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Quantitative proteomic analysis of mouse testis uncovers cellular 
pathways associated with bisphenol A  (BPA)-induced male infertility
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Abstract. Quantitative proteomic analysis was performed using iTRAQ to explore the potential 
regulation of differentially expressed proteins (DEPs) by bisphenol A (BPA) in murine testis. BPA 
was intraperitoneally injected into mice at a dose of 100 mg/kg body weight for 7 consecutive days. 
After BPA treatment, the histopathology changes of testis were examined. The circulating levels 
of testosterone (T) and estradiol (E2) were determined. iTRAQ was used to assess the expression 
levels of DEPs and to reveal potential interactions between different DEPs. Results showed that 
BPA caused histological damage in testicular tissues. The levels of T and E2 were affected by BPA 
exposure. The abundances of orosomucoid 1 (Orm1), haptoglobin (Hp), and insulin-like 3 (Insl3) 
were significantly lower in BPA-treated mice than those in control mice. The expression changes in 
the above-mentioned proteins were further validated at the protein level using Western blot analysis. 
We concluded that BPA affects histological morphology of testis and sex hormone productions. The 
regulation of key proteins (such as Orm1, Hp and Insl3) may reflect that these proteins may serve 
as important factors in male reproductive disorders caused by BPA, and these proteins are probably 
biomarkers for infertility caused by endocrine disrupting chemicals. 
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Introduction

Infertility has been recognized as a  public health issue 
by WHO (Boivin et al. 2007) due to male reproductive 
dysfunction in approximately 50% of the affected couples 
(Anawalt 2013). Endocrine-disrupting chemicals (EDCs) 

have estrogenic effects, and may account for the increase 
in male reproductive disorders (Sharpe and Skakkebaek 
1993). These EDCs are found in various materials such as 
additives, plastic products, building materials, personal care 
products and so on. Exposure to EDCs, even at low levels, 
leads to abnormality in health, including male and female 
reproductive disorders, breast development and cancer, 
prostate cancer, neuroendocrine issues, thyroid problems, 
metabolism and obesity, and cardiovascular endocrine issues 
(Gore et al. 2015). EDCs may contribute to male reproductive 
dysfunction by interfering with spermatogenesis, a process 
that is highly dependent on sex hormones (Dohle et al. 2003; 
Sweeney et al. 2015; WHO and UNEP, 2013).

Bisphenol A  (BPA), namely 2,2-bis (4-hydroxyphenyl) 
propane, is one of the highest volume of EDCs produced 
worldwide (Dohle et al. 2003; Sweeney et al. 2015; WHO 
and UNEP, 2013). It is frequently used to produce plas-
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tics that serves as line food or drink containers, goods of 
common use, thermal receipts, and medical devices such 
as dental sealants (Chianese et al. 2018). It is well known 
that BPA can be detected in many human tissues, such 
as serum, urine, sweat, milk and placenta (Chianese et al. 
2018). In general, the daily safe intake of BPA in human 
should be less than 1 μg/kg per day (Kang et al. 2006). The 
estrogenic and/or anti-androgenic properties of the chemi-
cally stable compound can impair testosterone production 
during male development, and therefore influence prostate 
and testis function in addition to spermatogenesis (Yeung 
et al. 2011). BPA induces disruption in meiotic progression 
during spermatogenesis (Liu et al. 2013), causes reduction 
in chromosome crossover (Vrooman et al. 2015), augments 
oxidative stress and apoptosis in mouse testis (Kaur et al. 
2018). It is reported that exposure to xenoestrogens such as 
BPA could increase genital-tract abnormalities and increase 
incidence of infertility in Europe and the U.S. during the last 
50 years (Vandenberg et al. 2007; Calafat et al. 2008). The 
BPA detection is associated with a higher level of circulating 
estradiol and a lower level of testosterone (Lan et al. 2017). 
The decreased sexual function in men is linked to the expo-
sure to BPA in a dose-dependent manner (Rochester 2013). 
Futhermore, BPA is toxic to Leydig cells (LCs), especially 
on proliferation and motility (Chen et al. 2016), as well as 
testosterone production (Gonçalves et al. 2018). BPA causes 
damage to testicular tissue both in vivo and in vitro.

