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Detection of epidermal growth factor receptor (EGFR) is one real dilemma owing to the non-sufficient tissue for testing 
EGFR mutations in lung adenocarcinoma. A model for predicting EGFR mutations would be helpful for clinical decisions 
in those patients. A retrospective cohort of 1,196 patients diagnosed with lung adenocarcinoma was investigated between 
December 1, 2017, and December 31, 2019, in Renji Hospital, Shanghai, China. All patients were tested for EGFR mutations 
(amplification refractory mutation system, n=1,144; next-generation sequencing, n=52). Of 1,196 patients with lung adeno-
carcinoma, 944 met the inclusion criteria. A nomogram model was developed based on 567 patients and validated in 377 
patients. Variables associated with EGFR mutations were age, sex, smoking history, lepidic predominant subtype, solid 
predominant subtype, mucinous adenocarcinoma, Ki67 expression, lobulation, solid texture in radiology, and pleural 
retraction. The nomogram based on the model performed well in the development group (c-index 0.789, 95% CI: 0.751–
0.827), and the validation group (c-index 0.809, 95% CI: 0.771–0.847). At the probability cut-point of 0.7, the diagnostic 
efficiency was 82.7% in patients with NGS liquid biopsy. Decision curve analysis further confirmed the clinical usefulness 
of the nomogram, which showed that predicting the EGFR mutations probability applying this nomogram would be better 
than having all patients or none patients use this nomogram. A high probability group (>0.7) by nomogram model may 
suggest a high possibility of EGFR mutation, if tissue is limited, NGS-based ctDNA with liquid biopsy could be imple-
mented effectively. 
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The incidence and mortality of lung cancer are on the top 
ranking of cancer reported by Global cancer statistics 2018 
[1]. Lung adenocarcinoma which accounts for more than 40% 
of lung cancer [2] is the most common histologic subtype 
of non-small cell lung cancer (NSCLC) [3, 4]. It has been 
confirmed that NSCLC patients with a somatic mutation in 
the epidermal growth factor receptor (EGFR) after treatment 
with EGFR tyrosine kinase inhibitors (TKIs) present higher 
responsive rate, prolonged progression-free survival (PFS), 
and health-related quality of life improvement, in comparison 
with those who received standard chemotherapy [5–10]. The 
prevalence of EGFR mutations in Asians is 38.4%, which is the 
highest prevalence in the world [11]. Due to the fact that lung 
adenocarcinoma has a high frequency of EGFR mutations 
compared with other histologic subtypes of NSCLC, clinical 
practice guidelines recommended EGFR mutation testing 
once lung adenocarcinoma was diagnosed [12, 13–15]. 

However, a systematic review recently reported that only 
31% of over 50,000 patients from 18 eligible studies were 
tested for EGFR mutations [16]. There are two major causes 
that may directly restrict the application of EGFR mutation 
testing; one is the tissue sample availability and adequacy, the 
other is the costs of testing. The use of pretest probability of 
EGFR mutations from universally available factors has been 
suggested as a potential accessory for situations when EGFR 
mutation results cannot be obtained because of limited 
testing resources or limited tissue [17]. EGFR mutation 
status has been found to have substantial correlations with 
histological subtypes of lung adenocarcinoma [18–21]. And 
likewise, the computer tomographic (CT) characteristics had 
a relationship with EGFR mutations [22–26]. A model with 
both clinical characteristics and CT features appeared to be 
a more reliable tool for predicting EGFR mutations proba-
bility. However, until now, no nomograms which combined 
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clinical characteristics, lung adenocarcinoma histological 
characteristics and CT features have been developed, and no 
proper methods for the assessment of the clinical utility for a 
risk model have been reported.

The aim of this study was to generate a multivariate logistic 
regression model and an associated nomogram, based on 
clinical characteristics, histological characteristics, and CT 
features to predict the probability of EGFR mutations in lung 
adenocarcinoma, which would assist clinical decisions for 
those who have limited tissue for further EGFR mutation 
testing.

Patients and methods

Source of data. The Ethics Committee of Renji Hospital 
approved the study (KY2021-003). The Ethics Committee 
waived the requirement for informed consent of the patients 
because the study had a non-interventional retrospective 
design and all data were analyzed anonymously. We followed 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) [27].

