Structural and functional characterization of SARS-CoV-2 nucleocapsid protein mutations identified in Turkey by using *in silico* approaches

Betul Akcesme¹, Burcin Erkal², Zehra Yaren Donmez¹

¹Department of Basic Medical Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey; ²Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey

Received May 5, 2022; revised November 23, 2022; accepted February 1, 2023

Summary. – Missense mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus may cause changes in the structure of proteins. The nucleocapsid (N) protein is an important target for drugs and vaccines. The main purpose of this study is to detect missense mutations in the SARS-CoV-2 N protein and to reveal the effects of these mutations on protein structure by using *in silico* approaches. 161 missense mutations of the N protein were determined in 2286 SARS-CoV-2 genomes derived from the GISAID EpiCoV database in the Turkish population. Identified 161 missense mutations were analyzed by using sequence and structure-based methods to predict effects of mutation on function and structure of SARS-CoV-2 N protein. These analyzes revealed that some mutations showed deleterious effects and change of stability and flexibility of nucleocapsid protein. D3L, S194L, S235F, and P13L (Omicron variant) mutations were further analyzed in our study due to their importance in the literature and in our results. Even though, our findings are essential for research of SARS-CoV-2 virus, *in vitro* and *in vivo* validations are necessary.

Keywords: nucleocapsid protein; SARS-CoV-2; missense mutations; protein stability; protein flexibility

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which affects the whole world rapidly since the end of 2019 and causes an epidemic of viral pneumonia, first appeared in Wuhan in China. The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) as a pandemic on 11th March (WHO, 2022a).

Up to date, the number of cases seen all over the world were estimated at around 450 million and the number of deaths at 6 million. However, in Turkey the number of cases recorded, was around 14 million and the number of deaths around 95 thousand (WHO, 2022b).

Coronaviruses are enveloped and positive-strand RNA viruses belonging to the family Coronaviridae. Their genome is ~30 kb in size. The genome consists of specific genes, spike protein (S), envelope protein (E), membrane protein (M), nucleocapsid protein (N) and open reading frames (ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF9 and ORF10) forming protease and replicase (1a-1b) (Naqvi et al., 2020). Among these proteins, spike protein has a special role. S protein facilitates entry into the host cell via binding of angiotensin-converting enzyme 2 (ACE2) cell surface receptor. SARS-CoV-2 is transported through the respiratory route and affects lungs (Cascarina and Ross, 2020). Among the symptoms seen in patients infected with the SARS-CoV-2 are high fever, cough, shortness of breath, fatigue, muscle and headache, loss of smell and taste (Zeng et al., 2020).

Among other proteins, SARS-CoV-2 nucleocapsid protein has an undeniable importance. The N protein is

E-mail: betul.akcesme@sbu.edu.tr; burcinerkall@gmail.com, zehrayaren@outlook.com phone: +905343064763.

Abbreviations: COVID-19 = coronavirus disease 2019; CTD = C-terminal domain; IDR = intrinsically disordered region; NTD = N-terminal domain; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; SR = serine-arginine region; WHO = World Health Organization

a multifunctional RNA-binding protein that is required for the viral RNA transcription and replication processes. The primary function of the N protein is to bind to the viral RNA genome, form the RNP complex and drive viral mRNA transcription and replication. It plays many important roles in the regulation of host cell metabolism, such as cytoskeletal organization and immune regulation (Savastano et al., 2020; Khan et al., 2021). Furthermore, the double-stranded RNA-binding activity of the N protein acts to combat antiviral responses mediated by host RNA silencing. RNA silencing acts as a viral repressor. High amount of double-stranded RNA is expressed during infection and has been reported to induce both humoral and cellular immune responses after infection (Penget al., 2020). Some studies demonstrate that the N protein regulates host-pathogen interactions and has an impact on actin organization, host cell cycle and apoptosis pathways (Ding et al., 2016; Pizzato et al., 2022). Further, it has been shown that interaction of SARS-CoV-2 N with envelope protein as well as with the membrane protein are essential to further trigger the other molecular mechanisms during the viral infection (Tseng et al., 2014; He et al., 2004). Structural E protein has a vital role for viral assembly and infectivity, whereas structural M protein promotes membrane fusion of virus and host cell through proteinprotein interaction (Gorkhali et al., 2021).

N protein has two structural domains, N-terminal domain (NTD) and C-terminal domain (CTD). These two domains are linked by an intrinsically disordered region (IDR) called the binding region. It is known that NTD is responsible for RNA binding and CTD has both oligomerization and RNA binding function. Also, NTD and CTD have two IDRs which are placed at the beginning and ending of the nucleocapsid protein, called the N-arm and C-tail. The IDR has important role in modulating the RNA-binding activity of NTD and CTD and oligomerization. The linker region also has a Serine-Arginine (SR) region containing phosphorylation sites in which primary phosphorylation plays role in further functioning of the protein. Each of these is a potential drug target of antiviral inhibitors (Peng *et al.*, 2020; Khan *et al.*, 2021).

Amino acid sequences of proteins determine their structure and function. A single amino acid mutation can change molecular function and 3D structure of proteins and causes diseases (Stone and Sidow, 2005). Therefore, it is important to understand the missense mutations and their impact on gene expression and protein functions.

Missense mutations can disrupt not only protein stability, but also interactions of other proteins, nucleic acids, polysaccharides, ligands, and metal ions (Dehghanpoor *et al.*, 2018). Missense mutations became even more important with the SARS-CoV-2 virus (Teng *et al.*, 2021). Especially, how potential mutations that may occur in the virus will affect the viral function and how it will change its interaction with the host cell is a matter of curiosity for the whole world (Mohammadi *et al.*, 2021). Mutagenesis studies in physical proteins can provide insight into the effects of amino acid substitutions. However, these studies require time and financial resources (Jacob *et al.*, 2021). In recent studies, bioinformatic analysis are preferred to predict the effects of a mutation on a protein structure.

In this study, our aim is to determine SARS-CoV-2 nucleocapsid protein related mutations identified in Turkey and to analyze defined mutations to understand their possible effects on protein function and structure which can change their flexibility and stability features.

Materials and Methods

Identification of viral sequences. SARS-CoV-2 genome sequences were obtained from GISAID EpiCoV database (GISAID, 2021) between 01 March 2020 and 15 March 2021. These sequences were eliminated using following filters. Location was defined "Europe/Turkey" to evaluate only Turkey related sequences and 2557 genome sequences were included. In addition, full genome length (sequence size 29 kilobases or greater), high coverage (< 0.05% specific mutation, no insertion or deletion specified, < 0.1% sequence) were included and low coverages were excluded (low coverage excluded) (>5% Ns). 2286 viral genome sequences were found and downloaded in FASTA format.

Detection of nucleocapsid protein related mutations. Missense mutations related to nucleocapsid protein were found in genome sequences using the Nextclade v1.7.1 (Aksamentov et al., 2021). Nextclade is a network tool that facilitates the analyses of mutations in the SARS-CoV-2 genome comparing to reference sequence (MN908947.3). FASTA format files of 2286 genome sequences was uploaded to the Nextclade. The results were saved in CSV and TSV formats.

Sequence-based analysis of nucleocapsid protein. The SARS-CoV-2 nucleocapsid protein sequence (PODTC9) was downloaded from the NCBI database. PROVEAN (Choi and Chan, 2015) and PredictSNP (Bendl *et al.*, 2014) network servers were used for sequence-based analysis to predict the mutation effect on protein function. The file in TXT format containing the PODTC9 encoded SARS-CoV-2 nucleocapsid protein sequence and defined missense mutations were uploaded and analyzed.

Obtaining the 3D structure of the nucleocapsid protein. The three-dimensional N protein structure was downloaded from the I-Tasser (Yang et al., 2015). The I-Tasser server uses PDB coded 3D protein structures such as PDB ID: 6M3M and PDB ID: 6YUN to reveal the desired structure. The code (QHD43423.pdb) for the nucleocapsid protein was downloaded from the I-Tasser. The template modelling (TM) score of this structure was 0.97.

Structure-based analysis of nucleocapsid protein. Structurebased analysis was performed with the DynaMut web server

Position of missense mutations				Num	ber of missense mu	tations		
N-Arm						39		
NTD						29		
Linker						44		
CTD						23		
C-Tail						26		
Protein re	gions of N prot	ein						
1	47		174	203	248		364	419
			SR Re	gion				
N-arm		NTD		Linker		N-arm		C-tail

Table 1. Missense mutations located on different domains of N protein

to predict the impact of mutation on protein stability and flexibility (Rodrigues *et al.*, 2018). A file in txt format containing the N protein structure encoded [QHD43423.pdb] and defined missense mutations were uploaded and analyzed.

Results

Identification of missense mutations

161 different missense mutations of N protein were found in 2286 sample. Number of mutations found in different regions of nucleocapsid protein are shown in Table 1.

Mutation effects on nucleocapsid protein

Eighteen deleterious and 143 neutral missense mutations were detected by performing analysis with PROVE-AN network server. In addition, resulting from analysis by PredictSNP network server, 65 missense mutations were identified as deleterious whereas 96 missense mutations were neutral. Moreover, 70 missense mutations were found to be deleterious and 91 missense mutations were neutral in SNAP database. 91 missense mutations were found as deleterious and 70 missense mutations were found as neutral in SIFT database. Finally, 87 missense mutations were found as deleterious and 74 missense mutations were found as neutral using MAPP tool (Supplementary Table 2). 49 mutations identified as deleterious in at least 4 servers among PROVEAN, PredictSNP, PhD-SNP, PolyPhen 1 and 2, SIFT, SNAP are shown in the Table 2.

Stabilization and flexibility of nucleocapsid protein analysis

 $\Delta\Delta G$ DynaMut values represent change of stabilization while $\Delta\Delta SV$ ib ENCoM values represent change of flexibi-

lity. If the values are higher than 0 kcal/mol, the stability and flexibility of protein increases. If the values are less than 0 kcal/mol, the stability and flexibility of protein decreases. Both $\Delta\Delta G$ DynaMut and $\Delta\Delta SV$ ib ENCoM values of 49 mutations identified in the Table 2 are also shown in the Table 3.

103 mutations increased stability of the N protein 3D structure based on stabilization analysis performed with the DynaMut web server. On the other hand, 58 mutations decreased stability of the protein structure. Missense mutations that increased the flexibility of N protein 3D structure are shown in Table 2 (Supplementary Table 3).

According to protein entropy analysis performed by the DynaMut network server; 77 missense mutations increased flexibility of the 3D structure (Supplementary Table 4) while 84 missense mutations decreased the flexibility. Number of mutations in different domains of N protein that either increased or decreased stability and flexibility are shown in the Table 4.

Selection of key mutations on protein structure

D3L, S194L, S235F mutations among 161 missense mutations were selected for our study, as key mutations for further analysis due to their high frequency and highlighted importance in the literature. Besides high frequency mutations, we selected P13L mutation as key mutation. Although P13L mutation frequency is very low (n = 1) in our SARS-CoV-2 data, it is one of the mutations found in Omicron variant. This variant is in the recent list of Variant of Concern (VOC) in the WHO and its importance is increasing every day.