The technology of isobaric tags for relative and absolute 
quantitation (iTRAQ) has been applied to numerous ex-
periments with the feature of measuring eight samples at 
one experiment with high precision. Nowadays, it is widely 
used in quantitative proteomics and has achieved good re-
sults. However, the current proteomics researches in male 
infertility are based on serum and spermatogenic cells, and 
few studies have been conducted on the proteomics of testis 
tissues of male infertility using iTRAQ technique.

In this study we employed iTRAQ technique to explore 
the potential regulation of proteins by BPA in testicular tis-
sues of infertile men. The aim was to evaluate the action of 
BPA on testis tissues and explore the mechanism of infertility 
caused by EDCs.

Materials and Methods

Animals and treatments

Sixteen 6-week-old Kunming male mice (20 ± 3 g) were ob-
tained from the Experimental Animal Center of the Fourth 
Military Medical University (Xi’an, China). All the experimen-
tal protocols have been approved by the Ethics Committee 
for Animal Experimentation of the Fourth Military Medical 
University and in compliance with the National Institutes of 

Health (NIH) Guide for the Care and Use of Laboratory Ani-
mals. They were housed in air-conditioned animal quarters in 
a constant 12-hour light/dark cycle at 25 ± 2°C temperature 
and 50 ± 10% air humidity, with free access to food and wa-
ter. BPA (CAS number 80-05-7, ≥99%) was purchased from 
Sigma-Aldrich and the dose was chosen according to previous 
reports (Li et al. 2014; Tomza-Marciniak et al. 2018; Zhang et 
al. 2013). It was dissolved in corn oil (CAS number 8001-30-7, 
Sigma, MO, USA) and stored at 4°C. The mice were randomly 
divided into Control group and treatment group (n = 8/group). 
The mice in treatment group were injected intraperitoneally 
with BPA at 100 mg/kg body weight for 7 consecutive days 
(BPA group). In contrast, mice in Control group were injected 
intraperitoneally with corn oil at the same equal volume. After 
treatment, the mice were sacrificed to collect testis tissues and 
serum. To evaluate pathology, the left testis tissues were fixed 
with 4% paraformaldehyde overnight and then were subjected 
to routine hematoxylin and eosin (H&E) staining. The right 
testis tissues were stored at –80°C immediately after collection. 
The ophthalmic artery blood was immediately collected, and 
was centrifuged for serum preparation at 2,000 × g for 15 min 
to assess the serum levels of sex hormones.

Morphological examination

Upon harvest, testes were immediately fixed in 4% poly-
formaldehyde overnight at room temperature. Paraffin-
embedded testes tissue samples were generated and then 
cut into 5-μm-thick sections. These sections were then 
stained with H&E, and were observed under a  light mi-
croscope (Carl Zeiss, ImagerM1, DE) at 200× and 400× 
magnification.

Enzyme-linked immunosorbent assay (ELISA)

Two ELISA kits (Cloud-Clone Corp, TX, USA) were used 
to determine the levels of testosterone (T, CEA458Ge) and 
estradiol (E2, CEA461Ge), as per the manufacturer’s instruc-
tions. After reconstitute the standard with standard diluent, 
samples and standards were added into 96-well strip plate. 
Once reagents were added, the plate was incubated for 
30 min at 37°C. The results were assessed on a microplate 
absorbance reader (Tecan sunrise, Austria) at 450 nm meas-
urement. Average the duplicate readings for each standard, 
control and samples. Create a standard curve with the log of 
concentration on the y-axis and absorbance on the x-axis. 
Based on this standard curve, the data were calculated. All 
tests were repeated three times.