Participants. We included patients age 18 years and 
older who met the inclusion criteria: 1) available clinical 
data, including age, sex, smoke history (patients were classi-
fied as nonsmokers if they had never smoked, or smokers 
if they were former or current smokers), and TNM stage 
[28]; 2) preoperative thin-section CT images were acquired 
with our picture archiving and communication system (the 
interval between CT and subsequent surgery was less than 
one month); 3) available pathology reports with a diagnosis 
of lung adenocarcinoma; 4) available amplification refractory 
mutation system (ARMS) test results for EGFR mutation 
status.

Outcome. EGFR mutations were examined with ARMS 
using the Human EGFR Gene Mutation Detection Kit (Amoy 
Diagnostics Co. Ltd., Xiamen, China). Molecular analyses of 
the mutation status of EGFR exons 18, 19, 20, and 21 were 
performed. The positive EGFR mutation in this study refers 
to any positive mutation in the EGFR test (including exon 
18 G719X, exon 19 deletions, exon 20 T790M, exon 20 
insertions, exon 21 L858R, exon 21 L861Q). Our goal was 
to develop a nomogram model based on the clinical charac-
teristic, histological characteristics, and CT features for clini-
cians when EGFR mutation testing resources are limited or 
limited tissue is available, and thus the visualization model 
may be helpful to make a clinical decision.

Predictors. We chose to focus on predictors that were 
objective, readily available, and required little computation so 
that the nomogram model could be calculated by hand at the 
point of evaluation. We extracted age, sex, smoking history 
(patients were classified as nonsmokers if they had never 
smoked, or smokers if they were former or current smokers), 
histological results, tumor marker, and TNM stage. Labora-
tory analysis of tumor markers including carcinoembryonic 
antigen (CEA), carbohydrate antigen199 (CA199), carbo-

hydrate antigen125 (CA125), and cytokeratin-19 fragment 
(Cyfra 21-1) were done via routine blood tests within 1 week 
before surgery.

We extracted the patient’s chest CT parameters including 
tumor distribution, lobe location, size category, long axis 
diameter, short axis diameter, lobulation, spiculation, texture 
(including pure GGO, mixed GGO, solid texture), calcifica-
tion, CT value, air bronchogram, bubblelike lucency, periph-
eral emphysema, vascular convergence and pleural retrac-
tion. Chest CT examinations were performed by using one 
of two multidetector CT (Lightspeed16, GE Healthcare, 
Milwaukee, WI, USA; Discovery CT750 HD, GE Health-
care). The images were reviewed in random order by two 
independent radiologists with 15 and 20 years of experience. 
Both of them were blinded to clinical and histologic findings. 
The majority class was used as the final CT feature value in 
case of disagreement. Mean values were used for continuous 
variables. CT images were read with both mediastinal (width, 
350 HU; level, 40 HU) and lung (width, 1500 HU; level, -600 
HU) window settings. And findings were agreed upon by 
consensus between the two radiologists.

Sample size. Our dataset comprised of a development 
group to derive a nomogram model and a validation group 
to validate the model. To ensure that the sample size in 
the development group was sufficient for the estimates for 
p-values to be valid, we applied the rule that the number 
of events (positive for the outcome of EGFR mutation) 
and non-events (negative for the composite) per covariate 
in the model should be at least 10 [29–31]. We aimed for a 
nomogram model with no more than 10 predictors (and thus 
no more than 10 “covariates”). Thus, our development group 
would require at least 100 events and 100 non-events. Within 
567 patients in the development group (341 events and 226 
non-events), we had sufficient patients to validly estimate the 
beta coefficients in the logistic regression model.

Statistical analysis. We report descriptive statistics on 
all variables, reporting median and interquartile range or 
frequencies and percentages. The study sample was divided 
into a 60% group for developing and a 40% group for valida-
tion by time. Data from 567 patients diagnosed from 1 Dec 
2017 to 28 Feb 2019 were used for model development 
(development group). And the model was further validated 
in another 377 patients diagnosed from 1 Mar 2019 to 31 Dec 
2019 (validation group).