Interatomic interactions of key mutations

Interatomic interaction analysis of D3L, S194L, S235F and P13L mutations were performed with DynaMut net-

Mutation	Gene location	Frequency	Mutation	Gene location	Frequency
D3L	A28281T,T28282A	382	S194L	C28854T	164
D3Y	G28280T	33	T198I	C28866T	42
A35V	C28377T	17	G204L	G28883C,G28884T	23
G25C	G28346T	6	N196Y	A28859T	13
Q9H	G28300T	5	S188P	T28835C	8
G34W	G28373T	4	R195I	G28857T	7
P13L	C28311T	3	R191L	G28845T	3
R40C	C28391T	3	P207H	C28893A	2
G25V	G28347T	2	G204P	G28883C, G28884C	1
G44C	G28403T	2	Q241L	A28995T	1
S33I	G28371T	2	R185C	C28826T	1
D22Y	G28337T	1	S180C	A28811T	1
Q9R	A28299G	1	S201C	A28874T	1
R14C	C28313T	1	S202C	A28877T	1
R32H	G28368A	1	S206F	C28890T	1
S21P	T28334C	1	T334I	C29274T	9
S2F	C28278T	1	A308S	G29195T	2
T16M	C28320T	1	T271I	C29085T	2
D128Y	G28655T	6	V350G	T29322G	2
D144H	G28703C	2	P364Q	C29364A	1
D63Y	G28460T	1	S327L	C29253T	1
P151A	C28724G	1	D377Y	G29402T	22
P151S	C28724T	1	D401Y	G29474T	21
V72L	G28487C	1	S416L	C29520T	2
Q418H	G29527T	1			

Table 2. Mutations identified as deleterious in at least 4 servers among PROVEAN, PredictSNP, PhD-SNP, PolyPhen 1 and 2, SIFT, SNAP

work server (Fig. 1). For S194L mutation, it was observed that the carbonyl bond and ionic interaction in the wildtype structure were disrupted, and new hydrogen bond formation was formed. For S235F mutation, it was determined that the hydrogen bond in the wild-type structure was broken, and weak hydrogen bond formation occurred. New bonds are formed and clearly observed because of P13L mutation. Finally, no serious change was observed between D3L wild-type and mutant.

Entropy energy change and atomic instability analysis of key mutations

 Δ vibrational entropy energy between wild-type and mutant of D3L, S194L, S235F and P13L was also identified (Fig. 2). Amino acids are colored according to the vibrational entropy change due to mutation. Blue and red colors represent rigidification and gaining flexibility of the structure, respectively. S194L and D3L mutations increase the flexibility of N protein whereas S235F and P13L mutations reduce the flexibility of the N protein according to the entropy energy change analysis performed with the DynaMut network server.

Discussion

SARS-CoV-2, which caused the COVID-19 pandemic, deeply affect the whole world with its contagiousness. The virus is transmitted to humans and causes serious symptoms. It is the focus of attention of researchers to solve the structure of the virus, to diagnose and to find the treatment of the disease (Peng *et al.*, 2020).

In the *Coronaviridae* virus family, the N protein is a multifunctional RNA-binding protein required for viral RNA transcription and replication (Mohammadi *et al.*, 2021). Some studies demonstrated that the interaction between the N and E protein has role in the release of

Fig.1

Prediction of interatomic interaction changes upon targeted D3L, S194L, S235F, and P13L mutations Red color shows hydrogen bonds, orange color weak hydrogen bonds, blue color halogen bonds, yellow color ionic interactions, light blue color aromatic interaction, green hydrophobic contact, pink carbonyl interactions, gray color Van der Waals interactions. Wild-type and mutant side chains are colored light green. Interactions and bonds between them are shown with dashed lines.

Table 3. DynaMut, structure-based analysis of mutations identified as deleterious in at least 4 servers among PROVEAN, PredictSNP,
PhD-SNP, PolyPhen 1 and 2, SIFT, SNAP

Mutation	ΔΔG DynaMut (kcal/mol)	ΔΔG mCSM (kcal/mol)	ΔΔG SDM (kcal/mol)	ΔΔG DUET (kcal/mol)	ΔΔS ENCoM (kcal ¹ /mol ⁻¹)	ΔΔSVibENCoM (kcal ⁻¹ /mol ⁻¹)
D3L	-0,548	0,194	-0,190	0,380	0,044	0,044
D3Y	-0,382	-0,065	-0,430	-0,153	-0,030	-0,030
A35V	1,13	-0,270	1,150	0,296	-0,174	-0,174
G25C	-0,092	-0,966	-0,420	-0,842	-0,022	-0,022
Q9H	0,062	-0,500	0,740	-0,199	-0,365	-0,365
G34W	-1,112	-1,143	-2,140	-1,531	0,073	0,073
P13L	1,523	-0,306	-0,040	0,008	-0,693	-0,693
R40C	0,137	0,043	-0,400	-0,005	0,883	0,883
G25V	0,063	-0,494	0,150	-0,146	0,010	0,010
G44C	-0,843	-1,079	-0,320	-0,938	0,186	0,186
S33I	0,216	-0,226	1,370	0,356	-0,055	-0,055
D22Y	1,464	0,094	0,540	0,267	-1,928	-1,928
Q9R	0,411	-0,045	0,54	0,303	-0,397	-0,397
R14C	-0,223	0,023	-0,240	0,003	0,852	0,852
R32H	0,233	-0,624	0,120	-0,529	-0,055	-0,055
S21P	-0,140	-0,187	-0,050	0,024	-0,358	-0,358
S2F	1,005	-0,920	0,360	-0,740	-0,712	-0,712
T16M	-0,316	-0,187	0,620	0,045	-0,034	-0,034
D128Y	-0,036	0,237	0,120	0,196	0,244	0,244

Mutation	∆∆G DynaMut (kcal/mol)	ΔΔG mCSM (kcal/mol)	ΔΔG SDM (kcal/mol)	ΔΔG DUET (kcal/mol)	ΔΔS ENCoM (kcal ^{.1} /mol ^{.1})	ΔΔSVibENCoM (kcal ⁻¹ /mol ⁻¹)
D144H	0,210	-0,377	-0,040	-0,385	-0,322	-0,322
D63Y	2,299	1,688	0,330	1,484	-0,43	-0,943
P151A	-0,129	-0,525	0,510	-0,198	0,297	0,297
P151S	-0,323	-0,999	-1,050	-1,016	-0,055	-0,055
V72L	0,348	-0,362	-1,210	-0,325	-0,626	-0,626
S194L	0,647	-0,446	2,270	0,313	0,044	0,044
T198I	0,398	-0,275	1,370	0,169	-0,070	-0,070
G204L	0,013	-0,441	-1,860	-0,565	-0,901	-0,901
N196Y	-1,169	-0,641	1,109	-0,542	0,334	0,334
S188P	0,335	0,492	-1,620	0,375	0,141	0,141
R195I	0,481	0,002	0,280	0,199	0,349	0,349
R191L	-0,358	-0,854	0,710	-0,380	-0,021	-0,021
P207H	0,053	-0,015	0,910	0,198	-0,051	-0,051
G204P	0,684	-0,327	-3,610	-0,844	-0,572	-0,572
Q241L	0,346	0,166	1,170	0,693	0,089	0,089
R185C	-1,292	-2,110	0,330	-1,721	1,042	1,042
S180C	0,265	-0,076	0,830	0,239	-0,059	-0,059
S201C	0,321	-0,212	1,180	0,174	0,176	0,176
S202C	-0,377	-0,206	0,620	0,048	0,315	0,315
S206F	0,390	-0,864	0,940	-0,621	0,016	0,016
T334I	-0,065	-0,267	0,640	0,200	0,267	0,267
A308S	0,159	-0,891	-1,140	-0,774	-0,104	-0,104
T271I	0,569	-0,219	0,890	0,336	-0,398	-0,398
V350G	-0,544	-1,871	-0,960	-1,855	0,296	0,296
P364Q	-0,247	-0,400	0,640	0,072	-0,024	-0,024
S327L	0,753	-0,317	1,030	0,098	-0,122	-0,122
D377Y	0,953	-0,389	0,770	-0,046	-0,545	-0,545
D401Y	1,253	-0417	0,780	-0,068	-0,487	-0,487
S416L	-0,308	-0,347	0,980	0,054	0,086	0,086
Q418H	0,350	-0,212	0,910	-0,001	-0,222	-0,222

Table 4. Number of mutations in the domains of N protein that either increase or decrease stability and flexibility

Stabilization results					Flexibili	ty results	
Increase Decrease]	ncrease	I	Decrease	
Position	No. of mutations	Position	No. of mutations	Position	No. of mutations	Position	No. of mutations
N-Arm	22	N-Arm	17	N-Arm	17	N-Arm	22
NTD	17	NTD	12	NTD	11	NTD	18
Linker	36	Linker	8	Linker	21	Linker	23
CTD	10	CTD	13	CTD	12	CTD	11
C-Tail	18	C-Tail	8	C-Tail	16	C-Tail	10

the SARS-CoV from the cell whereas the N-M protein complex is involved in the formation of the coronavirus (Lopez et al., 1994; He et al., 2004; Boscarino et al., 2008; Tseng et al., 2014). Therefore, the interaction between each SARS-CoV-2 mutant N protein and the E protein may increase virus production, on the other hand decreased binding affinity of the S194L N-M protein complex may weaken virus formation (Wu et al., 2021). In this study, $\Delta\Delta G$ DynaMut values (0.647 kcal/mol) revealed that S194L mutation increases the stabilization of the 3D structure. ΔΔSvib ENCoM values (0,044 kcal⁻¹/mol⁻¹) revealed that S194L mutation decreases the flexibility of the N protein 3D structure. In the sequence-based mutation pathogenicity analysis, the S194L mutation is found to be deleterious. It was determined that carbonyl bond and ionic interaction were disrupted, and a new hydrogen bond formation is seen with S194L mutation. It is thought that the S194L mutation affects the binding affinity of the N-M protein complex and the interaction between the N and E proteins.

In recent studies, it is demonstrated that the SR-rich linker region plays an important role in the intracellular signaling pathways via phosphorylation in serine side chains (Wootton *et al.*, 2002; Mcbride *et al.*, 2014; Azad, 2021). In our study, 44 missense mutations were detected in SR-rich linker region. S194L, G204L, N196Y, S188P, R195I, R191L, R185C, S180C, S201C, S202C, and S206F mutations are detected as deleterious in the sequence-based analyzes in our study. It was determined that the $\Delta\Delta$ G DUET values of G204P (-0,844 kcal/mol), G204Q (-0,623 kcal/mol) mutations destabilize the 3D structure of the N protein and the flexibility of the structure is decreased ($\Delta\Delta$ SVib ENCOM (-0,572 kcal⁻¹/mol⁻¹) (-0,938 kcal⁻¹/mol⁻¹). It was also observed that the R185C (-1,292 kcal/mol) mutation destabilizes the 3D structure of the N protein. Therefore, it is possible that these missense mutations in the serine side chains may affect phosphorylation-dependent signaling.

NTD and CTD regions of N protein are known to be involved in RNA binding (Zeng *et al.*, 2020). In a recent study, by using the PROVEAN network server, 13 and 12 deleterious mutations are detected in the CTD and NTD domain of the N protein, respectively (Das and Roy, 2021). The deleterious D128Y and P151S mutations in NTD and T334I and T271I mutations in CTD are consistent with

Fig. 2

Vibrational entropy changes upon targeted D3L, S194L, S235F, and P13L mutations Blue color indicates rigidification of the structure and red color indicates an increase in flexibility.

our study. In the analysis of PredictSNP server, 6 and 5 deleterious mutations were detected in the NTD and CTD domains of N protein, respectively. How these mutations affect binding ability of the protein to the RNA should be the subject of further *in vitro* studies.

Azad *et al.* (2021) revealed that one of the B and T cell epitopes is located between the 305-340 side chains of the N protein. Mutations in the 305-340 side chains may change the epitope characteristics and as a result immunological response of the host may be affected. In this study, 11 mutations in the CTD (305-340 amino acids) are detected. T334I is found as deleterious by using PROVEAN and PredictSNP tool. Furthermore, T334A, M234I and P326S mutations are found to destabilize the 3D structure of the N protein by using the DynaMut network server. Therefore, it reinforces the notion that mutations occurring in various populations and regions should be considered in the development of vaccines and drugs targeting the N protein of SARS-CoV-2.

Irregular regions do not have a well resolved tertiary structure; however, the IDRs of N proteins have been found to play an important role in binding with viral genomic RNA (Chang et al., 2008). 109 mutations in the IDR regions were detected in our study. The analysis with PROVEAN and PredictSNP network servers revealed that S194L, G204L, N196Y, S188P, R195I, R191L, R185C, S180C, S201C, S202C and S206F mutations are deleterious. As a result of the $\Delta\Delta G$ DUET values, it was determined that the G204L (-0,565 kcal/mol) mutation decreases the stability of the N protein structure, and the R195I (0,199 kcal/mol) mutation increases the stability of the N protein structure. In addition, it is determined that the R195I (0,349 kcal-1/ mol⁻¹) mutation increases the flexibility of the 3D structure of the N protein according to $\Delta\Delta SVib$ ENCoM values. These mutations may have a great potential to alter the N protein binding stability of the viral genome.

