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Abstract. Intrinsically disordered proteins are flexible molecules with important physiological 
functions. Their mode of action often involves short segments, called linear motifs, which may 
exhibit distinct structural propensities. Tau is intrinsically disordered, microtubule-associated pro-
tein involved in the pathogenesis of various tauopathies. In this review we analyze the collection 
of 3D structures of tau local linear motifs gained from the deposited structures of tau complexes 
with various binding partners as well as of tau-tau complexes; determined by X-ray and electron 
crystallography, single-particle electron microscopy, NMR spectroscopy and molecular dynamics 
simulations. Insights into the partially stabilized conformations of tau linear motifs are valuable for 
understanding the physiological and pathological processes involving tau protein.
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Introduction 

Intrinsically disordered proteins and protein regions (IDPs/
IDRs) form a  distinct, recently identified structural and 
functional entity of the proteome of all kingdoms of life 
(Dyson and Wright 2005). IDPs don’t attain a constant 3D 
structure under physiological conditions, having a relatively 
flat energy landscape with many shallow minima that can 
be described as a conformational ensemble of fluctuating 
structures (Fisher and Stultz 2011). IDPs are highly abundant 
in nature and their functional repertoire supplements the 

functions of globular proteins. However, many IDPs play 
a role in the pathogenesis of human diseases e.g. neurode-
generative diseases, cancer and diabetes (Uversky et al. 2008).

In contrast to folded globular proteins, which often in-
teract by means of a large contact area supported by protein 
tertiary structure, IDPs use for their interactions indepen-
dently behaving short segments called linear motifs. Despite 
their short length and lack of stable structure, linear motifs 
may have detectable structural propensities, which often 
resemble bound-state conformations. Molecular dynamics 
(MD) simulations are able to detect conformational ensem-
bles of linear motifs in uncomplexed state, giving a clue to 
their interaction potential (Cino et al. 2013a). For example, 
among 10 disordered binding partners of the Kelch domain 
of the hub protein Keap1, the highest affinity was measured 
for those that resembled the bound-state like conformation 
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to the highest extent during MD simulation (Cino et al. 
2013b). Therefore, intramolecular contacts in an intrinsically 
disordered region may serve as important intermolecular 
binding determinants (Davey 2019).

Neuronal protein tau is a representative member of the 
group of IDPs. The conversion of tau from physiological 
disordered form to rigid amyloid fibres is the hallmark of 
severe diseases – neurodegenerative tauopathies including 
Alzheimer’s disease (AD). The driving forces and atomic 
details of this metamorphosis are largely unknown and 
insights into the conformational preferences of tau partial 
segments may bring important clues. 

The main physiological role of tau protein is to stabilize 
microtubules and regulate their dynamics but tau is also 
involved in actin binding, neuroplasticity, axonal transport 

and axonal sprouting, cell cycle regulation, synaptic trans-
mission and interactions with plasma membrane (Castellani 
and Perry 2019). 

The alternative splicing of MAPT gene produces six 
tau protein isoforms present in CNS, which differ in the 
presence or absence of N-terminal inserts (none, one or 
two) and by the presence of three (3R isoforms) or four 
(4R isoforms) microtubule binding repeat regions (MTBR) 
(Goedert et al. 1989). Longer tau isoforms with large N-
terminal insertions are expressed in peripheral nervous 
system (Fischer and Baas 2020). Whereas the length of 
CNS tau isoforms ranges from 352 to 441 amino acids, 
the longest peripheral tau isoform is 758 amino acids long 
(UniProt entry P10636). Based on sequence characteris-
tics and function, tau molecule can be divided into the 

Figure 1. Positional scheme of local tau structures obtained by different methods mentioned in this review relative to the domain structure 
of the longest human tau isoform 2N4R (tau40) with N-terminal inserts I1, I2, proline-rich regions P1, P2, MTBRs R1-R4 and region 
following repeats R’. Position of tau peptide is shown with corresponding PDB ID, if available. Depicted tau peptides that were subjects 
of MD studies: A, N-terminal tau fragment 26–44 (Perini et al. 2019); B, AT8 epitope phospho-peptide (Gandhi et al. 2015); C, Tau 
phospho-peptide 225–250 (Lyons et al. 2014); D, R2-R3 interface (Chen et al. 2019); E, AD PHF core dimer (Derreumaux et al. 2020).



481Insights into the structure of disordered protein tau

N-terminal projection domain (amino acids 1–150, num-
bering of the longest CNS isoform), proline-rich region 
(151–243), microtubule binding domain (MTBD, 244–399) 
and C-terminal tail (400–441). Tau protein can undergo 
many posttranslational modifications: phosphorylation, 
truncation, glycosylation, glycation, nitration, ubiquitina-
tion, SUMOylation, prolyl isomerization, acetylation that 
have structural and functional implications. 

Disruption of finely tuned network of specific albeit weak 
interactions mediated by (pre)structured linear motifs in the 

tau molecule may be the turning point of neurodegeneration. 
Small molecules predicted to bind computationally identified 
structural motifs in the tau aggregation domain were able 
to delay tau aggregation in vitro (Baggett and Nath 2018). 
Transiently populated linear motifs identified by MD or 
high-resolution experimental techniques may therefore rep-
resent potential druggable targets for tauopathy treatment.