Proteome sample preparation and LC-MS/MS analysis

Lysis buffer (8 M Urea, 40 mM Tris-HCl or TEAB with 1 mM 
PMSF, 2 mM EDTA and 10 mM DTT, pH 8.5) was used to 
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extract proteins of 16 testis tissues. After centrifugation with 
25,000 × g at 4°C for 20 min, the supernatant was transferred 
into a new tube, reduced with 10 mM dithiothreitol (DTT) at 
56°C for 60 min, alkylated by 55 mM iodoacetamide (IAM) 
in the dark at room temperature for 45 min, and quantified 
by Bradford after centrifugation (25,000 × g, 4°C, 20 min). 
After Bradford assay, 30 μg proteins were mixed with load-
ing buffer in a centrifuge tube and heated at 95°C for 5 min. 
Subsequently, the supernatant with proteins was centrifuged 
at 25000 × g for 5 min and loaded to sample holes in 12% 
polyacrylamide gel with the running of SDS-PAGE in con-
stant voltage at 120 V for 120 min. Once it was finished, the 
gel was stained with Coomassie Blue for 120 min, added 
destaining solution (40% ethanol and 10% acetic acid ), and 
put on a shaker with an exchange of destaining solution for 
3~5 times, 30 min each time. The gel lanes were then cut 
into multiple bands based on molecular weight and protein 
abundance in the specific region. Each gel band was digested 
with Trypsin Gold (Promega, Madison, WI, USA) before 
LC-MS/MS analysis (liquid chromotography linked with 
tandem mass spectrometry). After peptide labeling and 
fractionation, each fraction was resuspended in loading 
buf﻿﻿fer (2% acetonitrile, 0.1% formic acid) and centrifuged 
at 20,000 × g  for 10 min. The supernatant was loaded on 
UHPLC (UltiMate 3000, Thermo Scientific, USA) equipped 
with a trap and an analytical column. The peptides separated 
from nanoHPLC were subjected into the tandem mass spec-
trometry Q Exactive HF X (Thermo Fisher Scientific, San 
Jose, CA) for data-dependent acquisition (DDA) detection 
by nano-electrospray ionization. The parameters for MS 
analysis are as follows: electrospray voltage, 2.0 kV; precur-
sor scan range, 350–1500 m/z at a resolution of 60,000 in 
Orbitrap; MS/MS fragment scan range, >100 m/z at a resolu-
tion of 15,000 in HCD mode; normalized collision energy 
setting, 30%; dynamic exclusion time, 30 s; automatic gain 
control (AGC) for full MS target and MS2 target, 3e6 and 
1e5, respectively; number of MS/MS scans following one MS 
scan, 20 most abundant precursor ions above a threshold 
ion count of 10,000.

MS/MS data analysis

The raw MS/MS data were converted into MGF format 
through a  thermo scientific tool Proteome Discoverer, 
and the exported MGF files were searched through Mas-
cot (v2.3.02) in this project against the selected database 
(Uniprot-Mus musculus). The labeled peptides with isobaric 
tags were quantitatively analyzed by IQuant, a tool which 
combines multiple search engine results based on isobaric 
tags (Wen et al. 2014). The false discovery rate (FDR) at 1% 
was estimated by Picked protein FDR strategy to control the 
rate of false-positive at protein level after protein inference 
(protein-level FDR ≤ 0.01) (Savitski et al. 2015).

Bioinformatic analysis

We explored the functions of DEPs through Gene Ontology 
(GO) database (https://www.ebi.ac.uk/ols/ontologies/go) 
based on Uniprot database (https://www.uniprot.org/). Kyoto 
Encyclopedia of Genes and Genomes (KEGG, http://www.
kegg.jp/) was used to study the relationships among different 
pathways. STRING (https://string-db.org/) was performed to 
link DEPs in protein-protein interactions (PPI) to illustrate 
the interaction of DEPs.

Western blotting

Testicular issues were stored at –80°C before operation. 
After total proteins were extracted by RIPA Lysis Buffer 
(P0013B, Beyotime, China), protein concentrations were de-
termined by Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, MA, USA). 30 μg of samples were separated by 
10% SDS/PAGE and transferred to PVDF (polyvinylidene 
fluoride) membranes (Merck Millipore, Taunton, MA, 
USA). The membranes were then blocked with 5% skim 
milk dissolved in TBS-T for 2 h, and then incubated with 
primary antibodies overnight at 4°C: anti-Insl3 (1:1000, 
Abcam, Cambrige, UK), anti-Hp (1:1000, Proteintech, CA, 
USA), anti-Orm1 (1:1000, Proteintech, CA, USA) and anti-
GAPDH (1:1000, St John’s Laboratory, CA, USA). Then, 
the blots were incubated with a  peroxidase-conjugated 
secondary antibody (SA-10011, BioCytoSci, TX, USA) at 
room temperature for 2 h, and were visualized with ECL-
Plus reagent (IC-5009, BioCytoSci, TX, USA). The optical 
density of the target band was analyzed by Image Pro Plus 
software (6.0, Media Cybernetics, MD). 