Drugs that can interfere with N protein have great pharmacological interest. Drugs inhibiting the CTD region are promising candidates for preventing virus formation. Researchers have identified several promising drugs including Conivaptan, Ergotamine, Venetoclax, Rifapentine against SARS-CoV-2 (Kadioglu *et al.*, 2021). T334I and T271 mutations in the CTD of the N protein were found to be deleterious in the analysis performed with PROVEAN and PredictSNP network servers in our study. Mutations detected in this region give great opportunity for studies related to drug-protein interactions. We think that mutations detected in this region of nucleocapsid will contribute greatly to drug-protein interaction studies.

Hu et al. (2021) have determined the interaction sites on the N protein with Ceftriaxone, Arbidol and Lopinavir drugs. It was found that Arbidol could bind to the NTD region while Lopinavir could bind to the CTD region of the N protein (Hu *et al.*, 2021). T334 (T334I: -0,065 kcal/ mol, T334A:-0,653 kcal/mol) mutations are detected in the side chains where the lopinavir drug interacts. This mutation destabilized the N protein. Moreover, according to the $\Delta\Delta$ SVib ENCoM T334I: 0,149 kcal^{-1/}mol⁻¹, T334A: 0,267 kcal^{-1/}mol⁻¹) value that increased the flexibility of the 3D structure of the N protein. In addition, mutations were detected in the T166 (-0,226 kcal^{-1/}mol⁻¹) and L167 (-0,543 kcal^{-1/}mol⁻¹) side chain where the arbidol drug interacts, and as a result of the $\Delta\Delta$ SVib ENCoM value, these mutations were found to reduce the flexibility of the N protein structure. It is important to determine how mutations in these specific structural areas and how the interactions of these small molecules within these areas will change.

Vilar and Isom emphasized that the possible effects of D3L, S235F, and S194L mutations should be investigated in further studies (Vilar and Isom, 2021). D3L, S235F, and S194L mutations, also detected in our study, that have been detected more frequently in the SARS-CoV-2 genome are mostly deleterious. Therefore, D3L, S194L, S235F, and P13L mutations were selected as key mutations for the further analysis in our study. For chemical bond and interaction analysis, atomic instability analysis of N protein, and analysis of deformation energies of selected mutations were calculated using DynaMut web server.

In the chemical bond and interaction analysis with the DynaMut web server, no change was detected with D3L mutation. As a result of the $\Delta\Delta$ SVib ENCoM value of the S235F (-0,135 kcal^{-1/}mol⁻¹) mutation, it was determined that the flexibility of the 3D structure of the N protein decreased. Otherwise, it was determined that the hydrogen bond in the wild-type structure was disrupted and weak hydrogen formation occurred in S235F mutation. The last and the most important mutation P13L seen in Omicron variant causes formation of new bonds in the mutant form of the protein. Further, rigidification is also observed due to mutation P13L. $\Delta\Delta$ S_{Vib} ENCoM value is -0.693 kcal.mol⁻¹.K⁻¹ and it decreases molecule flexibility

Overall, our results revealed that mutations in the SARS-CoV-2 N protein can alter its binding affinity and interatomic interactions. The integrative bioinformatics methods are significantly time and cost saving for research communities to gain more insight about structural and molecular mechanism of COVID-19. However, our findings need to be validated with further *in vitro* and *in vivo* studies to contribute to development of drug and vaccine research against SARS-CoV-2. Furthermore, our study shows that more *in silico* and laboratory research is required to investigate the precise role of mutations in the N protein in replication and pathogenesis of SARS-CoV-2 and to contribute to development of novel therapeutics against COVID-19. **Supplementary information** is available in the online version of the paper.

References

- Aksamentov I, Roemer C, Hodcroft EB, Neher RA (2021): Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 6(67), 3773. https://doi.org/10.21105/joss.03773
- Azad GK (2021): Identification and molecular characterization of mutations in nucleocapsid phosphoprotein of SARS-CoV-2. PeerJ 9, e10666. <u>https://doi.org/10.7717/ peerj.10666</u>
- Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014): PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLOS Comput. Biol. 10, e1003440. https://doi.org/10.1371/journal.pcbi.1003440
- Boscarino JA, Logan HL, Lacny JJ, Gallagher TM (2008): Envelope protein palmitoylations are crucial for murine coronavirus assembly. J. Virol. 82(6), 2989–2999. https://doi.org/10.1128/JVI.01906-07
- Cascarina SM, Ross ED (2020): A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. The FASEB J. 34(8), 9832–9842. <u>https://doi.org/10.1096/fj.202001351</u>
- Chang CK, Hsu YL, Chang YH, Chao FA, Wu MC, Huang YS, Hu CK, Huang TH (2008): Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: Implications for Ribonucleocapsid Protein Packaging. J. Virol. 83(5), 2255-2264. <u>https://doi.org/10.1128/</u> JVI.02001-08
- Choi Y, Chan AP (2015): PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16), 2745–2747. <u>https://doi. org/10.1093/bioinformatics/btv195</u>
- Das JK, Roy S (2021): A study on non-synonymous mutational patterns in structural proteins of SARS-CoV-2. Genome 64(7), 665–678. <u>https://doi.org/10.20944/preprints202008.0621.v2</u>
- Dehghanpoor R, Ricks E, Hursh K, Gunderson S, Farhoodi R, Haspel N, Hutchinson B, Jagodzinski F (2018): Predicting the effect of single and multiple mutations on protein structural stability. Molecules 23(2), E251. https://doi.org/10.3390/molecules23020251
- Ding B, Qin Y, Chen M (2016): Nucleocapsid proteins: roles beyond viral RNA packaging. Wiley Interdiscip. Rev. RNA 7(2), 213–226. <u>https://doi.org/10.1002/wrna.1326</u>
- GISAID (2021) [Online] Website https://www.gisaid.org// [accessed March 15, 2021]
- Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK (2021): Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform. Biol. Insights 22;15:11779322211025876. <u>https://doi. org/10.1177/11779322211025876</u>

- He R, Dobie F, Ballantine M, Leeson A, Li Y, Bastien N, Cutts T, Andonov A, Cao J, Booth TF, Plummer FA, Tyler S, Baker L, Li X (2004): Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. [online] 316(2), 476–483. <u>https://doi. org/10.1016/j.bbrc.2004.02.074</u>
- Hu X, Zhou Z, Li F, Xiao Y, Wang Z, Xu J, Dong F, Zheng H, Yu, R (2021): The study of antiviral drugs targeting SARS-CoV-2 nucleocapsid and spike proteins through largescale compound repurposing. Heliyon 7(3), e06387. https://doi.org/10.1016/j.heliyon.2021.e06387
- Jacob JJ, Vasudevan K, Pragasam AK, Gunasekaran K, Veeraraghavan B, Mutreja A (2021): Evolutionary tracking of SARS-CoV-2 genetic variants highlights an intricate balance of stabilizing and destabilizing mutations. mBio 12(4), e0118821. <u>https://doi.org/10.1128/</u> <u>mBio.01188-21</u>
- Kadioglu O, Saeed M, Greten HJ, Efferth T (2021): Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med. 133, 104359. <u>https://doi.org/10.1016/j.compbiomed.2021.104359</u>
- Khan MT, Irfan M, Ahsan H, Ahmed A, Kaushik AC, Khan AS, Chinnasamy S, Ali A, Wei DQ (2021): Structures of SARS-CoV-2 RNA-binding proteins and therapeutic targets. Intervirology 64(2), 55–68. <u>https://doi.org/10.1159/000513686</u>
- Lopez S, Yao JS, Kuhn RJ, Strauss EG, Strauss JH (1994): Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses. J. Virol. 68(3), 1316–1323. <u>https:// doi.org/10.1128/jvi.68.3.1316-1323.1994</u>
- McBride R, van Zyl M, Fielding B (2014): The coronavirus nucleocapsid is a multifunctional protein. Viruses 6(8), 2991–3018. <u>https://doi.org/10.3390/v6082991</u>
- Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Javanmard SH (2021): Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed. Pharmacother. 139, 111599. https://doi.org/10.1016/j.biopha.2021.111599
- Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MdI (2020): Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta. Molecular Basis of Disease 1866(10), 165878. <u>https://doi.org/10.1016/j. bbadis.2020.165878</u>
- Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H (2020): Structures of the SARS -CoV-2 nucleocapsid and their perspectives for drug design. EMBO J., 39(20), e105938. https://doi.org/10.15252/embj.2020105938
- Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Volpini, L (2022): SARS-CoV-2 and the host cell: a tale of interactions. Front. Virol., 46. <u>https://doi. org/10.3389/fviro.2021.815388</u>
- Rodrigues Carlos HM, Pires DE, Ascher DB (2018): DynaMut: predicting the impact of mutations on protein con-

formation, flexibility and stability. Nucleic acids res. 46, W350-W355. <u>https://doi.org/10.1093/nar/gky300</u>

- Savastano A, Ibáñez de Opakua A, Rankovic M, Zweckstetter M (2020): Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat. Commun. 27;11(1), 6041. <u>https://doi. org/10.1038/s41467-020-19843-1</u>
- Stone EA, Sidow A (2005): Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res. 15(7), 978–986. <u>https://doi.org/10.1101/gr.3804205</u>
- Teng S, Sobitan A, Rhoades R, Liu D, Tang Q (2021): Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Brief. Bioinform. 22(2), 1239–1253. <u>https://doi.org/10.1093/ bib/bbaa233</u>
- Tseng YT, Wang SM, Huang KJ, Wang CT (2014): SARS-CoV envelope protein palmitoylation or nucleocapsid association is not required for promoting virus-like particle production. J. Biomed. Sci. 21(1), 34. <u>https:// doi.org/10.1186/1423-0127-21-34</u>
- Vilar S, Isom DG (2021): One Year of SARS-CoV-2: How much has the virus changed? Biology 10(2), 91. <u>https://doi.org/10.3390/biology10020091</u>

- Wootton SK, Rowland RRR, Yoo D (2002): Phosphorylation of the porcine reproductive and respiratory syndrome virus nucleocapsid protein. J. Virol. 76(20), 10569–10576 https://doi.org/10.1128/JVI.76.20.10569-10576.2002
- Wu S, Tian C, Liu P, Guo D, Zheng W, Huang X, Zhang Y, Liu L (2021): Effects of SARS-CoV-2 mutations on protein structures and intraviral protein-protein interactions. J. Med. Virol. 93(4), 2132–2140. <u>https://doi.org/10.1002/ jmv.26597</u>
- Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015): The I-TASSER Suite: Protein structure and function prediction. Nat. Methods, 12, 7–8. <u>https://doi.org/10.1038/nmeth.3213</u>
- Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T (2020): Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 527(3), 618–623. <u>https://doi.org/10.1016/j. bbrc.2020.04.136</u>
- WHO (2022a): [Online] Website https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [accessed March 29, 2022]
- WHO (2022b): [Online] Website https://covid19.who.int/region/ euro/country/tr [accessed March 15, 2022]

SUPPLEMENTARY INFORMATION

Structural and functional characterization of SARS-CoV-2 nucleocapsid protein mutations identified in Turkey by using in silico approaches

Betul Akcesme¹, Burcin Erkal², Zehra Yaren Donmez¹

¹Department of Basic Medical Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey; ²Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey

Received May 5, 2022; revised November 23, 2022; accepted February 1, 2023

MUTATION	GENE LOCATION	FREQUENCY		MUTATION	GENE LOCATION	FREQUENCY
R203K	G28881A, G28882A	1158	1	P383S	C29420T	14
G204R	G28883C	1117]	N196Y	A28859T	13
S235F	C28977T	387	1	D128N	G28655A	11
D3L	A28281T, T28282A	382]	T334I	C29274T	9
S194L	C28854T	164		P67L	C28473T	8
T205I	C28887T	118]	S188P	T28835C	8
T198I	C28866T	42]	S193T	G28851C	8
T362I	C29358T	41		Q7K	C28292A	7
D3Y	G28280T	33]	R1951	G28857T	7
M234I	G28975T	28		M322I	G29239A	7
P13S	C28310T	26]	G25C	G28346T	6
G204L	G28883C, G28884T	23		D128Y	G28655T	6
S202N	G28878A	22		Q9H	G28300T	5
D377Y	G29402T	22]	P199L	C28869T	5
A220V	C28932T	21]	A376T	G29399A	5
D401Y	G29474T	21		P383L	C29421T	5
A211V	C28905T	19		T379I	C29409T	5
A35V	C28377T	17		D22N	G28337A	4
E378Q	G29405C	17]	G34W	G28373T	4
P199S	C28868T	16]	S2Y	C28278A	4
G238V	G28986T	15]	L139F	G28690T	4

Supplementary Table 1. All missense mutations detected in Turkish population of nucleocapsid protein

E-mail: betul.akcesme@sbu.edu.tr; burcinerkall@gmail.com, zehrayaren@outlook.com phone: +905343064763.