The preferred conformations of linear motifs in the 
otherwise disordered tau molecule may constitute immuno-
dominant hotspots, recognised by binders of naïve B-cell 

Table 1. Tau structures of nonredundant segments obtained by X-ray or electron crystallography

PDB ID Antibody name Tau peptide modelled Tau peptide used for  
crystallization

Resolution 
(Å)

X-ray crystallography
Binding partner: Antibody Fab fragment
6PXR IPN002 (Sopko et al. 2020) 15AGTYGLGD22 (Fig. 2A) 9–26 1.56
5ZV3 CBTAU28.1 (Apetri et al. 2018) 57EEPGSETSDAKS68 (Fig. 2B) 52–71 2.09
5E2V AT8 (Malia et al. 2016) 201GpSPGpTPGSR209 194–211 (pS202, T205) 1.64
5E2W AT8 (Malia et al. 2016) 202pSPGpTPGpSR209 (Fig. 2C,U) 194–211 (pS202, pT205, pS208) 1.50
6XLI PT3 (Van Kolen et al. 2020) 210SRpTPSLPpTPPTRE222 (Fig. 2D) 210–222 2.00
4TQE TAU5 (Cehlar et al. 2015) 215LPTPPTREPKKVAVVR230 (Fig. 2E) 201–230 1.65
4GLR Ultra-specific Avian Antibody (Shih et al. 

2012)
225KVAVVRpTPPK234 (Fig. 2F) 224–240 1.90

5ZIA CBTAU-24.1 (Zhang et al. 2018) 235SPSpSAKSRL243 (Fig. 2G) 221–245 (pT231, pS238) 2.60
6LRA Tau2r3 (Tsuchida et al. 2020) 275VQIINK280 (Fig. 2H) 275–280 1.90
5MO3 DC8E8 (Skrabana et al. 2017) 298KHVPGGGS305 (Fig. 2I,W) 298–311 1.69
6DCW CBTAU-27.1 (Apetri et al. 2018) 310YKPVDLSKV318 (Fig. 2J) 299–318 2.00
2V17 MN423 (Sevcik et al. 2007) 386TDHGAE391 (Fig. 2K) dGAE (297–391) 1.65
6BB4 C5.2 (Chukwu et al. 2018) 392IVYKpSPV398 (Fig. 2L) 386–408 (pS396, pS404) 2.10
6DCA 6b2 (Chukwu et al. 2019) 403TSPRHL408 (Fig. 2M) 379–408 2.59
6DC8 8b2 (Chukwu et al. 2019) 404SPRHL408 (Fig. 2N) 379–408 1.79
6DC9 h4E6 (Chukwu et al. 2019) 403TpSPRHL408 (Fig. 2O) 386–408 (pS404) 2.99
5DMG RB86 (Bujotzek et al. 2016) 419MVDpSPQLATLAD430 (Fig. 2P) 416–430 2.50
6H06 CBTAU22.1 (van Ameijde et al. 2018) 418DMVDpSPQLAT427 (Fig. 2T) 404–429 2.63
Binding partner: 14-3-3
4FL5 14-3-3σ (Joo et al. 2015) 211RTPpSLPTP218 (Fig. 2Q) 210–218(pS214) 1.90
5BTV 14-3-3σ (Joo et al. 2015) 323GpSLG326 (Fig. 2R) 320–328(pS324) 1.70
Binding partner: Tau peptide – fibril

Tau peptide sequence Type of interface observed*
2ON9 VQIVYK (Sawaya et al. 2007) Class 1, face-to-face 1.51
6ODG SVQIVY (Seidler et al. 2019) Class 1, face-to-face

Class 3, face-to-face 1.00

Electron crystallography
5V5B KVQIINKKLD (Seidler et al. 2018) Class 1, face-to-face

Interface A: formed by VQIIN
Interface B: formed by KKLD

1.50

5V5C VQIINK (Seidler et al. 2018) Class 4, face-to-back (Fig. 3F) 1.25
* Classification of steric zippers can be found in Sawaya et al. (2007) or Eisenberg and Sawaya (2017).
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repertoire. Indeed, immunization of mice with the 0N4R tau 
protein isoform has revealed five large regions predominantly 
populated by tau immunogenic sequences – two in N-terminal 
projection domain (9–15, 21–27), two in proline -rich region 
(168–174 and 220–228) and one in C-terminal tail (427–438) 
(Selenica et al. 2014). 

Similarly, memory B cells from healthy donors selected 
against phosphorylated tau peptides identified naturally 
occurring, somatically mutated tau binding antibodies in 
these regions (Pascual et al. 2017).

The structure of tau in the complexes with naturally 
evolved binders may conserve preferred conformations of tau 
linear interaction motifs. Following this line of thinking, we 
have gathered all tau conformations in the PDB originated 
from soluble tau complexes (Fig. 1). 3D structures of tau 
are obtained mainly by X-ray crystallography, but several 
structures come also from electron crystallography, NMR 
and single-particle cryo-EM. Some experimental data are 
being corroborated with MD simulations. The principal tau 
binding partners are antibody Fab fragments; other tau bind-
ers are 14-3-3s protein, Pin1 WW domain, F-actin, BIN-1, 
and microtubules. As a complement and for a comparison, 
we have included also tau-tau complex structures, includ-
ing cryo-EM structures of tau filaments isolated from brain 
of individuals who died of a  tauopathy. Until April 2021, 
76  structures containing tau sequence were deposited in 

PDB. 42 were obtained by X-ray crystallography, 25 with 
electron microscopy, 5 with solution NMR and 4 with 
electron crystallography (overview of selected structural 
depositions is presented in Tables 1 and 2). An ensemble 
of 995 conformations of tau microtubule binding domain 
is deposited in the protein ensemble database (Lazar et al. 
2021) under ID PED00017 (Ozenne et al. 2012). Relative 
positions of tau peptides observed in complexes with anti-
body Fab fragments along the 2N4R tau isoform are shown 
on Figure 1. In the following the tau global fold as well as 
partial structures will be discussed.

