doi: 10.4149/gpb_2023014

Correction: Chloroquine inhibits vasodilation induced by ATP-sensitive potassium channels in isolated rat aorta

Kyeong-Eon Park^{1,2}, Soo Hee Lee^{2,3,4}, Sung Il Bae¹, Yeran Hwang¹, Seong-Ho Ok^{2,3,4}, Dawon Kang⁵, Seung Hyun Ahn¹, Gyujin Sim¹, Jin Kyeong Park and Ju-Tae Sohn^{1,2,4}

- ¹ Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
- ² Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju-si, Gyeongsangnam-do, Republic of Korea
- ³ Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea
- ⁴ Institute of Health Sciences, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea
- ⁵ Department of Physiology, Gyeongsang National University College of Medicine, Jinju-si, Gyeongsangnam-do, Republic of Korea

Abstract. Another affiliation: ²Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju-si, Gyeongsangnam-do, Republic of Korea was added for the author Kyeong-Eon Park at his own request.

Erratum for:

Chloroquine inhibits vasodilation induced by ATP-sensitive potassium channels in isolated rat aorta published in Gen. Physiol. Biophys. 42(3), 2023, pp. 297-306 (doi: 10.4149/gpb_2023008).

Erratum

[©] The Authors 2023. This is an **open access** article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.