway analysis was con-
ducted based on Kyoto Encyclopedia of Genes and Genomes database. We found 21 common genes, such as SLC4A4 and 
AQP8, both existed in CRC and UC top 200 genes. By accessing centralities analyses of co-expression networks, HPGD 
and AQP8 were common hub genes in CRC and UC, and various centralities analyses of the same gene were not consist-
ent. Patients with alteration of AQP8 have significantly reduced the survival rate according to real-time qPCR results. Our 
study displayed genes associated with CAC (AQP8 and HPGD), and they might be reliable biomarkers for early detection 
and therapies of CAC.
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Colorectal cancer (CRC) usually developed from ulcerative 
colitis (UC), and is one of the commonest malignant tumors 
with relatively poor prognosis [1, 2]. An increased risk of 
colitis-associated CRC (CAC) compared to individuals 
without UC has been presented [3]. The increased incidence 
occurs predominantly in patients with longstanding extensive 
colitis [4]. Although CAC accounts only for 1% of all cases 
of CRC seen in the general population, it is a serious sequel 
of the disease and accounts for one sixth of all deaths in UC 
patients [5].

Recently, identifying independent effects of individual 
gene in multiple existing genome, association has been 
utilized to account for mechanism of CRC, especially CAC 
[6, 7]. Hiromu Suzuki et al evaluated a group of genes 
that were preferentially hypermethylated in CRC, such as 
SFRP1 [8]. In addition, p14 and COX-2 were identified as 

potential biomarkers for early detection of CAC [9, 10]. 
However, traditional gene research ignores that genes are 
not only encoded as individual genes or proteins, but also 
as sub-networks of interacting proteins within a larger in-
teraction network in the human genome [11]. As a result, 
much of the mechanism of human diseases such as CAC 
remains unexplained.

Unveiling CAC mechanism still has remained a major 
challenge despite numbers of researches have been conduct-
ed. Inconsistent results have been presented due to multiple 
sources of problems, including small sample size, measure-
ment error, and different statistical methods. The overlap 
is very low for the most significantly dys-regulated genes 
across multiple studies [12]. Network-based approaches 
especially co-expression network offer effective means to at 
least partially solve this challenge with providing potential 
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malignancy diagnostic molecular signatures and connecting 
them together. 

The aim of present study is to identify genes associated 
with CAC by centrality analysis of co-expression networks. 
We constructed co-expression networks utilizing empiri-
cal Bayes (EB) approach via linking gene signatures which 
is evaluated by genome-wide global significance (GWGS) 
method. Besides, centrality of degree and three kinds of 
centralities (stress, betweenness and closeness centrality) on 
the basis of co-expression networks were analyzed to explore 
hub genes existed in UC and CRC. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis 
was performed to find functional relevance of selected gene 
signatures based on expression analysis systematic explored 
(EASE) test. Finally, real-time quantitative Polymerase Chain 
Reaction (qPCR) was applied to validate genes mRNA expres-
sions of CRC and patients survival status. As the result, this 
research might provide the promising gene signatures for 
therapy of CAC.

Materials and methods

Data selection. We firstly explored UC and CRC related 
data in Gene Expression Omnibus (GEO) and Array Ex-
press (AE) database, then screened these data with similar 
conditions (such as possessing normal controls, total RNA 
obtained from intestinal biopsies and clear sample de-
scriptions), and finally six microarray expression profiles 
(GSE36807 [13], GSE38713 [14], GSE6731 [15], GSE4183 
[16], GSE41258 [17] and E-MTAB-57 [18]) were selected. 
There were total 90 UC patients and 24 normal controls 
for UC analysis, while a total of 350 CRC patients and 140 
normal controls were used. The characteristics of data were 
shown in S1. 