We used Fisher’s exact test to compare the categorical 
variables between different groups and the Mann-Whitney 
U test to compare differences between the two groups for 
continuous variables. The Fisher’s exact test and Mann-
Whitney U test were applied for univariate analysis. Next, 
we screened out the optimal variables with nonzero coeffi-
cients as potential predictors of this prediction model using 
the least absolute shrinkage and selection operator (LASSO) 
method [32]. Then multivariable logistic regression (stepwise 
backward logistic regression) analysis was applied to construct 
the predictive model based on the results of LASSO regres-
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sion and a further nomogram was developed. The prediction 
efficiency of this predictive model was assessed by C-index 
and AUC as well as calibration curves in both development 
group and validation group. Calibration was considered poor 
if the p-value was less than 0.05 by Hosmer-Lesmeshow test. 
Decision Curve Analysis (DCA) curve was also performed 
to determine the clinical value of the predictive model by 
quantifying the net benefit at disparate threshold probabili-
ties. All statistical analyses were conducted using R software 
(version 3.6.3 (http://www.Rproject.org)). Statistical signifi-
cance was decided by a criterion of two-sided p<0.05.

Results

Patient characteristics. A total of 1,196 patients with lung 
adenocarcinoma had done the EGFR mutation test, 944 met 
the criteria for inclusion, and 567 were included in the devel-
opment group (Figure 1). All patients were ethnically Asian. 
The EGFR mutation rate was 61.2% (578 of 944). The most 
common EGFR mutation types were exon 21 L858R (327 
of 578, 56.6%) and exon 19 deletion (200 of 578, 34.6%). In 
total, the age range was 63 (54–69) yrs, female patients (558 
of 944, 59.1%), and non-smokers (764 of 944, 80.9%) were 
predominant in our study.

Patients in the development group had a median age of 63 
(55–68) yrs, and 59.6% female, 79.4% without smoke history, 
48% acinar predominant subtype, 83.8% low Ki67 expres-
sion, 68.2% lobulation, 46.4% pleural retraction (Tables 1 
and 2).

Of the patients in the development group, 60.1% were 
with EGFR mutation (55.1% L858R, 36.1% 19-deletion). 
With positive EGFR mutation, there were 69.2% female, 
88.3% without smoke history, 88.9% invasive adenocarci-
noma, 55.4% acinar predominant subtype, 89.7% low Ki67 
expression, 73.9% lobulation, 51.9% mixed GGO, lower CT 

value (–237 vs –134), 67.2% airbronchogram, and 51.6% 
pleural retraction.

Model development. The 16 variables were signifi-
cantly correlated with the EGFR mutations via univariate 
analysis (Tables 1 and 2) including age, sex, smoke history, 
predominant subtypes (acinar, lepidic, solid, micropapillary 
predominant), mucinous adenocarcinoma, Ki67 expression, 
lobulation, texture, mixed GGO, solid texture, CT value, air 
bronchogram, and pleural retraction (p<0.05) in both devel-
opment group and validation group. In order to avoid the 
influence of confounding factors, we performed a LASSO 
regression analysis to re-valuate the variables. Finally, we 
retained 12 variables with nonzero coefficients (Figures 2A, 
2B). Then, we further performed a multivariable logistic 
regression analysis and constructed a predictive model. The 
results of the logistic regression analysis are shown in Table 3. 
The final predictors included age, sex, smoke history, lepidic 
predominant subtype, solid predominant subtype, mucinous 
adenocarcinoma, Ki67 expression, lobulation, solid texture, 
and pleural retraction. These 10 variables were used as poten-
tial predictors of the prediction model. The model incorpo-
rating the above independent predictors was developed and 
presented as the nomogram to help practice in the clinic 
(Figure 2C). The maximum separation was at a probability 
cut-point of 0.7, with 61% sensitivity and 82% specificity for 
the development group. A negative predictive value (NPV) 
was 57.9%, a positive predicted value (PPV) was 82.9%, and 
an informedness index was 0.43 for the development group.

Model validation. The development and validation group 
presented with good calibration. The Hosmer-Lemeshow test 
showed adequate goodness-of-fit of the model both in the 
development group (p=0.674) and in the validation group 
(p=0.412) (Figures 3A, 3B). In the development group, the 
C-index of the predictive model was 0.789 (95% CI: 0.751–
0.827). Meanwhile, the validation group was 0.809 (95% CI: 
0.771–0.847) through cross-validation. The AUC of the devel-
opment group was 0.789, and 0.809 of the validation group 
(Figures 3C, 3D) that suggested a good prediction capability 
of the model. Then, a Decision Curve Analysis (DCA) was 
performed to evaluate the prediction model. It indicated that 
predicting the EGFR mutations by applying this model would 
be better than having all patients or none patients treated by 
this model with a range of the risk threshold between >3% 
and <75% (Figure 3E). The maximum separation was at a 
probability cut-point of 0.7, with 67% sensitivity and 80% 
specificity in the validation group. An NPV was 61.2%, a 
PPV was 86.8%, and an informedness index was 0.47 for the 
validation group.