Statistical analysis

Data were analyzed by one-way analysis of variance 
(ANOVA) using SPSS (version19.0, IBM, USA) and Prism 
softwares (version7.00, GraphPad, CA, USA), and were pre-
sented as mean ± S.D. Significant differences between means 
were determined using Duncan and Tukey’s honestly signifi-
cant difference test; p < 0.05 was considered as significant.

Results

Histology changes

The histopathological image/observation of testis tissues 
is shown in Figure 1. Figure 1A and C showed the normal 
development and morphology of testes in control mice, 
the structure of seminiferous tubules was normal and the 
spermatogenic cells were tightly connected and organized. 
In BPA group (Fig. 1B and D), however, the mount of Leydig 
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cells decreased and most seminiferous tubules contained less 
spermatogenic cells. The glandular cavity in BPA group was 
slightly enlarged and increased compared to that in Control 
group. The morphology of Leydig and spermatogenetic cells 
was abnormal. The layers of sperm cells were reduced, the 
array of sperm cells was disturbed, and the seminiferous 
tubules exhibited shrinkage and vacuolation.

Effects of the sex hormone secretion by BPA

Figure 2 showed the effects of the hormone secretion on the 
serums of mice using ELISA Kits. The testosterone level was 
slightly decreased in the BPA group but there was no signifi-
cant difference between two groups (Fig. 2A). However, the 
estradiol level was significantly enhanced after BPA treat-
ment (Fig. 2B), with the significant decrease of sex hormone 
ratio (T/E2) in BPA group (Fig. 2C). BPA affected hormone 
secretion and disrupted the homeostasis of sex hormones 
in testis. Compared to androgen, BPA demonstrated more 
obvious effect on the estrogen production.

Identification of DEPs after BPA treatment

Totally 931866 spectrums were generated, 20728 peptides 
and 5192 proteins were identified with 1% FDR. Among 
them 101 were up-regulated and 86 were down-regulated 
with foldChange >1.2 while 10 were up-regulated and 9 
were down-regulated with foldChange >1.5. Table 1 shows 
DEPs in BPA group with foldChange >1.5 compared with 
Control group. 

GO and pathway analyses of DEPs

Gene Ontology (GO) is consisted of three parts, includ-
ing cellular component, molecular function and biological 
process. Figure 3A showed the results of GO enrichment 
analysis between BPA and Control groups. GO is a major 
bioinformatics initiative to unify the representation of gene 
and gene product attributes across all species. GO enrich-
ment analysis showed the GO terms in which the DEPs 
were enriched in all candidate proteins, which represents 

Figure 1. Histopathological changes of tes-
tis tissues: Control group (A, C) and BPA 
group (B, D). Arrow head refers to enlarged 
glandular cavity and decreased Leydig cells. 
Triangle refers to the distribution of sperm 
cells. Magnification ×200 (A, B); ×400 (C, D).

A

C

B

D

A B C

Figure 2. Effects of BPA treatment on sex 
hormone secretion levels. A. Testosterone 
production in serum (p > 0.05). B. Estradiol 
production in serum. C. The relative ratio of 
sex hormone (T/E2). * p < 0.05, ** p < 0.001 
compared with the Control group. BPA, bis-
phenol A. T, testosterone. E2, estradiol.
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the important or typical biology functions in the current 
study. “Reproduction” term in biological process was useful 
to explore DEPs of infertility caused by BPA. Thus, Table 2 
demonstrated the DEPs of reproduction term.

KEGG pathway is a collection of manually drawn path-
way maps representing our knowledge on the molecular 
interaction and reaction networks. Proteins usually interact 
with each other to play roles in certain biological functions. 
Figure 3B showed the effect of pathway enrichment analy-
sis of DEPs based on KEGG database. The main pathways 
(p < 0.05) included ribosome, complement and coagulation 
cascades, malaria, antigen processing and presentation, leish-
maniasis, ribosome biogenesis in eukaryotes, biosynthesis of 
unsaturated fatty acids, African trypanosomiasis, fatty acid 
elongation, Th1 and Th2 cell differentiation, inflammatory 
bowel disease, and systemic lupus erythematosus.

PPI of the DEPs

STRING (https://string-db.org/) is a database of known and 
predicted PPI. PPI is constructed to show the interaction of 
DEPs between the two groups (Fig. 4), the foldChange was 

more than 1.2 in Figure 4A when it was more than 1.5 in 
Figure 4B. The minimum required interaction score was 0.4 
(medium confidence) and the disconnected proteins in the net-
work were hidden. In Figure 4B, 19 proteins were assigned to 
this network, among which 7 were identified as node proteins, 
including Fabp1, Apoc3, Hp, Orm1, Hbb-bt, Acot1, Acot5.