Global conformations of tau protein 

NMR measurements with full length tau molecule have 
revealed preferences of short tau segments for transient 
secondary structures – α-helices (tau residue stretches 114–
123, 428–437), polyproline II helices (175–184, 216–223, 
232–239) and β-sheets (86–92, 161–166, 224–230, 274–284, 
305–315, 336–345) and the global folding was probed by 
PRE (Mukrasch et al. 2009; Melkova et al. 2019). By ensem-
ble FRET measurements the C-terminus was shown to be 
present with high frequency in the proximity of MTBD and 
40 N-terminal tau residues, which was termed as the “pa-
perclip” model of tau conformation (Jeganathan et al. 2006). 
More recently, by single-molecule FRET measurements an 

Table 2. Tau structures obtained by NMR and cryo-EM

Solution NMR
PDB ID Binding partner Tau peptide used
1I8H Pin1 WW (Wintjens et al. 2001) 225KVSVVRpTPPKSPS237 *
5NVB F-actin (Fontela et al. 2017) 254KNVKSKIGSTENLKH268

5N5A F-actin (Fontela et al. 2017) Tau(254-290)
5N5B F-actin (Fontela et al. 2017) Tau(292-319)
2MZ7 Microtubules (Kadavath et al. 2015) Tau(267-312)

Cryo-EM
Binding partner Tau peptide modelled Resolution (Å)

6CVJ Microtubules (Kellogg et al. 2018) 256VKSKIGSTENLK267 (Fig. 2S) 3.20
6CVN Microtubules (Kellogg et al. 2018) K274-V300 (Fig. 2V) 3.90
Tauopathy and in vitro aggregated filaments

Filament source and type Tau peptide modelled Resolution (Å)
5O3L AD PHF (3R+4R) (Fitzpatrick et al. 2017) V306-F378 3.40
6HRE AD PHF sporadic (3R+4R) (Falcon et al. 2018b) 273GK274/304GS305-E380 ** (Fig. 3A) 3.20
6NWP CTE type I filament (3R+4R) (Falcon et al. 2019) K274/S305-R379** 2.30
6GX5 Picks disease (3R) (Falcon et al. 2018a) K254-F378*** (Fig. 3B) 3.20
6TJX CBD type II (4R) (Zhang et al. 2020) K274-E380 (Fig. 3C) 3.00

6QJH In vitro aggregated 2N4R (snake filaments) (Zhang et al. 
2019) G272-H330 (Fig. 3D) 3.30

6QJQ In vitro aggregated 2N3R (Zhang et al. 2019) G272-H330*** (Fig. 3E) 3.70
* Tau phospho-peptide contains S227 instead of A present in tau sequence, ** 3R tau incorporated in the fibril has sequence GKVQIVYK, 
and 4R tau GSVQIVYK at the N-terminal part of the ordered core, *** 3R tau isoforms lack residues 275-305 (numbering according 
human longest full length isoform 2N4R. 
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S-shaped model has been obtained, with both termini more 
far apart from each other than from MTBD (Elbaum-Gar-
finkle and Rhoades 2012). Ion mobility mass spectrometry 
measurements have shown the presence of highly unfolded 
as well as folded conformers, but with the latter forming 
only 2% of the total population (Jebarupa et al. 2018). These 
minority globular and folded conformers of full-length tau 
were recently modelled by crosslinking-guided discrete MD 
simulations (Popov et al. 2019). Fluorescence anisotropy 
measurements with the use of anti‐Brownian electrokinetic 
trap have also shown two families of tau conformations 
(Manger et al. 2017). 

Projection domain of tau

Monoclonal antibody IPN002 recognises an epitope on 
the extreme N-terminus of tau. IPN002 was humanized 
to Gosuranemab (BIIB092), an IgG4 antibody, which in-
hibited tau seeding activity from brain homogenates and 
transgenic mouse interstitial fluid in cell models. However, 
it has failed to demonstrate clinical efficacy in progressive 
supranuclear palsy (PSP) trial and is currently being tested 
as an AD therapy. The antibody IPN002 was crystallized with 
tau9–26 peptide and the tau sequence 15AGTYGLGD22 can 
be found in the complex structure. The tau peptide forms 
a type I β-turn between residues 16–19, with one hydrogen 
bond formed between the carbonyl oxygen of G16 and the 
amide nitrogen of G19, which is further stabilized by one 
additional hydrogen bond formed between residues A15 
and G21 (Fig. 2A) (Sopko et al. 2020). Residue Y18 can be 
phosphorylated and in the phosphorylated form interacts 
with SH2 domain of tyrosine Fyn kinase, which induces tau 
trafficking to detergent-resistant membrane microdomains 
(Usardi et al. 2011).