The model performance in the NGS test group. The 
model was assessed in a group of 52 patients who were tested 
for the EGFR mutations by NGS based on a liquid biopsy 
(peripheral blood or pleural effusion). As the maximum 
separation was at a probability cut-point of 0.7, there 
were 23 patients were categorized as a high positive group 
(>0.7) applying this model, among them, 21 of 23 patients 

Figure 1. Sample selection schematic, lung adenocarcinoma with EGFR 
mutation test results.
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Table 1. Clinical features and histological characteristics of the development group and validation group.

Mutation status (n/%)
Development group (n=567) Validation group (n=377)

Total (n=944)EGFR mutations
341 (60.1%)

Wild-type mutations
226 (39.9%) p-value EGFR mutations

237 (62.9%)
Wild-type mutations

140 (37.1%) p-value

Mutation types
Exon 21 L858R (n/%) 188 (55.1%) 139 (58.6%) 327(56.6%)
Exon 19 deletion (n/%) 123(36.1%) 77 (32.5%) 200 (34.6%)
Exon 18 G719X (n/%) 9 (2.6%) 4 (1.7%) 13 (2.2%)
Exon 20 Ins (n/%) 7 (2.1%) 10 (4.2%) 17 2.9%)
Exon 21 L861Q (n/%) 6 (1.7%) 1 (0.4%) 7 (1.2%)
Exon 21 L861Q+
Exon 18 G719X (n/%)

2 (0.6%) 1 (0.4%) 3 (0.5%)

Exon 20 T790M+
Exon 21 L858R (n/%)

2 (0.6%) 2 (0.8%) 4 (0.7%)

Exon 20 T790M+
Exon 18 G719X (n/%)

1 (0.3%) / 1 (0.2%)

Exon 20 T790M+
Exon 19 deletion (n/%)

1 (0.3%) 2 (0.8%) 3 (0.5%)

Exon 19 deletion+
Exon 21 L861Q (n/%)

1 (0.3%) / 1 (0.2%)

Exon 18 G719X+
Exon 20 S768I (n/%)

1 (0.3%) / 1 (0.2%)

Exon 20 T790M+
Exon 20 Ins (n/%)

/ 1 (0.4%) 1 (0.2%)

Age (year) 63(56–69) 61(52–67) 0.004 63 (56–69) 60 (49–69) 0.014 63 (54–69)
Sex <0.001 <0.001

Female (n/%) 236 (69.2%) 102 (45.1%) 160 (67.5%) 60 (42.9%) 558 (59.1%)
Male (n/%) 105 (30.7%) 124 (54.9%) 77(32.5%) 80 (57.1%) 386 (40.1%)

Smoking history <0.001 <0.001
Yes (n/%) 40 (11.7%) 77 (34.1%) 19 (8.0%) 44 (31.4%) 180 (19.1%)
No (n/%) 301 (88.3%) 149 (65.9%) 218 (92.0%) 96 (68.6%) 764 (80.9%)

Histology 
MIA (n/%) 38 (11.1%) 43 (19.0%) 0.009 28 (11.8%) 24 (17.1%) 0.148 133 (14.1%)
IA (n/%) 303 (88.9%) 183 (81.0%) 0.009 209 (88.2%) 116 (82.9%) 0.148 811 (85.9%)

Predominant subtypes
Acinar (n/%) 189 (55.4%) 83 (36.7%) <0.001 126 (53.1%) 50 (35.7%) 0.001 448 (47.5%)
Papillary (n/%) 89 (26.1%) 43 (19.0%) 0.051 63 (26.6%) 22 (15.7%) 0.015 217 (23.0%)
Lepidic (n/%) 54 (15.8%) 56 (24.8%) 0.008 44 (18.6%) 39 (27.9%) 0.036 193 (20.4%)
Solid (n/%) 5 (1.5%) 26 (11.5%) <0.001 2 (0.8%) 18 (12.9%) <0.001 51 (5.4%)
Micropapillary (n/%) 2 (0.6%) 6 (2.7%) 0.041 1 (0.4%) 5 (3.6%) 0.018 14 (1.5%)