Validation of the proteins highly related to reproduction

We selected three proteins to verify the accuracy of proteom-
ic analysis. Haptoglobin (Hp) and orosomucoid 1 (Orm1) 
were chosen from PPI because both of them are nodes. 
Insulin-like 3 (Insl3) was highly expressed in testis tissues 
rather than other tissues, and it was obviously expressed in 
reproduction term of GO analysis. These three proteins are 
very likely to be involved in reproduction process. Western 
blot was conducted to verify these three DEPs (Fig. 5). The 
levels of Insl3, Orm1 and Hp were decreased in the BPA 
group compared with Control group. The data were con-
sistent with iTRAQ analysis, suggesting that our Proteomic 
data were reliable. 

Discussion

With the rapid development of industry and economy, the 
deterioration of environment results in a large number of 

Table 2. DEPs of GO reproduction term

Protein ID Protein Fold-
Change

p value 
(×10–5)

Up-regulated
sp|Q8C4X1|CENPX_MOUSE Cenpx 1.23 1722
sp|P58742|AAAS_MOUSE Aaas 1.24 218.9
sp|P49891|ST1E1_MOUSE Sult1e1 1.38 5.62
sp|Q8BWP5|TTPA_MOUSE Ttpa 1.32 39.07
sp|O55047|TLK2_MOUSE Tlk2 1.41 1.06
sp|Q8BMD2|DZIP1_MOUSE Dzip1 1.35 2.5
sp|Q8VCB1|NDC1_MOUSE Ndc1 1.24 99.52
sp|P35235|PTN11_MOUSE Ptpn11 1.22 23.04
sp|Q9Z0E1|M1AP_MOUSE M1ap 1.28 10.76
sp|P42232|STA5B_MOUSE Stat5b 1.26 306.4
sp|Q5F2C3|MEIKN_MOUSE Meikin 1.26 341.5
Down-regulated
sp|Q9JKL5|CHP3_MOUSE Tesc 0.83 203.7
sp|Q8CJI4|H1FNT_MOUSE H1fnt 0.80 432.4
sp|O09107|INSL3_MOUSE Insl3 0.79 339.4
sp|Q61646|HPT_MOUSE Hp 0.65 100.4

FoldChange, the fold values of DEPs in BPA group compared 
with Control group; DEPs, differentially expressed proteins; BPA, 
bisphenol A; GO, Gene Ontology database.

Table 1. DEPs in BPA group compared with Control group (Fold-
Change >1.5 or <0.67)

Protein ID Protein Fold-
Change

p value 
(×10–5)

Up-regulated
sp|P98203|ARVC_MOUSE Arvcf 2.40 2.98
sp|O55137|ACOT1_MOUSE Acot1 1.78 0.104
sp|Q3TCJ8|CCD69_MOUSE Ccdc69 1.77 348.7
sp|P61148|FGF1_MOUSE Fgf1 1.70 147
sp|P12710|FABPL_MOUSE Fabp1 1.69 36.8
sp|Q8BQZ4|RLGPB_MOUSE Ralgapb 1.59 2471
sp|Q7TPM3|TRI17_MOUSE Trim17 1.57 53.28
sp|Q80U22|RUSC2_MOUSE Rusc2 1.56 1098
sp|Q5NCY3|CB5D1_MOUSE Cyb5d1 1.55 429.1
sp|Q5ND34|WDR81_MOUSE Wdr81 1.50 345.5
Down-regulated
sp|Q8VIM9|IRGQ_MOUSE Irgq 0.48 38.77
sp|Q8BND4|INT6L_MOUSE Ints6l 0.52 0.0913
sp|Q5XG69|F169A_MOUSE Fam169a 0.52 40.35
sp|P33622|APOC3_MOUSE Apoc3 0.53 0.683
sp|P02088|HBB1_MOUSE Hbb-bt 0.62 75.99
sp|Q9QZ85|IIGP1_MOUSE Iigp1 0.63 25.16
sp|Q60590|A1AG1_MOUSE Orm1 0.64 0.00514
sp|Q61646|HPT_MOUSE Hp 0.65 100.4
sp|Q6Q2Z6|ACOT5_MOUSE Acot5 0.65 891.5