Peptide tau26–44 was proposed as a minimal biologically 
active moiety of longer 20–22 kDa truncated neurotoxic 
tau fragment tau26–230 that is accumulating in vivo at AD 
presynaptic terminals and is present in cerebrospinal fluid 
(CSF) from AD patients (peptide A in Fig. 1; Borreca et al. 
2018). Perini and colleagues have performed five 30 ns long 
molecular dynamics simulations starting from different 
initial conformations generated by I-TASSER (Yang et al. 
2015). The same procedure has been performed for a control 
peptide with reverse amino acid sequence. Both peptides 
obtained mainly coil like structures, turns and bends. Tem-
porary isolated β-bridges, α-helices and 310-helices were also 
detected (Perini et al. 2019). SAXS curves were also measured 
for studied peptides and the ensemble of conformations that 
give the best fit to the experimental data were extracted from 
MD runs. The ensemble optimization method EOM with the 
genetic algorithm GAJOE was used (Bernado et al. 2007). 
The control peptide was found to exhibit a more compact 
folding than the tau26–44 peptide. 

Structure of tau peptide 57EEPGSETSDAKST69 from 
the first N-terminal insert was solved in the complex with 
antibody CBTAU28.1 Fab (Apetri et al. 2018). Tau peptide 
forms an α-helix between residues P59 and K67 (Fig. 2B) 
which is consistent with observed 5% α-helical conformation 
of this region in the ensembles selected by the ASTEROIDS 
analysis of NMR chemical shifts (Schwalbe et al. 2014; 
Melkova et al. 2019). 

Proline-rich region

Antibody AT8 (Mercken et al. 1992), relevant for staging 
of AD progression (Braak et al. 2006), was investigated by 
X-ray crystallography and also by the combination of NMR 
and MD in its free solution form. Interestingly, AT8 recog-
nizes multiple phosphorylated sites in the region 199–208. 
The epitope was originally mapped by ELISA to double 
phosphorylated peptide pS202/pT205 with cross-reactivity 
to phospho-pattern pS199/pS202 (Porzig et al. 2007). By 
surface plasmon resonance (SPR), the highest affinity similar 
to that of PHF-tau was shown for triple phosphorylated tau 
peptide with phosphorylated residues pS202/pT205/pS208. 
Phosphorylation pattern was evaluated on 20 amino acid 
long tau peptides spanning tau residues 195–214. Peptide 
with phosphorylated residues pS199/pS202/pT205 showed 
10  times lower affinity than pS202/pT205/pS208 and the 
double phosphorylated peptide (pS202/pT205) showed 
27.6 times lower affinity (Malia et al. 2016). AT8 epitope 
peptide was found in a  partially extended conformation 
with some occurrence of polyproline type II helix second-
ary structure (Fig. 2C). Combined NMR and MD study 
proposed an existence of a  turn conformation on the 
C-terminus of AT8 epitope, where the sidechain of pT205 
flips between interaction with amide proton of G207 and 
with sidechain of R209 (Fig. 2U) (Gandhi et al. 2015). The 
NMR spectrum of tau peptide tau192–212 (peptide B in Fig. 
1; pS202/pT205) has reproduced well that of phosphorylated 
full length tau protein. The full-length tau and tau fragment 
TauF5 (tau165–224) were in vitro phosphorylated using 
recombinant CDK2/CycA3 kinase. 

Interaction site of tau with 14-3-3 proteins

Tau residue pS214 is involved in the interaction of tau with 
14-3-3 proteins together with pS324 from MTBD (Joo et al. 
2015). The 14-3-3 protein family comprises seven isoforms; 
they exist as homo- or heterodimers and interact mainly 
with phosphorylated protein partners. 14-3-3σ was shown 
to be involved in tubulin stability and neuritic outgrowth in 
neurons. Tau peptides 211RTPpSLPTP218 and 323GpSLG326 
were observed in complexes with 14-3-3σ protein (Fig. 2Q, 
2R). The peptides are bound in an extended conformation 
in the central binding channel of 14-3-3σ monomer. The full 
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length phosphorylated tau protein binds to 14-3-3σ dimer 
through both mentioned phosphosites forming a complex 
with 2:1 stoichiometry (14-3-3σ:tau) (Neves et al. 2021). The 
tau peptide with pS214 was the basis for the construction 
of chimeric inhibitors of 14-3-3σ/tau interaction that were 
composed of tau sequence with organic scaffolds fused to 
residue T217 extending the binding of the inhibitor also to 
the proximal fusicoccin (14-3-3σ stabilizer) binding site 
(Milroy et al. 2015).

Phospho-specific antibody PT3 that binds tau phospho-
rylated at threonine residues 212 and 217 has been gener-
ated and was reported to bind AD PHF and phosphorylated 
recombinant tau with picomolar affinity (Van Kolen et al. 
2020). The whole tau peptide 210SRpTPSLPpTPPTRE222 

used for co-crystallization (with acetylated N-terminus) 
could be modelled in the complex structure. Tau phospho-
peptide has an extended conformation with polyproline II 
helix character and contains intramolecular hydrophobic 
contacts (Fig. 2D). 

pT217 epitope can be used as an AD biomarker in an 
immunoassay to distinguish AD cases from other dementia 
cases and healthy controls (Hanes et al. 2020). 