Data preprocess. For each dataset, we applied standard 
methods to control quality of gene microarray probe-level data 
[19]. Briefly, in order to eliminate the influence of nonspecific 
hybridization, background correction was applied by robust 
multi-array average (RMA) method [20]. The observed Perfect 
match (PM) probes were modeled as the sum of a normal noise 
component N (Normal with mean µ and variance σ2) and an 
exponential signal component S (exponential with mean α). To 
avoid any possibility of negatives, the normal was truncated at 
zero. Given we had O the observed intensity, this then leaded 
to an adjustment.
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Where a=s-µ-σ2α and b=σ. Note that ∅ and Φ were the 
standard normal distribution density and distribution func-
tions respectively. Mismatch (MM) probe intensities were not 
corrected by the routine.

Normalization was performed through quantiles based 
algorithm [21]. It was a specific case of the transformationx'i     
= F–1 (G(xi)), where we estimated G by the empirical distribu-
tion of each array and F using the empirical distribution of the 
averaged sample quantiles. Using “mas” method to carry out 
PM/MM correction [19]. An ideal mismatch was subtracted 
from PM. The Ideal MM would always be less than the cor-
responding PM and thus we could safely subtract it without 
risk of negative values.

The summarization method was “medianpolish” [20]. 
A multichip linear model was fit to data from each probe set. 
In particular for a probe set k with i=1, …, Ik probes and data 
from j=1,…, J arrays we fitted the following model 
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Where αi was a probe effect and βj was the log2 expression 
value.

Detecting of gene signatures. The gene signatures were 
screened by a model: GWRS and GWGS [22]. The value 
of GWGS was utilized to integrate independent microar-
rays, a gene with large value was considered to be globally 
significant across multiple studies. In current research, gene 
signatures were identified by two steps. First, the GWRS of 
i-th gene in the j-th dataset was measured by 
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. The 
number of datasets was denoted by n, the number of unique 
genes across n datasets was denoted by m; rij (i= 1–m, j = 1–n) 
was the rank number of i-th gene in the j-th study. When 
a gene was mapped to multiple probe-sets, the maximum 
value was given to indicate the expression of the probe-set. 
The gene would be removed if it was absent for one dataset. 
The degree of differential expression of genes was measured 
by fold-change. We assigned a rank number for each gene 
according to their differential expression. 

Second, GWGS of the genes were measured by ss ij

n

j
j

r

j 



1
  . 

The ωj represented the relative weight of the j-th dataset. The 
value of weight could be assigned based on the data quality of 
the j-th datasets, and the value of ωj could also be used to reflect 
the differential importance of biopsy versus cell line samples 
that biological scientists may wish to take into account. We 
treated all the dataset equally, thus the weight of each datasets 
was set equally to be 1/n for j = 1–n. We also selected only the 
top 200 genes from the full gene list for further analysis (i.e. 
selected genes with the greatest sr value) by empirical evalua-
tion of the classification performance. 

Co-expression network construction. A multitude of 
methods have been developed for co-expression analysis 
to identify differentially co-expressed (DC) gene, but they 
are often prone to false discoveries under the conditions of 
large cardinality of the space to be interrogated [23]. Here, 
an effective approach of EB framework was conducted which 
provided an false discovery rate (FDR) controlled list of in-
teresting pairs along with pair-specific posterior probabilities 
[24]. The identification of DC gene pairs was processed at the 
following steps: three inputs of matrix X, the conditions array 
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and the pattern object were required. The expression values 
in an m-by-n matrix of X (where m indicated the number 
of genes/probes under consideration, n indicated the total 
number of microarrays over all conditions) were normalized 
with background normalization and median correction and 
were generally represented on the log2 scale. The members of 
the conditions array with length n took values in 1,……, K (K 
indicated the total number of conditions). 