FoldChange, the fold values of DEPs in BPA group compared 
with Control group; DEPs, differentially expressed proteins; BPA, 
bisphenol A.
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reproductive health problems, including the sexual precoc-
ity. More people are concerned about the effects of envi-
ronmental hormones on human body. EDCs are related to 
xenoestrogens, antiestrogens, antiandrogens, disruption of 
thyroid function, disruption of corticoid function and other 
metabolic effects (Vidaeff and Sever 2005; De Coster and van 
Larebeke 2012). They exist everywhere in our daily life, and 
we can not avoid them. BPA, as one of classic EDCs, impairs 

the functions of testicular cells in men as well as reduces 
sperm counts in a rodent model and a human epidemiology 
study (Richter et al. 2007; Meeker et al. 2010).

Previous studies have focused on the proteomics of 
semen and Leydig cells (Chen et al. 2016; Rahman et al. 
2018), while our research focuses on the whole testis tissue. 
The results from protein screening analyses have shown 
that many proteins are involved in reproductive health. We 

Figure 3. Gene Ontology (GO) enrichment (A) and Pathway enrichment (B) analysis for BPA vs. Control group. X-axis displays GO 
or pathway terms, and y-axis displays protein count. Red column, up-regulated proteins; blue column, down-regulated proteins. (See 
online version for color figure).

A

B
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Figure 4. Protein-protein interaction (PPI) of DEPs for BPA vs. Control group. 
A. PPI when foldChange >1.2. B. PPI when foldChange >1.5. Seven proteins 
were assigned to this network, including Hp, Orm1, Hbb-bt, Apoc3, Fabp1, 
Acot1 and Acot5. DEPs, differentially expressed proteins.

A

B



338 Jia et al.

chose three distinct proteins for validation because they 
were selected from the PPI nodes and GO enrichment. The 
result shows that their expression levels are significantly 
changed. In recent studies, the reproductive effects of BPA 
were mainly reflected on cytotoxic effect, apoptosis (Li et 
al. 2009; Qian et al. 2014), cell viability and follicle growth 
inhibition. Consistently in our study, histopathological 
observation of testis demonstrates that BPA significantly 
decreased spermatogenic cells in seminiferous tubules and 
large vacuolization could be observed within seminiferous 
tubules. Furthermore, the production of sex hormone secre-
tion is affected by BPA. GO and Pathway enrichments show 
different aspects of DEPs function, especially reproduction-
related process. PPI was helpful to find protein nodes which 
are worth studying.

Three potential proteins were selected based on afore-
mentioned bioinformatic analysis. Hp, as a  Sertoli and 
germ cell product in testes, adds a  new member to the 
growing family of metal transporters in the testis that are 
likely to play important roles in iron metabolism in the 
testis (O’Bryan et al. 1997). It is reported that Hp pheno-
type affects maternal fertility, and the effects of smoke on 
fertility depends on the Hp phenotype (Bottini et al. 2002). 
Additionally, women with mechanical factor infertility were 
more likely (p = 0.042) to have the Hp 1-1/2-1 phenotypes 
than the Hp2-2 phenotype (Weiss et al. 2013). HP has been 
implicated in reproductive function through its effect on 
inflammation, the immune system, and angiogenesis mak-
ing it a protein of great interest to reproductive biologists 
(Bottini et al. 1999; Ueda et al. 2001). Hp α and β peptides 