Tau sequence 210–230 interacting with BIN1 and tau5 
antibody

It was shown that tau interacts with C-terminal SH3 do-
main of BIN1 (Bridging integrator-1) through its sequence 
210–240 (Sottejeau et al. 2015). BIN1 gene was the first of 
the genetic determinants for sporadic AD with a clear link 
to Tau pathology (Chapuis et al. 2013). The model of the 
complex structure of SH3 domain of BIN1 isoform1 and 
tau peptide was obtained with docking using HADDOCK 
(van Zundert et al. 2016) that was driven under defined 
intermolecular unambiguous restraints from a  NOESY 
spectrum and ambiguous restraints chosen as the residues 
involved in intermolecular NOEs. Tau peptide 213–229 
has been modelled (Lasorsa et al. 2018). The 216PxxP219 
consensus motif of Tau peptide is bound into the canonical 

hydrophobic xP binding pocket of the SH3 domain. The 
positively charged tau residues R221 and K224 interact 
with negatively charged residues in the n-Src loop of the 
specificity zone of BIN1 SH3.

The conformation of tau peptide 215LPTPPTREPK-
KVAVVR230 can be obtained from its complex with Tau5 
antibody Fab. Its conformation is stabilized by a T-turn motif 
in the central part of tau epitope, where side chain oxygen 
of T220 makes a hydrogen bond with main chain amid of 
E222 (Fig. 2E). This intrachain hydrogen bond stabilizes a V 
shaped conformation of the peptide (Cehlar et al. 2015).

Sequence stretch 225KVAVVRT231 may be contributing 
to the formation of PHF and also to microtubule binding. 
It loses its flexibility measured by solid state NMR upon 
in vitro filament formation (Savastano et al. 2020). It was 
shown that regions flanking MTBD, including this segment, 
are required for high affinity binding of tau to microtubules 
(Mukrasch et al. 2007). 

Tau conformations around phosphorylated residue T231

The tau conformation around residue T231, recognized also 
by an antibody AT180 used for defining an AD pathological 
form of phospho-tau, was analysed by several approaches 
and also by an ultra-specific avian antibody recognizing 
epitope around pT231. The bond between pT231–P232 
is amenable for cis-trans isomerization by peptidyl-prolyl 
isomerase Pin1, where the cis conformation was shown to 
appear early in the brains of humans with mild cognitive 
impairment (Nakamura et al. 2012). NMR measurements 
performed with tau fragment tau208–324 showed that all 
prolines were for over 90% in the trans conformation (Ahuja 
et al. 2016). Lyons and co-workers have performed MD 
simulations of differently phosphorylated tau peptide 225–
250 (peptide C in Fig. 1) under various conditions (ionic 
power, phosphate charge) and showed that phosphorylation 
disrupts the β-sheet patterns present at N- and C- termini 
of non-phosphorylated peptide. The double phosphoryla-
tion has stabilized formation of a transient α-helix between 

 Figure 2. Structures of tau peptides bound to antibody Fab fragments, 14-3-3σ and microtubules. Structure of tau peptide is shown 
as sticks with green carbon atoms. Structural poses were drawn from PDB depositions with codes: 6PXR, IPN002 Fab with tau A15-D22 
(A); 5ZV3, CBTAU-28.1 with tau E57-S68 (B); 5E2W, AT8 Fab with tau pS202-R209 (C); 6XLI, PT3 Fab with tau S210-E222 (D); 4TQE, 
Tau5 Fab with tau L215-R230 (E); 4GLR, avian antibody Fab with tau K225-K234 (F); 5ZIA, CBTAU-24.1 with tau S235-L243 (G); 6LRA, 
Tau2r3 Fab with tau V275-K280 (H); 5MO3, DC8E8 Fab with tau K298-S305 (I); 6DCW, CBTAU-27.1 Fab with tau Y310-V318 (J); 
2V17, MN423 Fab with tau T386-E391 (K); 6BB4, C5.2 Fab with tau I392-V398 (L); 6DCA, 6b2 Fab with tau T403-L408 (M); 6DC8, 8b2 
fab with tau S404-L408 (N); 6DC9, h4E6 fab with tau T403-L408 (O); 6H06, CBTAU-22.1 Fab with tau D418-T427 (P); 4FL5, 14-3-3σ 
with tau R211-P218 (Q); 5BTV, 14-3-3 σ with tau G323-G326 (R); 6CVJ, microtubule with tau V256-K267 (S); 5DMG, Rb86 fab with 
tau M419-L428 (T); snapshot of the double phosphorylated tau peptide (pS202pT205) from MD simulation (Gandhi et al. 2015; top), 
aligned conformations of double (pS202pT205) and triple (pS202pT205pS208) phosphorylated tau peptides from complexes with AT8 
antibody (Malia et al. 2016; bottom) (U); 6CVN, microtubule with tau K274-V300 (V); Line model of tau segment 298KHVPGGGS305 
from the complex with DC8E8 antibody (5MO3, top) and NMR conformations of tau peptide bound to microtubules (2MZ7; state 1, 
middle; state 2, bottom) (W). Pymol version 1.8.2.1 was used for preparation of structural figures.
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residues A239–T245 (Lyons et al. 2014) that was observed 
previously by NMR on phosphorylated TauF4 (208–324) 
fragment (Sibille et al. 2012). Molecular ensembles were 
calculated based on NMR data for non-phosphorylated, 
doubly phosphorylated (T231/S235) and tetra- phosphoryl-
ated (T231/S235/237/238) tau peptide 225–246 (Schwalbe et 
al. 2015) and found that phosphorylation of T231 resulted 
in the formation of a  salt bridge between the phosphate 
group of T231 and the neighbouring basic side chain of 
R230. The structure of tau peptide 225KVAVVRpTPPK234 
from the complex with avian antibody was solved. Tau 
phospho-peptide adopts a  conformation with two sharp 
turns at V228 and pT231 (Fig. 2F). This conformation is 
stabilized by an intramolecular hydrogen bond between 
the side chain nitrogen of K225 and the carbonyl oxygen 
of V226 (Shih et al. 2012).