It was used to define the EC/DC classes with an ebarraysPat-
terns object based on the unique values in the conditions array. 
Intra-group correlations for all p=m*(m-1)/2 gene pairs from 
X and the conditions array were calculated using bi-weight 
mid-correlation through the function makeMyD. The p-by-K of 
D matrix with correlations was obtained. Mclust algorithm [25] 
was used to initialize the hyper parameters through the initial-
izeHP function to find the component Normal mixture model 
which could best fit the empirical distribution of correlations. 
The values of the component in Normal mixture model with 
component means, standard deviations and weights would be 
used to initialize the expectation maximization (EM) algorithm 
[26]. The three functions of the ‘full’ version, the ‘one-step’ ver-
sion and the ‘zero-step’ version represented different flavors of 
the modified EM approach. In this step, the initial estimates of 
the hyper parameters rather than the ‘zero-step’ version were 
used to generate posterior probabilities of DC. After the EM 
computations were finished with the selected function, the 
prior diagnostic function for the prior predictive distribution 
was used to check how well the model chosen by the EM fit-
ted the data. Finally, the crit.fun function was used to provide 
a soft threshold with controlling the posterior probabilities of 
DC in order to identify particular types of DC gene pairs. Here, 
DC genes were distinguished from gene pairs having invariant 
expression with controlling the posterior expected FDR at 0.05 
and the co-expression network was constructed to represent 
the correlation between each pair of genes. 

Centralities analysis of the co-expression network. 
Many studies demonstrate the presence of strong correlations 
between the co-expression network structure and the func-
tional role of its protein/gene constituents [22-23]. In order 
to understand the functionality of complex systems of gene 
signatures, we characterized the biological importance of genes 
based on the co-expression network using indices of topologi-
cal centrality. Centralities related to local (degree) scale, and 
global (stress centrality, betweenness centrality and closeness 
centrality) scale which were used to describe the importance 
of nodes were analyzed. 

Degree centrality. Degree quantifies the local topology of 
each gene, by summing up the number of its adjacent genes 
[24]. It gives a simple count of the number of interactions of 
a given node. The genes at the top of degree distribution (>=95% 
quantile) in the significantly perturbed networks were defined 
as hub genes. The degree CD(v) of a node v is defined as 
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Stress centrality. Stress centrality, a node centrality in-
dex, is considered by the number of nodes in the shortest 
path between two nodes. To calculate the stress (Cstr (v)) 
of a node v, all shortest paths in a graph G are calculated 
and then the number of shortest paths passing through 
v is counted. A “stressed” node is a node traversed by 
a high number of shortest paths. σst is the total number of 
shortest paths from node s to node t and σst is the number 
of those paths that pass through v. Cstr(v) is calculated as 
following:
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Betweenness centrality. Betweenness centrality [25] is 
another topological metric in graphs for determining how 
the neighbors of a node are interconnected. It is considered 
the ratio of the node in the shortest path between two other 
nodes. The betweenness centrality of a node v is given by the 
expression:

 

1)(Φ)Φ(

)()(
)|(











b
ao

b
a

b
ao

b
a

baoOsE


 

 

k
ij

k
j

k
i

k
ij  )PM(log2  

)log(2
m
rs ij

ij  .  


j

vjD avC )(  

 

)()( 
 

ststr
Ns Nt

C  
 


           

 





Nts

st
st

BC





 )()(

 




Nt

tvdG

C vC
),(

1)(
         


















 







 



ca
n

c
dc

a
ba

P  

 

Betweenness centrality of a node scales with the number 
of pairs of nodes as implied by the summation indices. There-
fore the calculation may be rescaled by dividing through by 
the number of pairs of nodes not including v, so that CB(v) 
∈ [0,1]. σst is the total number of shortest paths from node 
s to node t and σst (v) is the number of those paths that pass 
through v.