Invasive adenocarci-
noma variant-Mucinous 
adenocarcinoma (n/%)

2 (0.6%) 12 (5.3%) <0.0001 1 (0.4%) 6 (4.3%) 0.007 21 (2.2%)

Ki67 expression <0.001 <0.001
Low Ki67 expression 
(0–20%)

306 (89.7%) 169 (74.8%) 225 (95.0%) 106 (44.7%) 806 (85.4%)

High Ki67 expression 
(>20%)

35 (11.3%) 57 (25.3%) 12 (5.0%) 34 (55.3%) 138 (14.6%)

Stage 0.124 0.104
I–II (n/%) 311 (91.2%) 197 (87.2%) 220 (92.8%) 123 (87.8%) 851 (90.1%)
III–IV (n/%) 30 (8.8%) 29 (12.8%) 17 (7.2%) 17 (12.2%) 93 (9.9%)

CEA (ng/ml) 2.64 (1.63–4.21) 2.77 (1.57–4.97) 0.373 2.33 (1.60–3.55) 2.50 (1.55–3.94) 0.458 2.53 (1.58–4.08)
CA199 (U/ml) 10.58 (6.83–15.93) 10.44 (6.70–15.22) 0.722 11.00 (7.70–15.90) 10.86 (7.21–16.55) 0.802 10.65 (7.00–15.76)
CA125 (U/ml) 10.49 (7.45–15.72) 10.82 (7.83–16.39) 0.431 10.40 (7.63–14.64) 10.93 (7.67–15.85) 0.540 10.62 (7.64–15.55)
Cyfra21-1 (ng/ml) 2.46 (1.86–3.20) 2.31 (1.78–3.10) 0.416 2.67 (1.92–3.41) 2.62 (2.07–4.02) 0.302 2.53 (1.87–3.30)

Abbreviations: MIA-minimally invasive adenocarcinoma, IA-invasive adenocarcinoma, CEA-carcinoembryonic antigen, CA199-carbohydrate antigen199; 
CA125-carbohydrate antigen 125, Cyfra 21-1-cytokeratin-19 fragment
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were defined as EGFR mutation-positive by NGS methods. 
There were 29 patients categorized as a low positive group 
(≤0.7), among them, 22 of 29 patients were defined as EGFR 
mutation-negative by NGS methods. An NPV was 75.9%, a 
PPV was 91.3%, and the diagnostic efficiency was 82.7% for 
the NGS group.

Discussion

In the present study, we developed and validated a multi-
variable logistic regression-based model to estimate the 
probability of the EGFR mutations in lung adenocarcinoma 
patients from a single center. The predictors included age, sex, 
smoke history, lepidic predominant subtype, solid predomi-
nant subtype, mucinous adenocarcinoma, Ki67 expression, 
lobulation, solid texture, and pleural retraction.

The nomogram based on the predictive model showed 
good predictive performance in both the development group 

(C-index: 0.798) and the validation group (C-index: 0.809) 
with good calibration. DCA showed that predicting the 
EGFR mutations probability applying this nomogram would 
be better than having all patients or none patients use this 
nomogram.

The female sex and non-smoker status were highly associ-
ated with a higher prevalence of the EGFR mutation, as 
observed in previous studies [11, 33]. That was consistent 
with our study.

Previous studies suggested histological characteristics 
including lepidic predominant subtype, acinar predomi-
nant subtype, and micropapillary predominant subtype were 
related with the EGFR mutations [18–21]. While, the solid 
predominant subtype had a negative correlation with the 
EGFR mutations [34, 35]. In our study, acinar predominant 
subtype had the highest proportion of 47.5% (448 of 944), 
compared with other histological subtypes. The LASSO 
regression showed that acinar predominant subtype was 

Table 2. CT features of the development group and validation group.