MUTATION	GENE	MUTATION	GENE	FREQUENCY	
MUTATION	LOCATION	FREQUENCY	MUTATION	LOCATION	FREQUENCY
G212V	G28908T	4	A12G	G28308G	1
G238C	G28985T	4	A12S	G28307T	1
P365S	C29366T	4	D22Y	G28337T	1
N8T	A28296C	3	D3N	G28280A	1
P13L	C28311T	3	D3Q	G28280C, T28282A	1
R40C	C28391T	3	E31G	A28365G	1
A119S	G28628T	3	G19A	G28329C	1
A90S	G28541T	3	N29S	A28359G	1
T135I	C28677T	3	N8Y	A28295T	1
T166I	C28770T	3	Q28K	C82A	1
G214C	G289113T	3	Q7L	A28293T	1
R191L	G28845T	3	Q9R	A28299G	1
I320F	A29231T	3	R10L	G28302T	1
A414S	G29513T	3	R14C	C28313T	1
E378A	A29406C	3	R32H	G28368A	1
G25V	G28347T	2	S21P	T28334C	1
G44C	G28403T	2	S2F	C28278T	1
S23L	C28341T	2	\$33G	A28370G	1
S33I	G28371T	2	S37P	T28382C	1
D144H	G28703C	2	S37T	T28382A	1
E136Q	G28679C	2	T16M	C28320T	1
H145Y	C28706T	2	T24A	A28343G	1
L167F	G28774T	2	A152S	G28727T	1
N126S	C28473T	2	A173V	C28791T	1
P80R	C28512G	2	D128E	C28657A	1
M210I	G28903T	2	D63Y	G28460T	1
P207H	C28893A	2	E118Q	G28625C	1
P207S	C28892T	2	M101I	G28576T	1
G215S	G28916A	2	N140S	A28692G	1
A308S	G29195T	2	P142S	C28697T	1
H300Y	C29171T	2	P151A	C28724G	1
M317T	T29223C	2	P151S	C28724T	1
P364S	A29147C	2	P67S	C28472T	1
T271I	C29085T	2	Q163K	C28760A	1
T334A	A1000G	2	T141I	C28695T	1
V324I	G29243A	2	T49I	C28419T	1
V350G	T29322G	2	V72L	G28487C	1
D377A	A29403C	2	A208S	G28895T	1
Q380L	C29411T, C29412T	2	A211G	28906	1
Q389H	G1167C	2	A218V	C28926T	1
S413T	G29511C	2	G204P	G28883C, G28884C	1
S416L	C29520T	2	G204Q	G28883C, G28884A	1
T417I	C29523T, T29524C	2	M210N	28906	1

MUTATION	GENE	EPEQUENCY
MUTATION	LOCATION	FREQUENCI
N213S	A28911G	1
Q229R	A28959G	1
Q241L	A28995T	1
R185C	C28826T	1
R185G	C28826G	1
R209S	A28900C	1
S180C	A28811T	1
S201C	A28874T	1
S202C	A28877T	1
S206F	C28890T	1
S232N	G28968A	1
V246A	T29010C	1
I292L	A29147C	1
I337V	A29282G	1
K299N	A29170C	1
L339F	G29290T	1
P326S	C29249T	1

MUTATION	GENE	FREOUENCY
	LOCATION	
P364Q	C29364A	1
Q289H	G29140C	1
S327L	C29253T	1
T296I	C29160T	1
V350A	T29322C	1
V350L	G29321C	1
K375E	A29396G	1
P365L	C29367T	1
P365Q	C29367A	1
Q389L	A29439T	1
Q390H	A29443C	1
Q418H	G29527T	1
S413I	G29511T	1
T366I	C29370T	1
T379A	A29408G	1
T391I	C29445T	1

	Annotations						Natural variant in strain: B.1.17 (mapped from position 3 in UniProt PODTC9)																												
	PANTHER expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	PANTHER prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
	nsSNPAnalyzer expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	nsS NPA nalyzer prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
s	SNAP expected accuracy	0.72038776	0.72038776	0.55551884	0.55551884	0.72038776	0.55551884	0.50014676	0.55551884	0.62208185	0.50014676	0.62208185	0.58359402	0.62208185	0.70878378	0.76823399	0.55551884	0.62208185	0.80510276	0.80510276	0.58359402	0.55551884	0.80510276	0.84845361	0.62208185	0.62208185	0.62208185	0.62208185	0.50014676	0.55551884	0.58359402	0.84845361	0.62208185	0.55439739	0.72038776
dictSNP tool	SNAP prediction	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS						
AN and Pre	SIFT expected accuracy	0.79280784 I	0.52894034	0.52778524 I	0.52778524 I	0.45232975	0.45232975 I	0.42969871	0.52778524 I	0.76224399	0.45949821	0.79280784 I	0.79280784 I	0.79280784 I	0.79280784 I	0.42969871	0.52778524 I	0.52778524 I	0.79280784 I	0.52778524 I	0.42969871 I	0.79280784 I	0.79280784 I	0.52894034	0.6841637 I	0.89670526	0.79280784 I	0.45232975 I	0.60819234	0.79280784 I					
with PROVE	SIFT prediction	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS
mutations	Poly- Phen-2 expected accuracy	0.47429306	0.47429306	0.81142888	0.67524116	0.81142888	0.81142888	0.72272272	0.67635271	0.60960961	0.78928929	0.40745501	0.69369369	0.64364364	0.67635271	0.50257069	0.81142888	0.81142888	0.67524116	0.67524116	0.70240481	0.45308483	0.67524116	0.81142888	0.67635271	0.8730899	0.60960961	0.54177378	0.39845758	0.78928929	0.8730899	0.67524116	0.60960961	0.74974975	0.81142888
alysis of all	PolyPhen-2 prediction	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS
ice based ai	PolyPhen-1 expected accuracy	0.59445019	0.74491225	0.74491225	0.59445019	0.74491225	0.74491225	0.66884082	0.66884082	0.59445019	0.66884082	0.74491225	0.66884082	0.66884082	0.66884082	0.66884082]	0.74491225	0.74491225	0.74491225	0.74491225	0.66884082	0.59445019	0.59445019	0.74491225	0.66884082	0.66884082	0.59445019	0.74491225	0.66884082	0.66884082	0.66884082	0.74491225	0.59445019	0.66884082	0.74491225 1
ole 2. Sequen	PolyPhen-1 prediction	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS
ientary Tal	PhD-SNP expected accuracy	0.83210379 I	0.71871412 1	0.660879 I	0.83210379 I	0.660879 I	0.83210379 I	0.7828765	0.83210379	0.660879 I	0.7828765	0.83210379 I	0.83210379	0.7828765	0.83210379	0.71871412	0.71871412 I	0.71871412 I	0.68183996 I	0.71871412 I	0.83210379	0.71871412 I	0.7828765 I	0.660879 I	0.7828765	0.7828765	0.7828765 I	0.7828765 I	0.83210379	0.7828765	0.83210379	0.7828765 I	0.7828765 1	0.83210379	0.660879 I
Supplen	PhD-SNP prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
	MAPP expected accuracye	0.42653673	0.70484581	0.64229075	0.72246696	0.62143928	0.55997001	0.81934033	0.5089955	0.63268366	0.74273128	0.76086957	0.81934033	0.65667166	0.74449339	0.64229075	0.73127753	0.76086957	0.84182909	0.5089955	0.57314329	0.77494374	0.7596831	0.63268366	0.9197901	0.71814093	0.71814093	0.57121439	0.78854626	0.76123348	0.42653673	0.76536732	0.63268366	0.85110132	0.57314329
	MAPP prediction	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS
	PredictSNP expected accuracy	0.64351714	0.60548272	0.60548272	0.54946365	0.7556615	0.65494636	0.74796037	0.6025641	0.60548272	0.73834499	0.64351714	0.63151762	0.6025641	0.82622462	0.68365861	0.60548272	0.71871275	0.7556615	0.71871275	0.65307311	0.65494636	0.54946365	0.7556615	0.6025641	0.6025641	0.60548272	0.65494636	0.73834499	0.73834499	0.74825175	0.71871275	0.54946365	0.82622462	0.7556615
	PredictSNP prediction	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS
	PROVEAN	NEUTRAL 1	NEUTRAL	NEUTRAL 1	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL 1	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL 1	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL 1	NEUTRAL 1	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL 1	NEUTRAL	NEUTRAL	NEUTRAL 1
	Target residue	н	Υ	ď	N	Υ	ц	К	Г	Υ	Т	Н	Я	Г	S	Ċ	S	Г	υ	Μ	А	Ъ	Z	Υ	Г	А	Λ	U	К	S	ტ	Н	Ι	IJ	Μ
	Wild Posi- resi- tion due	S 2	S 2	D 3	D 3	D 3	3 D	Q 7	Q 7	N 8	N 8	6 0	6 0	R 10	A 12	A 12	P 13	P 13	R 14	T 16	G 19	S 21	D 22	D 22	S 23	T 24	G 25	G 25	Q 28	N 29	E 31	R 32	S 33	S 33	G 34