Closeness centrality. Closeness centrality is a measure of the 
average length of the shortest paths to access all other proteins 
in the network[27]. The larger the value, the more central is 
the protein. The closeness centrality, Cc(v) was calculated for 
every functional category taking into consideration, all of the 
shortest path for each node. Cc(v) of node n is defined as the 
reciprocal of the average shortest path length and is computed 
as follows:
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Where dG (s, t) represents the length of the shortest path 
between two nodes s and t in graph G, which is the sum of the 
weights of all edges on this shortest path. Meanwhile, dG (s, 
s) = 0, dG (s, t) = dG (t, s) in undirected graph. 

Pathway enrichment analyses. The Database for An-
notation, Visualization, and Integrated Discovery (DAVID) 
for KEGG pathway enrichment analysis were carried out to 
further investigate the biological functions of Top 200 genes 
[28]. KEGG pathways with P value < 0.05 were chosen based 
on EASE test applied in DAVID. EASE analysis of the regulated 
genes indicated molecular functions and biological processes 
unique to each category [29]. The EASE score was used to 
detected the significant categories. In both of the functional 
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and pathway enrichment analysis, the threshold of minimum 
number of genes for the corresponding term >2 were consid-
ered significant for a category.
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 Where n was the number of background genes; a’ was the 
gene number of one gene set in the gene lists; a’ + b was the 
number of genes in the gene list including at least one gene set; 
a’ + c was the gene number of one gene list in the background 
genes; a’ was replaced with a=a’-1.

Real-time qPCR. Samples of 32 colitis-associated color-
ectal cancer (CAC) patients were obtained from colon 
surgery. Tissue samples were originated from open tumor 
resection, whose molecular genetics evaluation was exclu-
sively done in tissue samples in the direct vicinity of samples 
showing solid tumor tissue [30], and control sample was 
normal tissue nearby tumor tissue. The mRNA expressions 
throughout the solid tumor space, biopsy specimens were 
harvested from at least two different sites along the chosen 
trajectory of each tumor in the biopsy group. As the next 
step, purifications for mRNA were conducted [31]. In order 
to achieve suitable amounts of mRNA for gene expression 
analyses, a certain quality of purified RNA of all samples 
were amplified utilizing the Target Amp-Kit (Epicentre, 
Madison, Wisconsin, USA) according manufacturer’s rec-
ommendations. 

Real-time qPCR was performed with the Light Cycler 480 
instrument (Roche Diagnostics, Mannheim, Germany) using Ro-
che’s qPCR Mastermix and highly specific Universal ProbeLibrary 
assays (Roche Diagnostics). The following primers were used: 
AQP8: forward primer: 5’-TGGCCAAGGCGGTGAGT-3’; re-
verse primer: 5’-GCTCCTGGACTGTCACAAAGG-3’. HPGD: 
forward primer: 5’-TGGTCAATAA

TGCTGGAGTGA-3’; reverse primer: 5’-GGTTC-
CACTGATAACAGAAACCA-3’. All assays were designed 
intron-spanning. The thermal cycler conditions comprised 45 
cycles of 95°C for 10 s, 60°C for 30 s, and 72°C for 15 s. Three 
replicates of the assay within or between runs were performed 
to assess the reproducibility.

The data were normalized to β-actin reference and 
relative mRNA expression was calculated with the Relative 
Quantification Software (Roche Diagnostics). We computed 
mean (μ) and standard deviation (σ) of individual gene 
(AQP8 and HPGD) expression values in patients samples. 
Then, patient samples were divided into two groups: (1) 
group with differential expression level, samples having 
expression value larger or smaller than μ+σ or μ-σ, respec-
tively; (2) group with normal expression level, samples 
with expression between μ-σ and μ+σ. Comparison of 
survival curves were conducted by log-rank (Mantel-
Cox) Test [32].