Development group (n=567) Validation group (n=377)
Total (n = 944)EGFR 

mutations
Wild-type 
mutation p-value EGFR

mutations
Wild-type 
mutation p-value

Mutation status (n/%) 341 (60.1%) 226 (39.9%) 237 (62.9%) 140 (37.1%)
Distribution 0.607 0.628

Central (n/%) 62 (18.2%) 45(13.2%) 41 (17.3%) 27 (19.3%) 175 (18.5%)
Peripheral (n/%) 279 (91.8%) 181(86.8%) 196 (82.7%) 113 (80.7%) 769 (81.5%)

Lobe location 0.452 0.045
Right upper lobe (n/%) 115 (33.7%) 82 (36.3%) 92 (38.8%) 41 (29.3%) 330 (35.0%)
Right middle lobe (n/%) 23 (6.7%) 17 (7.5%) 14 (5.9%) 9 (6.4%) 63 (6.7%)
Right lower lobe (n/%) 53 (15.3%) 38 (16.8%) 37 (15.6%) 23 (16.4%) 151 (16.0%)
Left upper lobe (n/%) 99 (29.0%) 54 (23.9%) 62 (26.2%) 40 (28.5%) 255 (27.0%)
Left lower lobe (n/%) 51 (14.9%) 35 (15.5%) 32 (13.5%) 27 (19.3%) 145 (15.4%)

Size category 0.489 0.009
≥ 30 mm 50 (14.7%) 38 (16.8%) 17 (7.2%) 22 (15.7%) 127 (13.5%)
< 30 mm 291 (85.3%) 188 (83.2%) 220 (92.8%) 118 (84.3%) 817 (86.5%)

Long axis diameter (mm) 15.9 (12.2–24.0) 14.6 (10.5–24.0) 0.048 17.0 (12.6–23.2) 15.4 (11.1–22.1) 0.174 16.14 (11.90–23.98)
Short axis diameter (mm) 11.7 (9.1–16.9) 10.9 (7.7–16.1) 0.195 11.9 (8.6–16.2) 11.2 (7.6–16.9) 0.412 11.61 (8.40–16.54)
Lobulation (n/%) 252 (73.9%) 135 (59.7%) <0.001 203 (85.7%) 101 (72.1%) 0.001 691 (73.2%)
Spiculation (n/%) 279 (81.8%) 176 (77.9%) 0.249 217 (91.6%) 121 (86.4%) 0.114 793 (84.0%)
Texture 0.009 0.001

Pure GGO (n/%) 78 (22.9%) 55 (24.3%) 0.688 87 (36.7%) 42 (30.0%) 0.185 262 (27.8%)
Mixed GGO (n/%) 177 (51.9%) 70 (31.0%) <0.001 93 (39.2%) 34 (24.3%) 0.003 374 (39.7%)
Solid (n/%) 86 (25.2%) 101 (44.7%) <0.001 57 (24.1%) 64 (45.7%) <0.001 308 (32.6%)

Calcification 6 (1.8%) 10 (4.4%) 0.061 4 (1.7%) 5(3.6%) 0.248 25 (2.6%)
CT value –237 (–418 – –1) –134(–396–19) 0.012 –205 (–455– –12) –73 (–388–25) 0.008 –188(–407–13)
Air bronchogram (n/%) 229 (67.2%) 129 (57.1%) 0.015 129 (54.4%) 59 (42.1%) 0.021 546 (57.8%)
Bubblelike lucency (n/%) 234 (68.6%) 130 (57.5%) 0.007 102 (43.0%) 72 (51.4%) 0.115 538 (57.0%)
Peripheral emphysema (n/%) 60 (17.6%) 39 (17.3%) 0.917 30 (12.7%) 19 (13.6%) 0.277 148 (15.7%)
Vascular convergence (n/%) 260 (76.2%) 155 (68.6%) 0.044 176 (74.3%) 101 (72.1%) 0.653 692 (73.3%)
Pleural retraction (n/%) 176 (51.6%) 87 (38.5%) 0.002 107 (45.1%) 27 (19.3%) <0.0001 397 (42.1%)

Abbreviation: GGO-grand glass opacity
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positively correlated with EGFR mutations; while, lepidic 
predominant subtype and solid predominant subtype were 
negatively correlated with EGFR mutations.

Mucinous adenocarcinoma is classified as an invasive 
adenocarcinoma variant. Wakejima et al. [36] found that 
the frequency of EGFR mutations in mucinous adenocar-
cinoma patients was 20% (without female predominance), 
which was lower than that in lung non-mucinous adeno-
carcinoma (54%) [36]. In our study, there were 21 cases of 
mucinous adenocarcinoma, in which the frequency of the 
EGFR mutation was 14.3% (3 of 21), with 2 cases of exon 19 

deletion and 1 case of exon 21 L858R. On the contrary, the 
frequency of EGFR mutation in non-mucinous adenocarci-
noma was 62.3% (575 of 923).