4

No. <th></th> <th>l</th> <th></th>		l																																
Math <th< th=""><th></th><th>Annotations</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Annotations																																
Image: boldImage: bol	PANTHER	expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I = 1 <th< th=""><th>PANTHER</th><th>prediction</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th><th>UNKNOWN</th></th<>	PANTHER	prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
Math11 <th>nsSNPAnalyzer</th> <th>expected accuracy</th> <th>0.0</th>	nsSNPAnalyzer	expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NorNorwer </th <th>nsSNPAnalyzer</th> <th>prediction</th> <th>UNKNOWN</th>	nsSNPAnalyzer	prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
MathMa	SNAP	expected accuracy	0.55551884	0.83058824	0.55439739	0.62208185	0.50014676	0.62208185	0.62208185	0.61167883	0.50014676	0.55551884	0.72038776	0.50014676	0.50014676	0.55439739	0.55439739	0.70878378	0.66524217	0.55439739	0.80510276	0.70878378	0.70878378	0.61167883	0.58359402	0.55439739	0.58359402	0.62208185	0.50014676	0.62208185	0.55551884	0.70878378	0.58359402	0.66524217
No. <th>SNAP</th> <th>prediction</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th>	SNAP	prediction	ELETERIOUS	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
North	SIFT	expected accuracy	0.52778524 D	0.89670526	0.64501779	0.79280784 D	0.52778524	0.45232975 D	0.79280784 D	0.71326803	0.79280784	0.79280784 D	0.66429207 D	0.75690116	0.66429207	0.76224399	0.42969871	0.83526269	0.89670526	0.66429207	0.79280784 D	0.45949821	0.69991095	0.64501779	0.76135352	0.52778524	0.42969871	0.45949821 D	0.42969871	0.79280784 D	0.79280784 D	0.89670526	0.60819234	0.79073909
MotMo	SIFT	prediction	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL (NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
MotionMotionMotionMotionMotionMotionMotionMotionMotion 10^{10} MotionMotionMotionMotionMotionMotionMotionMotionMotion 10^{10} MotionMotionMotionMotionMotionMotionMotionMotionMotion 10^{10} MotionMotionMotionMotionMotionMotionMotionMotionMotion 10^{10} MotionMotionMotionMotionMotionMotionMotionMotionMotion 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch 10^{10} MutuchMutuchMutuchMutuchMutuchMutuchMutuchMutuch <th>Poly- Phen-2</th> <th>expected accuracy</th> <th>I 47668009.0</th> <th>0.8730899</th> <th>0.74074074</th> <th>0.67524116 I</th> <th>I 196096090</th> <th>0.76252505 I</th> <th>0.59318766 I</th> <th>0.50257069</th> <th>I 47668009.0</th> <th>0.81142888 I</th> <th>0.72472472</th> <th>0.62762763</th> <th>0.71171171</th> <th>0.54177378</th> <th>0.40745501 I</th> <th>0.70770771</th> <th>0.68268268</th> <th>0.39845758</th> <th>0.54177378 I</th> <th>0.39845758 I</th> <th>0.64364364</th> <th>0.56233933</th> <th>0.69369369</th> <th>0.50257069 I</th> <th>0.64364364 I</th> <th>0.67524116 I</th> <th>0.62762763 I</th> <th>0.64974293 I</th> <th>0.39845758 I</th> <th>0.64364364</th> <th>0.64364364</th> <th>0.67635271</th>	Poly- Phen-2	expected accuracy	I 47668009.0	0.8730899	0.74074074	0.67524116 I	I 196096090	0.76252505 I	0.59318766 I	0.50257069	I 47668009.0	0.81142888 I	0.72472472	0.62762763	0.71171171	0.54177378	0.40745501 I	0.70770771	0.68268268	0.39845758	0.54177378 I	0.39845758 I	0.64364364	0.56233933	0.69369369	0.50257069 I	0.64364364 I	0.67524116 I	0.62762763 I	0.64974293 I	0.39845758 I	0.64364364	0.64364364	0.67635271
No. <th>PolyPhen-2</th> <th>prediction</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>DELETERIOUS</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>NEUTRAL</th> <th>ELETERIOUS</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th>	PolyPhen-2	prediction	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
NormalityNormalityNormalityNormalityNormalityNormalityNormalityNormality10111	PolyPhen-1	expected accuracy	0.59445019 I	0.66884082	0.66884082	0.74491225 I	0.74491225	0.66884082	0.59445019 I	0.66884082 I	0.66884082 I	0.66884082 I	0.66884082	0.66884082	0.66884082	0.66884082 I	0.66884082 I	0.66884082	0.66884082	0.66884082 I	0.66884082 I	0.66884082 I	0.66884082	0.59445019 I	0.66884082	0.66884082 I	0.66884082	0.74491225 I	0.66884082	0.59445019 I	0.66884082 I	0.66884082	0.66884082	0.66884082
Work by 	PolyPhen-1	prediction	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
PresiTargetMatry scenarsyMatryMatry scenarsyMatry scenarsyMatry scenarsyMatry scenarsyMatryMatryMatry3YNeUTRALNEUTRALNEUTRAL0.6536616NEUTRALNEUTRALNEUTRALNEUTRAL3NEUTRALNEUTRALNEUTRAL0.6536616NEUTRALNEUTRALNEUTRAL3NEUTRALNEUTRAL0.6536636NEUTRAL0.5536566NEUTRAL3NEUTRALNEUTRAL0.6536536NEUTRAL0.5536566NEUTRAL3NEUTRALNEUTRALNEUTRAL0.6536566NEUTRALNEUTRAL3NEUTRALNEUTRALNEUTRAL0.6536566NEUTRALNEUTRAL3NEUTRALNEUTRALNEUTRAL0.6536566NEUTRALNEUTRAL3NEUTRALNEUTRALNEUTRAL0.6536566NEUTRALNEUTRAL3NEUTRAL <th>PhD-SNP</th> <th>expected accuracy</th> <th>0.83210379 I</th> <th>0.89245476</th> <th>0.89245476</th> <th>0.7828765 I</th> <th>0.7828765 I</th> <th>0.71871412</th> <th>0.71871412 1</th> <th>0.7828765</th> <th>0.660879</th> <th>0.67620995</th> <th>0.71871412</th> <th>0.660879</th> <th>0.58230958</th> <th>0.58885542</th> <th>0.60798122</th> <th>0.83210379</th> <th>0.660879</th> <th>0.44670846</th> <th>0.81731169</th> <th>0.83210379</th> <th>0.71871412</th> <th>0.7828765 I</th> <th>0.68183996</th> <th>0.7828765</th> <th>0.83210379</th> <th>0.83210379 I</th> <th>0.68183996</th> <th>0.660879 I</th> <th>0.660879</th> <th>0.89245476</th> <th>0.83210379</th> <th>0.83210379</th>	PhD-SNP	expected accuracy	0.83210379 I	0.89245476	0.89245476	0.7828765 I	0.7828765 I	0.71871412	0.71871412 1	0.7828765	0.660879	0.67620995	0.71871412	0.660879	0.58230958	0.58885542	0.60798122	0.83210379	0.660879	0.44670846	0.81731169	0.83210379	0.71871412	0.7828765 I	0.68183996	0.7828765	0.83210379	0.83210379 I	0.68183996	0.660879 I	0.660879	0.89245476	0.83210379	0.83210379
Posicilial benefictionPredictionPredictionMAPP contropPosicilial benefictionBUUTRALPredictionMAPP3VNEUTRALDELETERIOUS0.46176013NEUTRALDELETERIOUS0.4353462DELETERIOUS3VNEUTRALDELETERIOUS0.43534634NEUTRALDELETERIOUS0.56394663DELETERIOUS3VNEUTRALDELETERIOUS0.563646634NEUTRALDELETERIOUS0.5636463DELETERIOUS4NEUTRALDELETERIOUS0.5636463DELETERIOUS5NEUTRALDELETERIOUS0.5636463DELETERIOUS6NEUTRALDELETERIOUS0.563646636NEUTRALDELETERIOUS0.56667167NEUTRALDELETERIOUS0.56363656NEUTRALDELETERIOUS0.56667167NEUTRALDELETERIOUS0.56363657NEUTRALDELETERIOUS0.563636510NEUTRALDELETERIOUS0.563636511NEUTRALDELETERIOUS0.563636512NEUTRALDELETERIOUS0.563636513NEUTRALDELETERIOUS0.563636514NEUTRALDELETERIOUS0.563636515NEUTRALDELETERIOUS0.563636516NEUTRALDELETERIOUS0.563636517NEUTRALDELETERIOUS0.563636518NEUTRALDELETERIOUS0.563636519 <td< th=""><th>PhD-SNP</th><th>prediction</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>DELETE- RIOUS</br></th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>DELETE- RIOUS</th><th>DELETE- RIOUS</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>DELETE- RIOUS</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th><th>NEUTRAL</th></td<>	PhD-SNP	prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- 	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- RIOUS	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
PosisiRandomyRedictionRedictionPosisiRaverasiPredictionPredictionPrediction32VNEUTRALDELETERIOUSG6358764DELETERIOUS34VENEUTRALO632544DELETERIOUS35VNEUTRALO632644DELETERIOUS40CNEUTRALO532644DELETERIOUS41NEUTRALDELETERIOUSG6594636DELETERIOUS42NEUTRALO5025641DELETERIOUS43NEUTRALO5025641DELETERIOUS44NEUTRALDELETERIOUSG6035641DELETERIOUS45NEUTRALDELETERIOUSG632641DELETERIOUS46NEUTRALDELETERIOUSG633631DELETERIOUS47NEUTRALDELETERIOUSG633631DELETERIOUS48NEUTRALDELETERIOUSG6336344DELETERIOUS49NEUTRALDELETERIOUSG6336344DELETERIOUS40NEUTRALDELETERIOUSG6336344DELETERIOUS41NEUTRALDELETERIOUSG6336344DELETERIOUS42NEUTRALDELETERIOUSG6336344DELETERIOUS44NEUTRALDELETERIOUSG6336344DELETERIOUS44NEUTRALDELETERIOUSG6336344DELETERIOUS44NEUTRALDELETERIOUSG6336344DELETERIOUS44NEUTRALDELETERIOUSG6336344DELETERIOUS44NEUTRALDELETERIOUSG6364363<	MAPP	expected accuracye	0.46176912	0.85110132	0.58770615	0.40929535	0.57121439	0.65667166	0.63268366	0.70484581	0.57314329	0.76086957	0.65667166	0.65022026	0.72246696	0.76123348	0.76611694	0.74977974	0.76123348	0.70484581	0.5089955	0.62143928	0.74273128	0.64229075	0.64229075	0.55997001	0.72246696	0.77494374		0.85832084	0.77494374	0.7596831	0.46176912	0.70484581
Prediction besidedPrediction concastPrediction concastPrediction concast32VNEUTRALDELETERIOUSG538760432TNEUTRALDELETERIOUSG538760432TNEUTRALDELETERIOUSG53686144CNEUTRALDELETERIOUSG53646345NEUTRALNEUTRALG5564146CNEUTRALNEUTRALG5564147CNEUTRALNEUTRALG5564148CNEUTRALNEUTRALG5564149CNEUTRALNEUTRALG5564149CNEUTRALNEUTRALG5564140CNEUTRALNEUTRALG5564141NEUTRALNEUTRALG536544642NEUTRALNEUTRALG536544643NEUTRALNEUTRALG536544644NEUTRALNEUTRALG536544644NEUTRALNEUTRALG536544644NEUTRALNEUTRALG536546645NEUTRALNEUTRALG536246246NEUTRALNEUTRALG536246247NEUTRALNEUTRALG536246248NEUTRALNEUTRALG536246249NNEUTRALNEUTRAL49NNEUTRALNEUTRAL40NNEUTRALNEUTRAL41NNEUTRALNEUTRAL42NEUTRALNEUTRALNEUTRAL44NNE	MAPP	prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS		DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL
PresiTransmitterPresidentPrediction35VNEUTRALPrediction37PNEUTRALDELETERIOUS37TNEUTRALNEUTRAL44CNEUTRALNEUTRAL45TNEUTRALNEUTRAL46CNEUTRALNEUTRAL47CNEUTRALNEUTRAL48TNEUTRALNEUTRAL49TNEUTRALNEUTRAL49TNEUTRALNEUTRAL49TNEUTRALNEUTRAL49TNEUTRALNEUTRAL40TNEUTRALNEUTRAL41NNEUTRALNEUTRAL42NEUTRALNEUTRAL43NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL45NEUTRALNEUTRAL46NEUTRALNEUTRAL47NEUTRALNEUTRAL48NEUTRALNEUTRAL49NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRALNEUTRAL44NEUTRAL <td< th=""><th>PredictSNP</th><th>expected accuracy</th><th>0.63587604</th><th>0.82622462</th><th>0.73688811</th><th>0.65494636</th><th>0.6025641</th><th>0.6025641</th><th>0.71871275</th><th>0.73834499</th><th>0.50595948</th><th>0.71871275</th><th>0.63151762</th><th>0.82622462</th><th>0.82622462</th><th>0.65307311</th><th>0.54946365</th><th>0.82622462</th><th>0.82622462</th><th>0.73834499</th><th>0.71871275</th><th>0.61421911</th><th>0.82622462</th><th>0.63151762</th><th>0.82622462</th><th>0.6025641</th><th>0.73834499</th><th>0.65494636</th><th>0.73688811</th><th>0.71871275</th><th>0.60548272</th><th>0.82622462</th><th>0.73834499</th><th>0.82622462</th></td<>	PredictSNP	expected accuracy	0.63587604	0.82622462	0.73688811	0.65494636	0.6025641	0.6025641	0.71871275	0.73834499	0.50595948	0.71871275	0.63151762	0.82622462	0.82622462	0.65307311	0.54946365	0.82622462	0.82622462	0.73834499	0.71871275	0.61421911	0.82622462	0.63151762	0.82622462	0.6025641	0.73834499	0.65494636	0.73688811	0.71871275	0.60548272	0.82622462	0.73834499	0.82622462
Posi tionTarget residueProvEAN35VNEUTRAL37PNEUTRAL37PNEUTRAL37TNEUTRAL37TNEUTRAL37TNEUTRAL40CNEUTRAL49INEUTRAL49INEUTRAL49INEUTRAL49INEUTRAL49INEUTRAL49NNEUTRAL49INEUTRAL49INEUTRAL49INEUTRAL49INEUTRAL40SNEUTRAL119SNEUTRAL128YNEUTRAL128YNEUTRAL136INEUTRAL137INEUTRAL138YNEUTRAL139FNEUTRAL140SNEUTRAL141INEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL145YNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL144HNEUTRAL145YNEUTRAL145HNEUTRAL <th>PredictSNP</th> <th>prediction</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>DELETERIOUS</th> <th>DELETERIOUS</th> <th>NEUTRAL</th> <th>NEUTRAL</th> <th>NEUTRAL</th>	PredictSNP	prediction	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
Posi Target tion residue 37 P 40 C 44 C 49 I 49 I 67 S 67 S 67 S 90 S 101 I 119 S 128 P 139 F 140 S 144 H 144 H 144 H		PROVEAN	NEUTRAL .	NEUTRAL	NEUTRAL	NEUTRAL .	NEUTRAL	NEUTRAL	NEUTRAL .	NEUTRAL	NEUTRAL .	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL .	NEUTRAL	DELETE- RIOUS	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL
Posi- r tion 35 35 37 35 37 37 40 44 49 49 67 67 67 67 67 90 90 101 101 118 1118 128 101 119 112 128 128 135 128 136 135 137 138 138 139 144 144 144 144 144 144	Target	esidue	Λ	Ь	н	U	U	Ι	Υ	S	Г	Г	Ж	S	Ι	ø	S	S	ы	z	Y	I	Ø	н	S	I	S	Н	Υ	S	A	S	К	I
	Posi- 1	tion	35	37	37	40	44	49	63	67	67	72	80	06	101	118	119	126	128	128	128	135	136	139	140	141	142	144	145	151	151	152	163	166
Wild W A A A A A A A A A A A A A A A A A A	Wild	resi- due	A	S	S	Я	ც	н	D	Ч	Ч	Λ	Ч	А	Μ	ы	А	Z	D	D	D	Н	ш	Ц	N	Н	Ч	D	Η	Ч	Ч	А	ď	Г