The conformation of a phospho-peptide with pS238 was 
solved in complex with phosphorylation independent anti-
body CBTAU24.1 (the phosphate group points away from 
the paratope). The peptide adopts an extended conforma-
tion with a sharp turn from A239 to L243 where only the 
side chain nitrogen of K240 is able to form intramolecular 
hydrogen bonds (Fig. 2G) (Zhang et al. 2018).

Microtubule binding domain

Two-dimensional Nuclear Overhauser Effect (NOE) spec-
tra in the absence and presence of MTs were recorded for 
peptide tau267–312 (Kadavath et al. 2015). The calcula-
tions with medium and long range contact data (1.8–6.0 Å) 
of MT bound conformations yielded converged hairpin 
conformations for residues 269–284 and 300–310. The 
hairpin turn is formed by PGGG motifs and is followed 
by an extended structure of aggregation-prone hexapep-
tides 275VQIINK280 and 306VQIVYK311. The calculation 
for the peptide in solution did not converge to one major 
conformer.

One of the lowest energy MT-bound conformers stored 
in PDB shows a similar β-turn stabilized by a main chain 
hydrogen bond between G302 and S305 as a  tau peptide 
from the complex with DC8E8 antibody (Fig. 2I,W) (Sk-
rabana et al. 2017). Antibody DC8E8 recognizes truncated 
tau proteins preferentially to the full length tau proteins, 
inhibits tau aggregation (Kontsekova et al. 2014b), inhibits 
internalization of extracellular tau by neurons (Weisova et 
al. 2019), and its epitope in R2 is the basis for the active AD 
vaccine (Kontsekova et al. 2014a; Novak et al. 2017). DC8E8 
binds tau sequence motif HXPGGG present in each of its 
four MTBRs. 

The conformations of tau segment from R2-R3 interface 
(295–311, peptide D in Fig. 1) were probed by molecular 
dynamics, Rosetta modelling (Ovchinnikov et al. 2018) 
and experimental methods that showed formation of meta-

stable compact structures between 306VQIVYK311 and its 
upstream sequence modulating aggregation propensity, 
where destabilization of a β-hairpin conformation leads to 
the aggregation-prone conformation with exposed amyloid 
forming motif (Chen et al. 2019).

Antibody CBTAU27.1 has a  common germline origin 
with the N-terminal antibody CBTAU28.1 (Apetri et 
al. 2018). It recognizes epitope 310YKPVDLSKV318 in 
R3 bordering the PHF6 aggregation prone hexapeptide 
306VQIVYK311. The tau peptide has mainly straight confor-
mation with possible interaction of sidechains of residues 
D314 and S316 (Fig. 2J).

It was shown by NMR spectroscopy that tau uses several 
short helical segments for binding to actin (Fontela et al. 
2017). α-helical or 310-helical conformations were identified 
for tau segments 261–268, 277–283 and 315–318.

Structures of sequences from R1 (256VKSKIGSTEN-
LK267, Fig. 2S), and R2 (274–300, whole R2 sequence with-
out PGGG, Fig. 2V) bound to the MT surface in extended 
conformation were obtained using cryo-EM and Rosetta 
modelling. Tau synthetic construct with four copies of either 
R1 or R2 replacing the regular MTBD were used to obtain 
a better resolution (Kellogg et al. 2018). The ensemble of tau 
region 202–395 bound to microtubule has been obtained 
using meta inference cryo-electron microscopy (Brotzakis 
et al. 2020).

The binding of tau peptide from R’ region to α-tubulin 
surface has been proved with INPHARMA NMR method 
(interligand nuclear Overhauser effect (NOE) for pharma-
cophore mapping). Tau peptide corresponding to residues 
368–402 has been used (Kadavath et al. 2018). 

From peptide steric zippers to tauopathy filaments

It has been shown that short tau peptides containing se-
quences 275VQIINK280 or 306VQIVYK311 can form fibrillar 
aggregates (von Bergen et al. 2000, 2001). These tau peptide 
segments have been crystalized in form of peptide filaments 
which enabled their structure solution. Nanocrystals from 
peptides VQIINK and KVQIINKKLD were prepared and 
the structures of fibrils were determined by electron crys-
tallography (Seidler et al. 2018). Peptides form homosteric 
zippers (formed by a  single sequence) and they are more 
tightly bound than previously reported VQIVYK zippers 
(Sawaya et al. 2007; Fig. 3F), because they have higher shape 
complementarity and burry larger surface areas. Interest-
ingly, tau K18 construct with 309VY310 mutated to IN, thus 
containing two VQIINK segments, aggregated faster than 
the wild type construct. Based on the side chain interface 
between the β-sheets, fibril-capping inhibitors have been 
generated that were able to inhibit both tau aggregation and 
the seeding effect of exogenous fibrils (Sievers et al. 2011; 
Seidler et al. 2018, 2019).
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Tau peptide VQIINK can be also found in a  complex 
structure with antibody 2r3 Fab (Fig. 2H), generated by 
immunization with tau peptide 272–283 and inhibiting tau 
aggregation (Tsuchida et al. 2020).