Ki67 expression is used to assess cell proliferation and is 
associated with tumor growth. Li et al. [37] reported that 
Ki67 expression was significantly decreased (p=0.030) in 
NSCLCs with the EGFR mutations, which was consistent 
with our study. We also found that when Ki67 expression was 
more than 20%, it was less frequent with EGFR mutations.

Previous studies of lung cancer suggested that models 
combined with clinical and CT features may improve the 

Figure 2. Texture feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. 12 variables of 
predictors were retained, including age, sex, smoke history, lepidic-predominant histology, acinar-predominant histology, solid-predominant histol-
ogy, mucinous adenocarcinoma, Ki67 expression, lobulation, pleural retraction, mixed GGO, solid texture. A) Suitable parameter (λ) selection in the 
LASSO model used 10-fold cross-validation via minimum criteria. We plotted the partial likelihood deviance (binomial deviance) curve versus log 
(λ) were drawn at the optimal values applying the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). A λ value of 
0.0328, with log (λ), -3.418 was chosen (1-SE criteria) according to 10-fold cross-validation. B) LASSO coefficient profiles of the 16 texture features (The 
number information of each texture feature: 1. age, 2. sex, 3. smoke history, 4. lepidic predominant subtype, 5. acinar predominant subtype, 6. solid 
predominant subtype, 7. micropapillary predominant subtype, 8. mucinous adenocarcinoma, 9. Ki67 expression, 10. Texture, 11. MGGO, 12. solid 
texture, 13. CT value, 14. lobulation, 15. pleural retraction, 16. air bronchogram). A coefficient profile plot was produced against the log (λ) sequence. 
C) Nomogram for predicting EGFR mutations in primary lung adenocarcinoma patients.



1326 Yiping SHI, et al.

Figure 3. Calibration curves, ROC curves of the nomogram for predicting EGFR mutation in primary lung adenocarcinoma patients and decision curve 
analysis for EGFR mutation. A) Calibration curve of the nomogram for the development group (Hosmer-Lemeshow goodness-of-fit test: p=0.674). 
B) Calibration curve of the nomogram for the validation group (Hosmer-Lemeshow goodness-of-fit test: p=0.412). A p-value of >0.05 indicates good 
calibration. C) ROC curve for the development group. D) ROC curve for the validation group. AUROC = area under ROC curve; ROC = receiver op-
erating characteristic. E) DCA: The y-axis represents the net benefit. The red line represents the nomogram of EGFR mutations. The grey line displays 
the assumption that all patients have EGFR mutations. The black line represents the assumption that no patients have EGFR mutations. The decision 
curve showed that predicting the EGFR mutations applying this nomogram would be better than having all patients or none patients treated by this 
nomogram with a range of the risk threshold between >3% and <75%.
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performance in EGFR mutation prediction [22–26, 28, 
38–40]. In our study, lobulation, solid texture, and pleural 
retraction were associated with the EGFR mutations. In 
addition to shallow lobulation [41], other CT features were 
found to have a positive correlation with EGFR mutation 
in lung adenocarcinoma, including pleural retraction, air 
bronchogram, or bubblelike lucency [22, 42]. But, GGO and 
spiculation didn’t show a significant association with EGFR 
mutation status [43]. Our study showed that mixed GGO was 
more frequent in patients with EGFR mutation, and Zhang et 
al. also found that [26] part-solid GGO was more frequent in 
NSCLC patients with EGFR mutation when compared with 
nonsolid GGO; however, tumor size, cavitation, air broncho-
gram, lobulation, and spiculation did not significantly corre-
late with the EGFR mutation, respectively. The controversial 
outcomes from researches between EGFR mutations and 
histological or CT features might be associated with study 
sample size, ethnic difference, and a research design.