5

	ŝ																													
	Annotation																													
	PANTHER expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	PANTHER prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
	nsSNPAnalyzer expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	sSNPAnalyzer prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
	SNAP expected accuracy	0.61167883	0.76823399	0.80510276	0.80510276	0.88519637	0.80510276	0.80510276	0.61167883	0.72038776	0.80510276	0.72038776	0.55551884	0.70878378	0.55439739	0.55551884	0.80510276	0.80510276	0.72038776	0.72038776	0.55439739	0.55551884	0.62208185	0.50014676	0.62208185	0.55551884	0.72038776	0.70878378	0.50014676	0.66524217
	SNAP prediction	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
	SIFT expected accuracy	0.42969871	0.89670526	0.52778524 I	0.67141585 I	0.45949821 I	0.52778524 I	0.79280784 I	0.42969871	0.79280784 I	0.52778524 I	0.52778524 I	0.79280784 I	0.76135352	0.68210151	0.52778524 I	0.79280784 I	0.64501779 I	0.52894034 I	0.79280784 I	0.7366548	0.79280784 I	0.79280784 I	0.67141585	0.79280784 I	0.42969871 I	0.52778524 I	0.75800712	0.76936776	0.75800712
ncu)	SIFT prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
	Poly- Phen-2 expected accuracy	0.59318766	0.63363363	0.64974293	0.54177378	0.81142888	0.64974293	0.64717224	0.7027027	0.60089974	0.60960961	0.39845758	0.64974293	0.56233933	0.56233933	0.81142888	0.81142888	0.64717224	0.60089974	0.81142888	0.81142888	0.81142888	0.81142888	0.8730899	0.67524116	0.81142888	0.81142888	0.55077121	0.64717224	0.78928929
וכזונמו א משו	PolyPhen-2 prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL
mandding	PolyPhen-1 expected accuracy	0.74491225	0.66884082	0.74491225	0.66884082	0.74491225	0.59445019	0.59445019	0.66884082	0.59445019	0.74491225	0.74491225	0.59445019	0.59445019	0.59445019	0.74491225	0.74491225	0.59445019	0.66884082	0.74491225	0.74491225	0.74491225	0.74491225	0.66884082	0.74491225	0.74491225	0.74491225	0.66884082	0.59445019	0.66884082
	PolyPhen-1 prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL
	PhD-SNP expected accuracy	0.83210379	0.83210379	0.71871412	0.71871412	0.660879	0.89245476	0.83210379	0.83210379	0.7828765	0.68183996	0.71871412	0.71871412	0.68183996	0.7828765	0.7828765	0.68183996	0.83210379	0.7828765	0.83210379	0.71871412	0.71871412	0.7828765	0.83210379	0.660879	0.7828765	0.89245476	0.68183996	0.68183996	0.83210379
	PhD-SNP prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
	MAPP expected accuracye	3 0.63268366	0.70484581	5 0.76536732	0.73480176	0.55997001	S 0.5089955	5 0.84182909	0.64229075	5 0.7711928	0.81934033	0.65667166	5 0.76086957	0.73127753	0.6778169	S 0.42653673	0.57121439	0.55997001	0.78854626	0.73480176	0.74823944	0.65667166	0.48350825	5 0.57121439	3 0.65667166	0.74977974	5 0.76086957	0.42653673	0.63348018	0.64229075
	MAPP prediction	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOU	DELETERIOU	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOU	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOU	NEUTRAL	NEUTRAL
	PredictSNP expected accuracy	0.54946365	0.82622462	0.71871275	0.63151762	0.71871275	0.64351714	0.65494636	0.73834499	0.65494636	0.60548272	0.65494636	0.71871275	0.65307311	0.63151762	0.65494636	0.71871275	0.54946365	0.63151762	0.60548272	0.62831343	0.71871275	0.65494636	0.73688811	0.71871275	0.54946365	0.65494636	0.68365861	0.63151762	0.82622462
	PredictSNP prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL
	PROVEAN	NEUTRAL	NEUTRAL	DELETE- RIOUS	DELETE- RIOUS	DELETE- RIOUS	DELETE- RIOUS	DELETE- RIOUS	NEUTRAL	DELETE- RIOUS	DELETE- RIOUS	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- RIOUS	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETE- RIOUS	NEUTRAL	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
	Target residue	ц	Λ	υ	Ċ	U	പ	Г	г	Г	Ι	Υ	Ι	S	Г	υ	U	N	К	Я	0	Ъ	Г	Ι	ц	S	Н	S	S	Ι
	Posi- tion	167	173	180	185	185	188	191	193	194	195	196	198	199	199	201	202	202	203	204	204	204	204	205	206	207	207	208	209	210
	Wild resi- due	1	А	S	Я	Я	S	Я	S	S	Я	N	г	Ч	Ч	S	S	S	Я	G	G	ც	ტ	Н	S	Ч	Ч	A	Я	Μ

6 AKCESME, B. et al.: IN SILICO ANALYSIS OF MUTATIONS ON SARS-COV-2 N PROTEIN

Annotations													tral variant: in strain: 1.1.7 (mapped from ition 235 in UniProt PODTC9)																			
ANTHER expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Natu B. pos	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PANTHER prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
nsSNPAnalyzer expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sSNPA nalyzer prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
SNAP expected accuracy	0.55439739	0.66524217	0.76823399	0.70878378	0.66524217	0.50014676	0.55439739	0.66524217	0.58359402	0.70878378	0.50014676	0.50014676	0.62208185	0.58359402	0.55551884	0.62208185	0.55439739	0.55551884	0.50014676	0.76823399	0.66524217	0.55551884	0.72038776	0.62208185	0.55551884	0.70878378	0.50014676	0.61167883	0.66524217	0.55551884	0.62208185	0.62208185
SNAP prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS
SIFT expected accuracy	0.7747106	0.75690116	0.72662511	0.75690116	0.82295374	S 0.45232975	0.76135352	0.72662511	S 0.45949821	0.75690116	S 0.45232975	0.76936776	S 0.52778524	S 0.45949821	S 0.52778524	S 0.52778524	S 0.79280784	S 0.45232975	0.70614426	0.89670526	0.66429207	S 0.45949821	S 0.42969871	S 0.79280784	0.75690116	0.76936776	0.67141585	0.75800712	0.69991095	S 0.45232975	S 0.42969871	0.70614426
SIFT prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	DELETERIOU	DELETERIOU	DELETERIOU	DELETERIOU	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	DELETERIOU	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	DELETERIOU	NEUTRAL
Poly- Phen-2 expected accuracy	0.8730899	IS 0.47429306	IS 0.60089974	0.78928929	0.78928929	IS 0.55077121	0.60960961	IS 0.56233933	IS 0.54177378	0.8730899	IS 0.60089974	0.8730899	IS 0.64974293	0.67635271	IS 0.45308483	IS 0.47429306	IS 0.54177378	IS 0.59318766	IS 0.60089974	0.8730899	0.78928929	IS 0.60089974	0.8730899	IS 0.54177378	0.63363363	IS 0.39845758	0.67635271	0.63363363	0.8730899	0.78928929	0.60960961	0.68268268
PolyPhen-2 prediction	NEUTRAL	DELETERIOU	DELETERIOU	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	DELETERIOU	DELETERIOU	DELETERIOU	DELETERIOU	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
PolyPhen-I expected accuracy	0.66884082	0.66884082	0.66884082	0.66884082	0.66884082	S 0.74491225	0.66884082	0.66884082	0.66884082	0.66884082	S 0.59445019	0.66884082	S 0.74491225	S 0.59445019	S 0.74491225	0.66884082	0.66884082	0.66884082	S 0.74491225	0.66884082	0.66884082	0.66884082	0.66884082	S 0.59445019	0.66884082	0.66884082	0.66884082	0.66884082	0.66884082	0.66884082	S 0.59445019	0.66884082
PolyPhen-1 prediction	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	DELETERIOU	DELETERIOU	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOU	NEUTRAL
PhD-SNP expected accuracy	L 0.83210379	L 0.7828765	L 0.68183996	L 0.7828765	L 0.83210379	L 0.7828765	L 0.83210379	L 0.83210379	L 0.83210379	L 0.83210379	L 0.89245476	L 0.89245476	L 0.71871412	L 0.71871412	L 0.71871412	L 0.89245476	L 0.83210379	L 0.68183996	L 0.83210379	L 0.83210379	L 0.58230958	Т 0.660879	L 0.55202703	Т 0.660879	L 0.68183996	L 0.71871412	L 0.7828765	L 0.71871412	L 0.7828765	L 0.71871412	Т. 0.58230958	L 0.7828765
P PhD-SN ted predictio cye	405 NEUTRA	075 NEUTRA	696 NEUTRA	084 NEUTRA	132 NEUTRA	955 NEUTRA	132 NEUTRA	912 NEUTRA	084 NEUTRA	967 NEUTRA	366 NEUTRA	877 NEUTRA	944 NEUTRA	NEUTRA	NEUTRA	955 NEUTRA	2159 NEUTRA	439 NEUTRA	957 NEUTRA	1471 NEUTRA	694 NEUTRA	696 NEUTRA	366 NEUTRA	033 NEUTRA	026 NEUTRA	026 NEUTRA	084 NEUTRA	673 NEUTRA	0176 NEUTRA	5732 NEUTRA	439 NEUTRA	9722 NEUTRA
P MAF ion expec accura	AL 0.77004	AL 0.64229	AL 0.72246	VIOUS 0.85832	AL 0.85110	VIOUS 0.5089	AL 0.85110	VIOUS 0.46176	VIOUS 0.85832	VIOUS 0.8065	VIOUS 0.63268	AL 0.76563	AL 0.74823			10US 0.5089	VIOUS 0.8568	VIOUS 0.57121	10US 0.7608	AL 0.79559	110US 0.76611	AL 0.72246	VIOUS 0.63268	VIOUS 0.81934	AL 0.65022	AL 0.65022	AL 0.65903	VIOUS 0.4265	AL 0.73480	VIOUS 0.76536	VIOUS 0.57121	VIOUS 0.5888
SNP MAP .ed predict	462 NEUTI	499 NEUTI	811 NEUTI	375 DELETEI	462 NEUTI	365 DELETEI	462 NEUTI	311 DELETE	541 DELETEI	375 DELETEI	365 DELETEI	462 NEUTH	365 NEUTI	343	533	948 DELETEI	948 DELETEI	411 DELETEN	948 DELETEI	462 NEUTI	375 DELETEI	541 NEUTH	541 DELETEI	275 DELETEN	811 NEUTI	499 NEUTI	462 NEUTI	499 DELETEI	462 NEUTI	541 DELETEI	365 DELETEI	762 DELETEN
NP Predict expect on accura	AL 0.82622	AL 0.73834	AL 0.73688	AL 0.75291	AL 0.82622	IOUS 0.54946	AL 0.82622	AL 0.6530	AL 0.6025	AL 0.75291	10US 0.54946	AL 0.82622	IOUS 0.54946	AL 0.62831	IOUS 0.62127	IOUS 0.50595	IOUS 0.50595	IOUS 0.5214E	IOUS 0.50595	AL 0.82622	AL 0.75291	AL 0.6025	AL 0.6025	10US 0.71871	AL 0.73688	AL 0.73834	AL 0.82622	AL 0.73834	AL 0.82622	AL 0.6025	IOUS 0.54946	AL 0.63151
N PredictS predicti	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	AL DELETERI	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	AL DELETERI	AL NEUTR	AL DELETERI	AL NEUTR	AL DELETERI	AL DELETER	AL DELETERI	- DELETERI	AL DELETER	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	AL DELETERI	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	AL NEUTR	E- NEUTR	- DELETERI	AL NEUTR
:get due PROVEA	NEUTR	/ NEUTR/	3 NEUTRA	/ NEUTR/	3 NEUTRA	C NEUTR	3 NEUTRA	V NEUTRA	/ NEUTR/	3 NEUTR	NEUTR/	I NEUTR/	e NEUTRA	/ NEUTR/	C NEUTR	'. NEUTRA	A NEUTR/	I DELETI RIOUS	H NEUTRA	". NEUTR	I NEUTR/	NEUTR/	Y NEUTR/	S NEUTR/	r neutr <i>i</i>	F NEUTR	I NEUTR/	I NEUTR/	S NEUTR/	L DELETI	I DELETI RIOUS	A NEUTR/
Posi- Tar tion resi	210	211 1	211 (212 1	213 5	214 (215 5	218 1	220 1	229 I	232 P	234	235 1	238 1	238 (241 1	246 <i>F</i>	271	289 F	292 1	296	299 r	300	308	317 7	320 I	322	324	326 5	327 I	334	334 <i>F</i>
Wild resi- due	Μ	А	А	Ċ	N	IJ	IJ	А	А	ď	S	Μ	S	ტ	ტ	Ø	Λ	Г	ď	Ι	Т	К	Н	А	Μ	Ι	Μ	Λ	Ъ	S	H	Г