Results

Identification of gene signatures. After normalizing and 
preprocessing of microarray expression profiles, for CRC, 
there were 20109, 12493 and 12493 genes in E-GEOD-4183, 
E-GEOD-41258 and E-MTAB-57, respectively. For UC, 8631 
genes were presented in E-GEOD-6731, E-GEOD-36807 and 
E-GEOD-38713 both contained 20109 genes. The rank value 
of GWGS was applied to integrate multiple independent data-
set, and a gene with large value was considered to be globally 
significant studies. We identified top 200 genes between CRC 
or UC patients and normal controls as gene signatures for 
further analysis. Moreover, 21 common genes, such as SLC4A4 
and AQP8 were discovered both presented in top 200 genes 
of CRC and UC, as shown in Table 1.

Co-expression network analysis. Many genes together play 
important roles in the accomplishment of a biological function, 
and highly co-expressed genes participate in similar biologi-
cal processes and pathways. In fact, functionally related genes 
are frequently co-expressed across the samples. In this paper, 
we constructed the co-expression networks for top 200 genes 
in CRC and UC using EB approach. In CRC co-expression 
network (Figure 1), there were 1646 edges and 200 nodes, 
among which CHGA with the highest degree (61), next were 
CLMN (59) and NFE2L3 (49). For co-expression network of 
UC (Figure 2), 182 genes were mapped and 1355 edges were 
produced, NMT2 (70), PTPN21 (68) and PPID (61) possessed 
much higher degree than other genes. 

Centralities analyses of co-expression networks. Cen-
tralities could indicate the relevance of a gene as functionally 
capable to hold communicating nodes together of a node 
in a biological network. We defined that genes at the top of 
degree distribution (>=95% quantile) in the significantly per-
turbed networks were hub genes. In present study, hub genes 
of co-expression networks in CRC and UC were obtained 
by analyzing centrality of degree and shown in Figure 3. We 
could find that HPGD and AQP8 were common hub genes of 
CRC and UC.

Table 1. Common genes of top 200 genes identified from CRC and UC

Number Gene Number Gene
1 SLC4A4 12 LCN2
2 AQP8 13 PTN
3 CA1 14 S100A11
4 HPGD 15 PYCR1
5 CXCL1 16 VWF
6 NFE2L3 17 PLOD3
7 TEAD4 18 ARHGEF9
8 PADI2 19 ANK3
9 PRKACB 20 ABCC1
10 ACAT1 21 CFI
11 NPM1
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Figure 1. Co-expression network of CRC based on top 200 genes. There were 200 nodes and 1646 edges, where nodes referred to gene signatures and 
edges between nodes indicated interaction of genes in the network.

Table 2. Top 5% genes of co-expression networks in CRC and UC based on stress centrality and betweenness centrality analysis

Disease Stress centrality Betweenness centrality Closeness centrality

CRC PINK1, BMP2, SQLE, MT1F, SLC25A20, 
TMEM158, FOXF2, XPOT, ATR, LPHN3

CLMN, CHGA, NFE2L3, FAM60A, 
TRIB3,CKAP2, CWH43, ACD, RNASEH2A, 
IL1R2

CHGA, CLMN,NFE2L3, CEMIP, CWH43, 
FAM60A, TRIB3, APPL2, RETSAT, RNASE-
H2A

UC PLEKHO2, GAB1, SPINK2, SLC17A4, 
HPGD, CFDP1, ZC3H14, PML, P2RY1

PTPN21, PPID, NMT2, SMIM8, PRKACB, 
FMO5, PTGDR, HMGCS2, EAPP

NMT2, PTPN21, SMIM8, PPID, FMO5, 
FTSJ1, ACTA1, YARS, CDC25B

Table 3. KEGG pathways for CRC and UC

Disease Terms P Value Count

CRC

Nitrogen metabolism 5.28E-04 CA7, CA12, CA4, CA2, CA1
Bladder cancer 5.23E-03 RPS6KA5, CCND1, IL8, VEGFA, CDK4
p53 signaling pathway 2.74E-02 CDK1, CCND1, ATR, PMAIP1, CDK4
Aldosterone-regulated sodium reabsorption 3.14E-02 SGK1, NR3C2, HSD11B2, SCNN1B
Cytokine-cytokine receptor interaction 3.18E-02 CXCL1, INHBA, IL1R2, BMP2, IL8, CXCL3, MET, VEGFA, IL6R, CXCL12