The above-mentioned interfaces created by short pep-
tides were not observed in cryo EM structures of tau fila-
ments isolated from patients with AD, Picks disease (PiD), 
corticobasal degeneration (CBD) and chronic traumatic 
encephalopathy (CTE) (Lippens and Gigant 2019; Scheres 
et al. 2020). VQIVYK forms a heterosteric zipper interface 
with corresponding sequence VEVKSE from R4 in PiD and 
CBD folds (Fig. 3). In AD and CTE folds, VQIVYK forms an 
interface with tau sequence 375KLTF378 from R’. Homosteric 
but parallel interface of VQIVYK was observed only for the 
in vitro heparin-induced 3R filaments, which ordered core 
is composed of parallel parts of R3 from two tau molecules 
(Fig. 3E). The folds of in vitro aggregated tau filaments dif-
fer markedly from patient-derived filament folds. Heparin 
induced 2N4R and 2N3R tau filaments were characterized 

by cryo-EM (Zhang et al. 2019) and 0N4R filaments by solid 
state NMR (Dregni et al. 2019). 2N4R tau was shown to form 
four filament types and three of them were solved (snake, 
twister and jagged filament) to have a  core with kinked 
hairpin fold with stabilized R2 and part of R3 (Fig. 3D, snake 
filament). In AD and CTE folds, tauopathies with both 3R 
and 4R tau proteins involved in filaments, repeats R3, R4 and 
part of R’ are stabilized in C-shaped double layered rigid fibril 
core composed of eight β-sheets with β-helix configuration 
of chain turn (Fig. 3A) (Fitzpatrick et al. 2017; Falcon et al. 
2018b). PiD fold, a 3R tauopathy, consists of nine β-sheets, 
of which the first and last two create a three-layered motif. 
The rest of a  J-shaped fold contains two layers (Fig. 3B). 
Residues K254–F378 are stabilized (Falcon et al. 2018a). A 4R 
tauopathy, CBD, is characterized by compact four-layered 
fold that extends from K274 to E380. It stabilizes the last 
residue of R1, repeats R2–R4 and 12 residues form R’ (Fig. 
3C). In CTE and CBD folds, a channel of non-proteinaceous 
density has been observed (Falcon et al. 2019; Zhang et 

Figure 3. Tau filaments and steric 
zippers. A. AD PHF fold. Zipper 
interface residues 306VQIVYK311 
and 374HKLTFRE380 are shown 
as sticks. Colored according tau 
MTBRs, R1 orange, R2 green, 
R3 magenta, R4 cyan, R’ salmon. 
B. Picks narrow fold. Zipper in-
terface residues 306VQIVYK311 
and 337VEVKSE342 are shown 
as sticks.  C.  CBD type II 
(wide) tau fold with sidechains 
forming four layer interface 
(337VEVKSE342, 306VQIVYK311, 
294KDNIKH299, 357LDNITH362) 
shown as sticks. Zipper interface 
of 275VQIINK280 with 376LT-
FRE380 is also shown as sticks. 
Interprotofilament interface-
forming segment 346FKDR349 
is shown as sticks. PDB 6VH7. 
Non-proteinaceous density is 
depicted as black ellipse. D. Fold 
of in vitro heparin induced 2N4R 
filament (snake filament). Zipper 
interface between 306VQIVYK311 
and 282LDLSN286 is shown as 
sticks. E. Fold of in vitro hep-
arin induced 2N3R filament 
with 306VQIVYK311 interface. F. 
VQIINK steric zipper interface 
from protein microcrystal (PDB 
5V5C).

A

B

C

D

E

F
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al. 2020). The mentioned folds are composed of relatively 
conserved β-sheets arranged differently due to the diversity 
provided by the loop regions. 

Site-specific ubiquitination could be mapped on the 
models of AD and CBD filaments that can modulate fibril 
subpopulations (Arakhamia et al. 2020). The binding sites 
on AD PHFs and SFs for tau PET ligand APN-1607 have 
been investigated with three possible sites identified, two in 
β-helix of PHFs and SFs and one in the C-shaped cavity of 
SFs (Shi et al. 2021).

The tau dimer in an AD fold of R3 and R4 (peptides 
stacked vertically) has been used as a starting conformation 
for replica-exchange MD simulations in explicit solvent in 
order to address its conformational ensemble because the 
dimer formation may be an important step in filament for-
mation (peptide E in Fig. 1). Tau dimer explored elongated, 
U-shaped, V-shaped and globular conformations (Derreu-
maux et al. 2020). The effect of S356 phosphorylation has 
been also evaluated.

Conformational antibody MN423 has been prepared as 
an imprint of the core of AD PHF (Novak et al. 1991). In the 
complex structure with MN423 Fab, tau peptide 386TDH-
GAE391 can be observed (Sevcik et al. 2007). MN423 binds 
only tau proteins truncated at E391. In addition to its crys-
talized tau epitope, tau sequence stretches 306VQIVYK311 
and 321KCGSL325 were shown to contribute to MN423-tau 
interaction (Skrabana et al. 2004; Fig. 4). Sidechain of D387 
forms a hydrogen bond with main chain nitrogen of G389 
that creates an Asp-turn motif (Fig. 2K).