as well as Hp proteins have been identified in the follicular 
fluid aspirated during in vitro fertilization (IVF) (Ange-
lucci et al. 2006; Schweigert et al. 2006). Orosomucoid 1 
(Orm1), which is also called α-1-acid glycoprotein (AGP), 
is one of the acute-phase proteins. It is mainly synthesized 
by the liver and then is secreted to almost the entire body. 
Many biological properties of Orm have already been 
discussed in the literatures including protective effect 
against neonatal sepsis, interaction with phospholipid 
membranes, histamine binding capacity, and inhibition of 
platelet aggregation, neutrophil chemotaxis, superoxide 
production, and lymphocyte proliferation (Kremer et al. 
1988). In addition, Orm has a more meaningful role here: 
acting as an acute-phase reactant. High dose BPA injection 
induces systemic injury, which causes a drastic change in 
the hepatic production of many plasma proteins. In our 
study, Orm1 was down-regulated probably because chronic 
hepatitis, liver cirrhosis, or acute liver failure happened. 
Furthermore, Orm has the ability to bind and carry numer-
ous basic and neutral drugs (Paxton 1983), especially the 
neutral drug steroids (Ganguly et al. 1967). BPA is one of 
the EDCs and acts like estrogen (Milligan et al. 1998; Rubin 
2011). Its extensive integration with Orm may have led to 
the down-regulation of Orm1. It is reported that Orm in 
the oviducts additively suppresses sperm phagocytosis by 
polymorphonuclear neutrophils, which indicates that lo-
cally produced Orm may be involved in protecting sperm 
from phagocytosis by polymorphonuclear neutrophils in 
the bovine oviduct (Liu et al. 2014). Insl3 was first discov-
ered as a unique and testis-specific gene transcript sequence 

Figure 5. Validation of proteins related to reproduc-
tion. Protein expression level was detected by Western 
blotting (A). GAPDH was used as the internal loading 
control. The results shown below the gel indicated the 
quantification results normalized against the internal 
control. The protein expression of Insl3 (B), Orm1 (C) 
and Hp (D). * p < 0.05 compared with the Control 
group. BPA, bisphenol A.

A B

C D
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independently in pigs (Adham et al. 1993) and mice (Pusch 
et al. 1996), respectively. Insl3 was originally referred to as 
Ley-IL (Leydig-insulin-like) or RLF (Relaxin-like factor). 
It is a  major secretory product of the testicular Leydig 
cells in fetus and adult men. In rodent models, reduction 
in fetal Insl3 expression is an early marker of the testicular 
dysgenesis syndrome. Insl3 is also involved in adult traits, 
such as spermatogenesis and bone metabolism, and its 
expression declines consistently with age in adult men 
(Ivell and Anand-Ivell 2009). Insl3 is a  member of the 
insulin-like group of peptide hormones. The functions of 
Insl3 such as testicular descent, lactation, pregnancy and 
birth, all of which are specific to mammalian viviparity 
and internal fertilization, have caused these molecules to 
be termed ‘neohormones’ which consists of other peptides 
such as hCG and oxytocin belong (Anand-Ivell et al. 2013). 
Furthermore, the Insl3/Rxfp2 system plays an integral role 
in promoting the production of the essential steroid precur-
sor androstenedione through stimulation of the enzyme 
17α-hydroxylase (Ivell and Anand-Ivell 2018). It is reported 
that the significantly monotonic trends in semen volume, 
sperm concentration and motility were associated with 
increasing quartiles of Insl3 (p < 0.001) (Chang et al. 2017). 
Additionally, Insl3 correlated negatively with BPA is proved 
and providing indirect evidence for an impact of EDCs on 
fetal Leydig cell Insl3 production (Chevalier et al. 2015), 
and diethylhexyl phthalate (DEHP) also down-regulated 
Insl3 mRNA expression (Song et al. 2008). Estrogens, acting 
through the estrogen receptor α (ERα), have been shown 
to repress expression of the gene encoding Insl3, a small 
peptide produced by testicular Leydig cells that is essen-
tial for normal testis descent. Estradiol (E2) could repress 
Insl3 mRNA levels in MA-10 cells, a Leydig cell line model 
(Lague and Tremblay 2009).

It is reported that BPA could affect histological mor-
phology of testis and sex hormone productions (Li et al. 
2009; Nakamura et al. 2010; Ibrahim et al. 2016). The 
estrogenic and anti-androgenic properties of BPA can also 
decrease testosterone production and increase estradiol 
production in our study. This may be due to the effects of 
BPA on Leydig cells. Testicular tissue contains a variety 
of proteins. The dose of BPA up to 100 mg/kg for 1 week 
causes acute testicular injury, which leads to changes in 
multiple pathways. Our experiment is the first to study 
the proteomics of testis tissues and provides a basis for 
clinic treatment.

In conclusion, this study provided the first evidence that 
infertility of BPA-caused mice might be involved in acute 
stimulation, inflammation, immunoreaction and production 
and metabolism of hormones in the testes. These reactions 
often occur simultaneously. Hp, Orm1 and Insl3 could act 
as potential targets for the therapeutic consideration in male 
infertility caused by BPA.
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