7

notations																																		
Am																																		
PANTHER expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PANTHER prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
nsSNPAnalyzer expected accuracy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
nsSNPAnalyzer prediction	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
SNAP expected accuracy	0.55439739	0.61167883	0.62208185	0.55551884	0.70878378	0.55551884	0.62208185	0.62208185	0.66524217	0.66524217	0.58359402	0.61167883	0.50014676	0.61167883	0.55551884	0.72038776	0.61167883	0.58359402	0.58359402	0.76823399	0.58359402	0.66524217	0.61167883	0.50014676	0.61167883	0.50014676	0.55439739	0.55551884	0.58359402	0.66524217	0.58359402	0.55551884	0.55551884	0.62208185
SNAP prediction	NEUTRAL	NEUTRAL	ELETERIOUS	DELETERIOUS	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	ELETERIOUS	ELETERIOUS	ELETERIOUS
SIFT expected accuracy	0.70614426	0.81300089	0.79280784 I	0.71326803 I	0.72662511	0.45232975 I	0.52894034 I	0.79280784 I	0.70614426	0.71326803	0.52778524	0.52778524	0.64501779	0.89670526	0.52778524 I	0.79280784 I	0.42969871	0.42969871	0.75690116	0.89670526	0.71326803	0.79280784	0.42969871	0.79280784	0.79280784	0.67141585	0.45949821	0.79280784 I	0.79280784	0.79280784	0.45949821	0.79280784 I	0.79280784 I	0.79280784 I
SIFT prediction	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS
Poly- Phen-2 expected accuracy	0.63363363	0.50257069	0.43123393	0.70240481	0.8730899	0.78928929	0.64974293	0.81142888	0.67524116	0.81142888	0.81142888	0.67524116	0.60089974	0.78928929	0.67524116	0.81142888	0.60089974	0.64717224	0.8730899	0.8730899	0.55077121	0.40745501	0.74974975	0.63431877	0.55077121	0.68268268	0.67524116	0.54177378	0.64974293	0.59318766	0.62762763	0.60089974	0.67524116	0.63431877
PolyPhen-2 prediction	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS
PolyPhen-1 expected accuracy	0.66884082	0.66884082	0.59445019	0.66884082	0.66884082	0.66884082	0.59445019	0.74491225	0.59445019	0.74491225	0.74491225	0.59445019	0.66884082	0.66884082	0.59445019	0.74491225	0.66884082	0.59445019	0.66884082	0.66884082	0.66884082	0.59445019	0.66884082	0.74491225	0.66884082	0.66884082	0.59445019	0.74491225	0.59445019	0.66884082	0.66884082	0.59445019	0.59445019	0.74491225
PolyPhen-l prediction	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS
PhD-SNP expected accuracy	0.83210379	0.89245476	0.60798122	0.68183996	0.71871412	0.660879	0.71871412	0.660879	0.83210379	0.7828765	0.7828765	0.7828765	0.83210379	0.89245476	0.97902098	0.89245476	0.89245476	0.89245476	0.83210379	0.89245476	0.89245476	0.83210379	0.7828765	0.83210379	0.89245476	0.89245476	0.83210379	0.71871412	0.71871412	0.83210379	0.83210379	0.7828765	0.71871412	0.89245476
PhD-SNP prediction	NEUTRAL	NEUTRAL	DELETE- RIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
MAPP expected accuracye	0.55997001	0.71742958	0.5089955	0.5089955	0.64229075	0.77004405	0.63268366	0.76611694	0.6778169	0.71742958	0.63268366	0.58770615	0.65022026	0.65286344	0.71742958	0.40929535	0.65022026	0.7596831	0.76563877	0.63348018	0.9137931	0.64229075	0.48350825	0.64229075	0.7711928	0.76086957	0.78325991	0.57121439			0.57121439	0.76086957	0.65286344	0.55997001
MAPP prediction	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS			DELETERIOUS	DELETERIOUS	NEUTRAL	DELETERIOUS
PredictSNP expected accuracy	0.73688811	0.73834499	0.86908365	0.65307311	0.82622462	0.68365861	0.60548272	0.7556615	0.63151762	0.62831343	0.60548272	0.54946365	0.75203963	0.82622462	0.50595948	0.65494636	0.65307311	0.6025641	0.82622462	0.82622462	0.62831343	0.6025641	0.68365861	0.50595948	0.6025641	0.75291375	0.6025641	0.65494636	0.52145411	0.61421911	0.65307311	0.65494636	0.60548272	0.65494636
PredictSNP prediction	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	NEUTRAL	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	NEUTRAL	NEUTRAL	DELETERIOUS	DELETERIOUS	DELETERIOUS
PROVEAN	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL I	NEUTRAL I	NEUTRAL	NEUTRAL	NEUTRAL 1	NEUTRAL 1	NEUTRAL 1
Target esidue	۰ ۸	Ц	Ċ	A.	ц	I	s	ď	S	ď	Г	I	Щ	Ŧ	A	Y	A	ď	I	А	Г	S	Ц	Н	Ц	H	I i	T. K	I i	Ŧ	S	ц	I	Н
Posi- tion r	337	339	350	350	350	362	364	364	365	365	365	366	375	376	377	377	378	378	379	379	380	383	383	389	389	390	391	401	413	413	414	416	417	418
Wild resi- due	-	Ц	Λ	Λ	Λ	н	Ч	Ч	Ч	Ч	Ч	Г	К	А	D	D	ш	ш	Н	н	Ø	Ч	Ч	Ø	Ø	ď	Н	D	S	S	А	S	Г	ď

8

Supplementary Table 3. Structure based analysis (DynaMut, mCSM, SDM and DUET results (continued) of all mutations of N protein abtained with DynaMut server to predict stability

	ΔΔG DynaMut	$\Delta\Delta G mCSM$	ΔΔG SDM	ΔΔG DUET
MUTATION	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
D3L	-0,548	0,194	-0,19	0,38
D3Y	-0,382	-0,065	-0,43	-0,153
P13S	-0,272	-0,745	-0,84	-0,562
A35V	1,13	-0,27	1,15	0,296
Q7K	-0,411	-0,316	0,04	-0,083
G25C	-0,092	-0,966	-0,42	-0,842
Q9H	0,062	-0,5	0,74	-0,199
D22N	0,605	0,564	0,39	0,826
G34W	-1,112	-1,143	-2,14	-1,531
S2Y	1,318	-0,682	0,16	-0,56
N8T	-0,344	-0,207	-0,4	0,032
P13L	1,523	-0,306	-0,04	0,008
R40C	0,137	0,043	-0,4	-0,005
G25V	0,063	-0,494	0,15	-0,146
G44C	-0,843	-1,079	-0,32	-0,938
S23L	-0,459	-0,426	0,94	0,033
S33I	0,216	-0,226	1,37	0,356
A12G	-0,88	-1,353	-0,39	-1,199
A12S	0,413	-1,411	-1,62	-1,419
D22Y	1,464	0,094	0,54	0,267
D3N	-0,217	0,321	-0,07	0,532
D3Q	-0,463	0,311	-0,74	0,465
E31G	-0,094	-0,635	-0,94	-0,683
G19A	0,441	-0,454	0,16	-0,101
N29S	-0,043	0,023	-0,53	0,258
N8Y	0,219	-0,28	-0,18	-0,337
Q7L	0,477	0,017	1,28	0,436
Q9R	0,411	-0,045	0,54	0,303
R10L	0,025	-0,188	0,45	0,052
R14C	-0,223	0,023	-0,24	0,003
R32H	0,233	-0,624	0,12	-0,529
S21P	-0,14	-0,187	-0,05	0,024
S2F	1,005	-0,92	0,36	-0,74
S33G	1,158	-0,142	1,45	0,455
S37P	0,448	-0,162	-0,23	0,024
S37T	0,333	-0,275	0,57	0,189
T16M	-0,316	-0,187	0,62	0,045
T24A	0,195	-0,265	0,61	0,114
Q28K	0,413	-0,053	0,52	0,413
D128N	-0,402	0,004	-0,2	0,082
P67L	0,244	-0,385	-0,04	-0,201
D128Y	-0,036	0,237	0,12	0,196