UC
Proteasome 1.87E-04 PSMB5, PSMB10, PSMD14, PSMC5, PSMD12,PSME2, PSMB8
Aminoacyl-tRNA biosynthesis 3.83E-02 WARS, YARS, GARS, MARS
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By assessing stress centrality, betweenness centrality and 
closeness centrality, centralities of co-expression networks 
from CRC and UC were obtained, as shown in Table 2. The 
results revealed that top 5% genes in various centralities analy-
sis of the same gene were not consistent. 

Pathway enrichment analysis. We conducted pathway 
enrichment analysis based on KEGG for CRC and UC, 
and the results were listed in Table 3. The top 200 genes in 
CRC was significantly enriched in 5 terms, and the most 
significant term was nitrogen metabolism (P = 5.28E-04), 
which contained five genes, such as CA1and CA7. While 
for UC, 2 enriched terms were obtained with the thresh-
old of P < 0.05, the most significant one was proteasome 
(P=1.87E-04). 

Clinical outcome. To validate results of network cen-
trality analysis, the expression level of common hub gene 
(AQP8 and HPGD) was analyzed by real-time qPCR in CAC 
patients, and we displayed one of the results in supplement 
material S2. Furthermore, we selected log-rank (Mantel-
Cox) test which provided a nonparametric estimate of the 
survival distribution to compare survival curves of AQP8 
and HPGD (Figure 4). The results showed that expressions of 
AQP8 were changed in 8 of 32 CAC patients. CAC patients 

Figure 2. Co-expression network of UC based on top 200 genes. There were 182 nodes and 1355 edges, where nodes referred to gene signatures and edges 
between nodes indicated interaction of genes in the network.

Figure 3. Hub genes of CRC and UC co-expression network based on de-
gree centrality analyses of the network. There were 10 and 9 hub genes of 
CRC and UC network respectively. AQP8 and HPGD were common hub 
genes of the networks.

with alteration of AQP8 (P=0.0387, Chi square=4.273) sig-
nificantly reduced the survival rate. While for HPGD, there 
was not significantly different in patients with and without 
alteration (P=0.1814, Chi square=1.786, altered HPGD in 
5/32 patients).
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Discussion 

In this paper, we identified genes associated with CAC 
with centralities analysis of co-expression networks in CRC 
and UC. Co-expression networks for CRC and UC were 
constructed by EB approach on the basis of top 200 gene 
evaluated by GWGS method. Degrees and three kinds of 
centralities (stress, betweenness and closeness centrality) were 
performed to explore hub genes of CRC and UC. The results 
showed that 21 common genes, such as SLC4A4, AQP8 and 
CA1 presented in top 200 genes of CRC and UC. HPGD and 

AQP8 were common hub genes of co-expression network in 
CRC and UC, and various centralities analyses of the same 
gene were not consistent. Results of real-time qPCR showed 
that patients with alteration of AQP8 significantly reduced 
the survival rate 

Patients with UC had an increased risk of developing CAC 
when compared with the general population [33], and the 
excess risk was almost entirely confined to patients with long-
standing extensive colitis [5]. Important risk factors included 
primary sclerosing cholangitis [34], family history of CRC 
[35], whereas the role of other factors, such as age at onset of 
UC. In present study, 21 common genes were found between 
CRC and UC. The most significant two genes were SLC4A4 
and AQP8, for example, AQP8 (Aquaporin 8) was a water 
channel protein and aquaporins were a family of small integral 
membrane proteins related to major intrinsic protein [36]. 
The three folds decrease of AQP8 in UC tissues according to 
previous research demonstrated that AQP8 might be involved 
in the pathogenesis of UC and have a close relationship with 
miRNA in UC patients [37]. AQP8 was expressed in all normal 
colon samples but not, or to a less extent, in the colorectal 
tumors [38]. Meanwhile Over-expressions of AQP8 had been 
implicated in tumorigenesis and proved be a novel prognostic 
biomarker for CRC patients [39]. Thus we might speculate 
that some genes contained in UC patients also existed in CRC 
patients, common genes could declare that if certain genes of 
UC were inhabited, the risk rate of CRC may be decreased.