C-terminal domain

Phosphorylated amino acids in the C-terminal domain of 
tau protein (pS396, pS404, pS413, pS422) are currently be-

ing tested as targets of passive and active immunotherapy 
(Li and Gotz 2017). 

Tau peptide 392IVYKpSP397 can be found in complex with 
antibody C5.2 (Chukwu et al. 2018). The strong interaction 
between phosphate group and sidechain of Y394 (2.5 Å dis-
tance) locks the tau sequence 394YKpS396 in a β-strand con-
formation (Fig. 2L). CDR H3 of the antibody forms a “nest” 
for phosphoserine recognition. 

Antibodies 8B2, 6B2 and 4E6 generated by the immuni-
zation with the tau peptide 386–408 containing the pS396/
pS404 motif were structurally characterized (Chukwu et al. 
2019). Antibodies 6B2 and 4E6 were previously shown to be 
of different specificity and affinity. Administration of 4E6 to 
htau mice showed improved cognition and reduced soluble 
phospho-tau, whereas 6B2 was ineffective, despite it has 
shown higher affinities. 4E6 have also reduced tau spread-
ing between neurons measured in microfluidic chamber 
(Congdon et al. 2016). All three antibodies bind well the 
peptides containing pSer404 and both pSer396/pSer404, but 
they differ in binding the pSer396 containing peptide. This 
peptide is bound well only by the antibody 6B2, whereas the 
antibody 8B2 binds this peptide only at high concentrations 
and antibody h4E6, a humanized version of 4E6, does not 
recognize this peptide at all. 

Only the antibody h4E6 was successfully crystallized 
with peptide containing phosphorylated S404. Tau peptide 
bound to antibody 8B2 (404SPRHL408) has a straight linear 
conformation with a small bend between residues R406 
and H407 (Fig. 2N). Tau peptide 403TSPRHL408 can be 
observed in complex with antibody 6B2. The C-terminus 
of tau peptide forms a  half helical turn in contrast to 
the straight conformation seen in the 8B2 complex (Fig. 
2M). The conformation of tau peptide 403TpSPRHL408 
in complex with antibody h4E6 is similar to that bound 
to 8B2 but with a bigger backbone bend. Residue pS404 
has a different orientation relative to the antibody H and 
L chains as S404 in other two antibody complexes (Fig. 
2O). In h4E6 complex it points to the antibody heavy 
chain, which creates a  slight helical twist in peptide 
conformation in the opposite direction as seen in 6B2 
(Chukwu et al. 2019).

Tau peptide 419MVDpSPQLATL428 can be found in 
complex with a rabbit antibody Rb86 Fab (Bujotzek et al. 
2016). Interestingly, the backbone conformation around 
pS422 is similar to that of peptide with pS404 in complex 
with h4E6 (backbone RMSD of segments 403TpSPR406 and 
421DpSPQ424 is 0.28 Å). Sidechain of residue T427 makes 
a hydrogen bond with the phosphate group of pS422, creating 
a turn conformation in the C-terminal part of tau epitope 
(Fig. 2P). 

Conformation of similar tau peptide 418DMVDpSPQ-
LA426 was solved in complex with antibody CBTAU22.1 
Fab (van Ameijde et al. 2018). In contrast to the binding of 

Figure 4. Amino acid sequence of tau MTBD. Conserved and 
similar amino acids between repeats are shown with dashed and 
dotted lines respectively. Crystalized epitope of antibody MN423 is 
underlined and tau stretches contributing to its binding are dashed 
underlined. Aggregation prone hexapeptides at the beginning of R2 
(PHF6*) and R3 (PHF6) are shown in bold. The position of E380, 
where the recently obtained cryo-EM PHF core structure ends is 
shown with an arrow.
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tau phosphopeptide by Rb86, the phosphate group in the 
complex with CBTAU22.1 is buried in the cavity formed 
between the antibody heavy and light chains. Tau peptide 
forms a helical conformation between residues D421 and 
L425 stabilized by main chain hydrogen bonds (Fig. 2T). 

The α-helical conformation was observed for the tau 
C-terminal peptide 423–441 in TFE containing solution 
(α-helix spanning residues 426–439) by NMR spectroscopy 
(Esposito et al. 2000) which is consistent with the data 
from the NMR measurement with full length tau molecule 
that showed helical preference for tau C-terminal stretch 
428LADEVSASLA437 (Mukrasch et al. 2009).

Conclusions and perspectives

Some conformational preferences observed for the various 
regions of full-length tau molecule in solution are preserved 
in the bound conformations of tau in complexes with an-
tibodies, where also local hydrogen bonding stabilizing 
specific conformations can be observed. Efforts to elucidate 
aggregation-prone conformation of truncated tau proteins 
(Kovacech and Novak 2010) or aggregation resistant/inert 
tau conformations (Walker et al. 2012; Mirbaha et al. 2018) 
may be an important direction for the future research design-
ing molecules for identification, inhibition or stabilization 
of these conformational states. Structural characterization 
of unstable tau oligomeric states that may represent toxic 
intermediates on the fibril formation pathway is also needed 
(Fandrich 2012; Nguyen et al. 2021). 
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