Zhou et al. [44] found that the overall response rate 
and overall survival were not demonstrated with signifi-
cant difference between patients with a high abundance of 
EGFR (positive for mutation with both ARMS and direct 
DNA sequencing) and a low abundance of EGFR mutations 
(positive for mutation with ARMS but negative with direct 
DNA sequencing); while patients with low abundance of 
EGFR mutations had a longer median PFS than those with 
wild-type tumors (negative for mutation with both ARMS 
and direct DNA sequencing). This indicates that it is EGFR 
mutation status rather than the abundance that influences 
EGFR-TKI therapy response rate, and the survival time of 
patients with lung adenocarcinoma.

According to the 2017 molecular testing guideline for the 
selection of lung cancer patients for treatment with targeted 
TKI [45], next-generation sequencing (NGS), a massively 

parallel sequencing has changed the practice of molecular 
diagnostic in lung cancer and in other contexts. Numerous 
studies [46–50] have demonstrated the excellent sensitivity 
of NGS methods relative to single-gene targeted assays. The 
greater analytic sensitivity of NGS makes it suitable for very 
small or heterogeneous samples. While the previous capture-
based methods, using hybridization to generate the library 
are less sensitive in highly heterogeneous or small samples.

The purpose of promoting the application of the EGFR 
mutation predictive model in patients with lung adenocar-
cinoma is to more accurately enrich patient populations for 
the EGFR-TKI therapy. In our study, we defined the NGS 
group as a high positive group (>0.7) and a low positive 
group (≤0.7). Our model performed well in the NGS group, 
with 82.7% of diagnostic efficiency. Therefore, when a 
patient acquires a high score of the EGFR mutation proba-
bility according to a nomogram model, but with a negative 
result of EGFR molecular test with capture-based methods 
or unavailable tissue for EGFR testing, this patient might be 
highly suggested to test the EGFR mutation by NGS-based 
circulating tumor DNA (ctDNA) method for a potential 
positive result of the EGFR mutation and the TKI therapy 
opportunity. Our EGFR mutation predictive model cannot 
replace the EGFR mutation testing. But in lung adenocarci-
noma patients, whose tissue biopsy is not enough for further 
EGFR mutation examination, a high estimated probability 
of EGFR mutations by our model, suggests that further 
NGS-based ctDNA with liquid biopsy could be imple-
mented.

Our study has several limitations. First, it was a single-
center retrospective study in China, which might cause 
a selection bias. A large-scale validation across multiple 
centers would substantially strengthen the score. Second, 
because of the majority of EGFR mutations are occurring in 
lung adenocarcinoma, we focused on patients with adeno-
carcinoma, limiting the application of other histology. This 
was done because the majority of EGFR mutations are found 
in adenocarcinoma. Third, any prediction instrument inher-
ently incorporates a certain degree of uncertainty [31] and 
individual predictions remain imperfect. Finally, there may 
be some differences in CT features between patients with low 
and high proportions of the EGFR mutation. However, we 
did not have data to analyze the differences in the present 
study. It is expected that future research with large academic 
centers will help to reveal the relations of EGFR mutations 
types, clinical characteristics, histological characteristics, CT 
features, and TKI therapy response.

In conclusion, we developed an effective nomogram based 
on clinical, histological characteristics, and CT features to 
estimate the probability of the EGFR mutations in primary 
lung adenocarcinoma. A high score on the nomogram may 
suggest the possibility of positive EGFR mutation. If a patient 
has a high score probability based on our model, while his 
or her tissue is limited, NGS-based ctDNA could be imple-
mented effectively in this situation.

Table 3. Multivariate logistic regression analysis for the EGFR mutations 
in patients with primary lung adenocarcinoma (development group).

Predictors
Multivariable analysis

OR (95% CI) p-value
Age (year) 1.033 1.014–1.053 0.001
Sex 0.605 0.381–0.961 0.033
Smoking history 0.334 0.191–0.584 <0.001
Predominant subtypes
Acinar 1.158 0.713–1.881 0.553
Lepidic 0.417 0.248–0.702 0.001
Solid 0.228 0.076–0.678 0.008
Invasive adenocarcinoma variant
Mucinous adenocarcinoma

0.099 0.021–0.481 0.004

Ki67 expression (0–20% vs. >20%) 0.544 0.296–1.000 0.050
Lobulation 2.182 1.394–3.415 0.001
Mixed GGO 0.931 0.537–1.615 0.799
Solid texture 0.365 0.220–0.607 <0.001
Pleural retraction 1.719 1.134–2.607 0.011

Abbreviation: GGO-grand glass opacity
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