	ΔΔG DynaMut	$\Delta\Delta G mCSM$	ΔΔG SDM	ΔΔG DUET
MUTATION	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
L139F	-0,137	-0,938	-0,41	-0,942
A119S	0,64	-0,995	-0,85	-0,971
A90S	0,03	-1,159	1,04	0,938
T135I	1,482	-0,39	1,47	0,255
T166I	0,88	-0,174	1,07	0,316
D144H	0,21	-0,377	-0,04	-0,385
E136Q	0,034	0,347	-0,87	0,367
H145Y	0,809	1,127	-0,4	1,035
L167F	1,096	-0,989	-0,46	-1,006
N126S	-0,08	-0,026	-0,44	0,209
P80R	1,025	0,419	1,85	0,783
A152S	-0,09	-0,202	-0,85	-0,131
A173V	0,848	-0,546	1,74	0,26
D128E	-0,003	-0,357	0,25	-0,08
D63Y	2,299	1,688	0,33	1,484
E118Q	-0,743	-0,109	-0,36	0,001
M101I	0,093	-0,321	0,68	0,396
N140S	-0,279	-0,244	-1,15	-0,199
P142S	-0,546	-0,548	-0,84	-0,394
P151A	-0,129	-0,525	0,51	-0,198
P151S	-0,323	-0,999	-1,05	-1,016
P67S	0,078	-1,091	-0,84	-1,055
Q163K	-0,309	-0,459	-0,43	-0,329
T141I	1,026	-0,036	1,28	0,521
T49I	0,45	0,416	0,65	0,798
V72L	0,348	-0,362	-1,21	-0,325
R203K	0,749	-0,179	0,1	0,007
G204R	1,064	-0,139	-1,91	-0,155
S235F	0,312	-0,968	0,58	-0,82
S194L	0,647	-0,446	2,27	0,313
T205I	0,867	-0,141	1,07	0,371
T198I	0,398	-0,275	1,37	0,169
M234I	0,237	0,053	0,44	0,692
G204L	0,013	-0,441	-1,86	-0,565
S202N	0,681	0,013	0,78	0,348
A220V	0,104	-0,278	-1,03	-0,124
A211V	-0,165	-0,134	0,01	0,13
P199S	0,263	-0,454	-0,58	-0,342
G238V	0,108	-0,408	0,09	-0,069
N196Y	-1,169	-0,641	1,109	-0,542
S188P	0,335	0,492	-1,62	0,375
S193T	0,052	-0,336	0,69	0,07
R1951	0,481	0,002	0,28	0,199

	ΔΔG DynaMut	$\Delta\Delta G mCSM$	$\Delta\Delta G$ SDM	ΔΔG DUET
MUTATION	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
P199L	0,287	-0,336	0,7	0,043
G212V	0,014	-0,274	0,12	0,106
G238C	0,088	-0,96	-0,23	-0,792
G214C	1,523	-0,765	0,53	-0,343
R191L	-0,358	-0,854	0,71	-0,38
G215S	0,187	-0,43	-0,64	-0,136
M210I	0,051	0,198	0,55	0,782
P207H	0,053	-0,015	0,91	0,198
P207S	-0,708	-0,336	-0,26	-0,157
A208S	-0,221	-0,499	-0,85	-0,442
A211G	0,271	-0,051	-0,15	0,18
A218V	0,267	-0,631	-1,46	-0,617
G204P	0,684	-0,327	-3,61	-0,844
G204Q	0,324	-0,444	-2,78	-0,623
M210N	0,814	0,8	0,42	1,168
N213S	0,18	0,148	-0,48	0,463
Q229R	1,086	-0,009	0,34	0,386
Q241L	0,346	0,166	1,17	0,693
R185C	-1,292	-2,11	0,33	-1,721
R185G	0,109	-1,437	0,31	-1,059
R209S	0,307	-0,144	-1,48	0,475
S180C	0,265	-0,076	0,83	0,239
S201C	0,321	-0,212	1,18	0,174
S202C	-0,377	-0,206	0,62	0,048
S206F	0,39	-0,864	0,94	-0,621
S232N	0,153	-0,125	0,59	0,367
V246A	-0,099	-0,963	-0,47	-0,781
T362I	0,994	-0,146	1,95	0,606
T334I	-0,065	-0,267	0,64	0,2
M322I	-0,546	-0,498	0,51	0,177
I320F	0,092	-0,872	-0,59	-0,849
A308S	0,159	-0,891	-1,14	-0,774
H300Y	0,502	0,845	-0,39	0,862
M317T	0,316	0,444	-1,39	0,66
P364S	-0,537	-0,588	-0,84	-0,392
T271I	0,569	-0,219	0,89	0,336
T334A	-0,653	-0,311	-0,45	-0,152
V324I	-0,26	-0,684	-0,28	-0,356
V350G	-0,544	-1,871	-0,96	-1,855
I292L	0,144	-1,208	0,2	-0,814
I337V	-0,318	-0,249	-0,12	0,049
K299N	-0,446	-0,288	0,28	-0,112
L339F	-0.134	-1.047	0.12	-0.874

	ΔΔG DynaMut	$\Delta\Delta G mCSM$	ΔΔG SDM	ΔΔG DUET
MUTATION	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
P326S	-0,487	-0,582	-0,26	-0,413
P364Q	-0,247	-0,4	0,64	0,072
Q289H	-0,157	-1,039	0,06	-0,842
S327L	0,753	-0,317	1,03	0,098
T296I	1,195	-0,405	1,93	0,355
V350A	-0,25	-1,43	0,98	-0,843
V350L	0,74	-0,27	0,61	0,28
D377Y	0,953	-0,389	0,77	-0,046
D401Y	1,253	-417	0,78	-0,068
E378Q	-0,247	0,027	-1,19	0,017
P383S	0,194	-0,887	0,01	-0,478
A376T	0,088	-0,757	-1,33	-0,623
P383L	0,612	-0,503	1,57	0,248
T379I	-0,278	-0,141	0,9	0,332
P365S	0,211	-0,416	-0,84	-0,214
A414S	-0,115	-0,159	-2,04	-0,148
E378A	-0,256	-0,511	-0,68	-0,558
D377A	-0,062	-0,175	1,85	0,555
Q380L	0,154	0,188	1,4	0,094
Q389H	0,584	-0,41	0,7	-0,239
S413T	0,333	-0,003	0,27	0,477
S416L	-0,308	-0,347	0,98	0,054
T417I	0,043	-0,268	0,9	0,116
K375E	0,351	0,012	0,99	0,621
P365L	0,055	-0,359	-0,04	-0,032
P365Q	0,177	-0,386	-0,81	-0,177
Q389L	0,705	0,227	1,11	0,602
Q390H	-0,322	-0,055	0,85	0,235
Q418H	0,35	-0,212	0,91	-0,001
S413I	0,175	-0,417	1,02	0,168
T366I	0,34	-0,031	0,46	0,314
T379A	-0,33	-0,348	0,68	0,069
T391I	0,245	-0,17	1,03	0,311

MUTATION	ΔΔS ENCoM (kcal ⁻¹ /mol ⁻¹)	$\Delta\Delta$ SVibENCoM (kcal ⁻¹ /mol ⁻¹)	MUTATION	ΔΔS ENCoM (kcal ⁻¹ /mol ⁻¹)	ΔΔSVibENCoM (kcal ⁻¹ /mol ⁻¹)
D3L	0,044	0,044	D128Y	0,244	0,244
D3Y	-0,03	-0,03	L139F	-0,197	-0,197
P13S	0,472	0,472	A119S	-0,222	-0,222
A35V	-0,174	-0,174	A90S	0,008	0,008
Q7K	0,509	0,509	T135I	-0,422	-0,422
G25C	-0,022	-0,022	T166I	-0,226	-0,226
Q9H	-0,365	-0,365	D144H	-0,322	-0,322
D22N	0,162	0,162	E136Q	-0,015	-0,015
G34W	0,073	0,073	H145Y	0,144	0,144
S2Y	-0,692	-0,692	L167F	-0,543	-0,543
N8T	-0,051	-0,051	N126S	-0,024	-0,024
P13L	-0,693	-0,693	P80R	-0,54	-0,54
R40C	0,883	0,883	A152S	-0,137	-0,137
G25V	0,01	0,01	A173V	-0,511	-0,511
G44C	0,186	0,186	D128E	0,17	0,17
S23L	-0,034	-0,034	D63Y	-0,43	-0,943
S33I	-0,055	-0,055	E118Q	0,39	0,39
A12G	0,42	0,42	M101I	0,419	0,419
A12S	-0,029	-0,029	N140S	0,03	0,03
D22Y	-1,928	-1,928	P142S	-0,06	-0,06
D3N	0,059	0,059	P151A	0,297	0,297
D3Q	0,042	0,042	P151S	-0,055	-0,055
E31G	0,616	0,616	P67S	-0,009	-0,009
G19A	-0,015	-0,015	Q163K	0,296	0,296
N29S	0,454	0,454	T141I	-0,315	-0,315
N8Y	-0,191	-0,191	T49I	0,152	0,152
Q7L	0,843	0,843	R203K	-0,107	-0,107
Q9R	-0,397	-0,397	G204R	-2,522	-2,522
R10L	0,838	0,838	S235F	-0,135	-0,135
R14C	0,852	0,852	S194L	0,044	0,044
R32H	-0,055	-0,055	T205I	-0,289	-0,289
S21P	-0,358	-0,358	T198I	-0,07	-0,07
S2F	-0,712	-0,712	M234I	0,057	0,057
S33G	-0,134	-0,134	G204L	-0,901	-0,901
S37P	-0,565	-0,565	S202N	-0,215	-0,215
S37T	-0,242	-0,242	A220V	-0,018	-0,018
T16M	-0,034	-0,034	A211V	-0,074	-0,074
T24A	0,04	0,04	P199S	-0,44	-0,44
Q28K	-0,15	-0,15	G238V	-0,041	-0,041
V72L	-0,626	-0,626	N196Y	0,334	0,334
D128N	0,209	0,209	S188P	0,141	0,141
P67L	-0,169	-0,169	S193T	0,01	0,01

Supplementary Table 4. Structure based analysis (DynaMut, mCSM, SDM and DUET results) of all mutations of N protein obtained with DynaMut server to predict stability

MUTATION	ΔΔS ENCoM (kcal ⁻¹ /mol ⁻¹)	$\Delta\Delta SVibENCoM$ (kcal ⁻¹ /mol ⁻¹)	MUTATION	$\Delta\Delta S ENCoM$ (kcal ⁻¹ /mol ⁻¹)	ΔΔSVibENCoM (kcal ⁻¹ /mol ⁻¹)
R195I	0,349	0,349	V350G	0,296	0,296
P199L	-0,021	-0,021	I292L	0,079	0,079
G212V	0,003	0,003	I337V	0,464	0,464
G238C	-0,004	-0,004	K299N	0,383	0,383
G214C	-1,357	-1,357	L339F	0,13	0,13
G215S	-0,259	-0,259	P326S	0,012	0,012
R191L	0,134	0,134	P364Q	-0,024	-0,024
M210I	0,469	0,469	Q289H	-0,05	-0,05
P207H	-0,051	-0,051	S327L	-0,122	-0,122
P207S	-0,01	-0,01	T296I	-0,422	-0,422
A208S	0,023	0,023	V350A	0,265	0,265
A211G	0,088	0,088	V350L	-0,181	-0,181
A218V	-0,388	0,388	D377Y	-0,545	-0,545
G204P	-0,572	-0,572	D401Y	-0,487	-0,487
G204Q	-0,938	-0,938	E378Q	0,072	0,072
M210N	0,81	0,81	P383S	-0,006	-0,006
N213S	-0,162	-0,162	A376T	-0,041	-0,041
Q229R	-0,36	-0,36	P383L	-0,058	-0,058
Q241L	0,089	0,089	T379I	-0,043	-0,043
R185C	1,042	1,042	P365S	0,115	0,115
R185G	1,753	1,753	A414S	-0,031	-0,031
R209S	1,731	1,731	E378A	0,217	0,217
S180C	-0,059	-0,059	D377A	0,249	0,249
S201C	0,176	0,176	Q380L	0,094	0,094
S202C	0,315	0,315	Q389H	-0,119	-0,119
S206F	0,016	0,016	S413T	0,143	0,143
S232N	0,046	0,046	S416L	0,086	0,086
V246A	0,311	0,311	T417I	0,073	0,073
T334A	0,149	0,149	K375E	0,127	0,127
T362I	-0,23	-0,23	P365L	0,131	0,131
T334I	0,267	0,267	P365Q	0,141	0,141
M322I	0,175	0,175	Q389L	0,01	0,01
I320F	-0,68	-0,68	Q390H	0,019	0,019
A308S	-0,104	-0,104	Q418H	-0,222	-0,222
H300Y	-0,175	-0,175	S413I	0,077	0,077
M317T	0,342	0,342	T366I	-0,238	-0,238
P364S	0,003	0,003	T379A	0,143	0,143
T271I	-0,398	-0,398	T391I	0,052	0,052
V324I	-0,114	-0,114	$\Delta\Delta S$ ENCoM and Δ	∆SVib ENCoM analys	is of all mutations of I

N protein obtained with DynaMut server to predict flexibility