Networks as a powerful tool have attracted a great deal 
of attention to analyze many biological and communication 
systems. Co-expression network analysis provides an effective 
way to score and evaluate functionally co-expressed genes 
across a set of samples from the perspective of systems biology 
[40]. A key concept of network analysis is node connectivity 
(centrality), which gives an indication of a gene importance, 
and a central node (referred to as hub) is one with many con-
nections to other nodes. [41]. In this paper, local (degree) scale, 
and global (stress centrality, betweenness centrality and close-
ness centrality) scale were selected to describe the significance 
of nodes. According to centralities analyses of co-expression 
network of CRC, AQP8 and HPGD were common hub genes 
of co-expression network in CRC and UC. In addition, AQP8 
with the highest edge betweenness of 399 and high stress of 
3886 was considered the most significant gene signature in 
CRC regulation. Meanwhile, the mRNA expression of AQP8 
was related to patients’ survival status significantly based on 
the result of overall survival Kaplan-Meier estimation. There-
fore AQP8 might be an important biomarker in the prognosis 
of CAC. 

HPGD, hydroxyprostaglandin dehydrogenase 15-(NAD), is 
responsible for the metabolism of prostaglandins, which func-
tion in a variety of physiologic and cellular processes such as 
inflammation. HPGD had been reported to act as bladder, 
breast, lung and colorectal tumor suppressor [42, 43]. Previous 
studies demonstrated that HPGD inhibited the development of 
murine intestinal neoplasias as potent suppressor of the growth 

Figure 4. Comparison of survival curves using log-rank (Mantel-Cox) test 
in 32 patients with CAC. Tumor tissue obtained either by stereotactic 
biopsy or by open surgery. A: Survival status with altered AQP8 mRNA 
expression (P=0.0387); B: Survival status with altered HPGD mRNA 
expression (P=0.1814).
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of human colon tumor cell lines in immunodeficient mice 
[43, 44]. These findings deduced that HPGD was abolished 
in various cancers, particularly in human colonic neoplasms, 
emphasize the oncogenic potential of the prostaglandin syn-
thesis pathway [45]. For instance, Bernd Frank et al revealed 
that HPGD gene variants to be positively associated with CRC 
risk [46]. Thus we could resume that HPGD had a close rela-
tionship with inflammation and cancer, and might be potential 
gene signatures of CAC.

In conclusion, several gene signatures related to CRC and 
UC were identified, such as AQP8 and HPGD. And they might 
be potential biomarkers for early detection and therapies of 
CAC.

Supplementary information is available in the online version 
of the paper.
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 Supplementar y  Information

S1 Characteristics of the gene expression profiles

Disease type UC CRC
Accession number GSE36807 GSE38713 GSE6731 GSE4183 GSE41258 E-MTAB-57
Platform of Affymetrix HG- U133_Plus_2 U133_Plus_2 U95Av2 U133_Plus_2 U133A U133A
Total size (Disease/Control) 35 (28/7) 43(30/13) 36(32/4) 53(30/23) 390(290/100) 47(25/22)

Disease

Gender male 16 7 - 13 - 14
Age, year - 44.8±10.0 - 68.4±12.9 - 60±14
Smokers 5 - - - - -
Dyslipidemia 1 - - 9 - -

Control

Gender male - 5 - 7 - 12
Average age, year - 41.6±12.4 - 40.3±9.9 - 60±28
Smokers - - - - - -
Dyslipidemia - - - 9 - -
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