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Abstract. Chronic obstructive pulmonary disease (COPD) is a highly prevalent and fatal disease 
worldwide. �e function of club cells, which are considered progenitor/stem cells of the bronchial 
epithelium, and their secreted protein CC16, have been proposed as potential targets for COPD 
treatment. �is study aimed to investigate the role of the TGF-β1/ALK5 signaling pathway in club 
cell function and COPD progression. C57BL/6J mice were divided into Normal group (exposed 
to fresh air) and COPD group (exposed to incremental cigarette smoke extract for 12 weeks). 
�e COPD mice were further divided into COPD group, DMSO group, and LY2109761 group 
(injected with 150 mg/kg LY2109761, a TGF-β1 inhibitor). Tissue staining was used to assess 
lung damage, and the expression of CC16 was measured. �e levels of in�ammatory factors and 
DNA damage-related indicators were also measured. �e involvement of the MEK/ERK signal-
ing pathway was determined. COPD mice exhibited severe lung damage and impaired club cell 
function. Activation of the TGF-β1/ALK5 and MEK/ERK pathways were observed in COPD mice. 
However, administration of LY2109761 in COPD mice inactivated the TGF-β1/ALK5 and MEK/
ERK pathways. Administration of LY2109761 also alleviated pulmonary �brosis, downregulated 
the levels cleaved caspase-3, IL-4, IL-5, IL-13, IL-12, and IFN-γ, and limited the phosphorylation 
of Chk1. Moreover, LY2109761 enhanced CC16 expression and decreased lung cell apoptosis. 
Inactivation of the TGF-β1/ALK5 axis inhibits the MEK/ERK signaling pathway, enhances club 
cell function, and alleviates lung tissue damage. �ese �ndings suggest that TGF-β1 is a potential 
therapeutic target for COPD. 
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Introduction

Chronic obstructive pulmonary disease (COPD) is a major 
global cause of mortality and morbidity. It is characterized 
by progressive expiratory air�ow limitation, chronic in�am-
mation, and pulmonary emphysema (Bagdonas et al. 2015). 
Complications such as respiratory failure and pulmonary 
heart disease can arise from COPD (Wang L et al. 2020). 
Common symptoms of COPD include breathlessness, cough, 
and sputum production (Vogelmeier et al. 2020). With over 3 
million deaths worldwide every year, COPD poses a signi�-
cant health challenge (Rabe and Watz 2017). Enhancing the 
diagnosis and treatment of COPD and reducing its incidence 
and mortality rates are of global importance.

Multiple signaling pathways play a role in the development 
and progression of COPD. In particular, transforming growth 
factor-β1 (TGF-β1) is closely linked to airway remodeling 
in COPD (van der Velden et al. 2018). �e activin receptor-
like kinase 5 (ALK5) is a speci�c receptor of TGF-β1 and is 
activated by binding TGF-β to the receptor complex, lead-
ing to the phosphorylation and activation of extracellular 
signal-regulated kinase (ERK) and mitogen-activated protein 
kinase (MAPK) (Ungefroren et al. 2019). Inhibitors of the 
mitogen-activated and extracellular signal-regulated kinase 
(MEK)/ERK signaling pathway have been shown to suppress 
the production of tumor necrosis factor-alpha (TNF-α) in 
lipopolysaccharide (LPS)-stimulated macrophages/mono-
cytes and protect mice from LPS-induced endotoxic shock 
(Chen et al. 2020). TGF-β activates the ERK 1/2 signaling 
in cancer-associated �broblasts (CAF), leading to increased 
production of CAF-derived cardiotrophin-like cytokine 
factor 1 (CLCF1), which forms a positive feedback loop that 
contributes to hepatocellular carcinoma progression (Song 
et al. 2021). Furthermore, TGF-β/Sma- and Mad-related pro-
tein (Samd) signaling can regulate the activation of ERK1/2, 
leading to myocardial �brosis (Cheng et al. 2021). Inhibition 
of the ERK1/2-mechanistic target of rapamycin complex 1 
(mTORC1) axis has shown potential in improving the �brotic 
e�ects induced by proteinuria and TGF-β in adriamycin-
induced glomerular sclerosis (Das et al. 2019). �ese studies 
further highlight the intricate relationship between Smad and 
ERK signaling pathways (Petiti et al. 2015). Based on these 
�ndings, we hypothesize that the knockdown of TGF-β1/
ALK5 may inhibit the MEK/ERK signaling pathway and miti-
gate the progression of COPD. However, further experimental 
validation is required to con�rm this hypothesis.

Bronchioles are critically affected in COPD, causing 
signi�cant damage (Berg and Wright 2016; Wiegman et al. 
2020). Club cells, also known as Clara cells or bronchiolar 
exocrine cells, are non-ciliated cells found in the respiratory 
epithelium. �ese cells have the ability to survive, proliferate, 
and di�erentiate within a span of 2–4 weeks, allowing for the 
reconstruction of normal airway epithelial cells. As a result, 

club cells are considered to be progenitor/stem cells of the 
bronchial epithelium (Xing et al. 2010). Club cell secretory 
protein (CCSP), also known as club cell protein 16 (CC16) or 
CC10, is a 15.8 kDa protein primarily released in the terminal 
bronchioles, where club cells are located (Almuntashiri et al. 
2020). CC16 plays a  signi�cant protective role in reducing 
oxidative stress and in�ammation in the respiratory tract, while 
also serving as a peripheral lung marker to assess the integrity 
and permeability of lung epithelial cells (Hu et al. 2021). More 
speci�cally, CC16 has the potential to be a therapeutic target for 
COPD (Martinu et al. 2023). Clinical data has shown that CC16 
levels are reduced in the circulation, bronchoalveolar lavage 
�uid (BALF), and airways of COPD patients (Almuntashiri et 
al. 2020). CC16 limits the development of COPD by alleviat-
ing in�ammation and pulmonary edema (Laucho-Contreras 
et al. 2016). �ese �ndings highlight the importance of club 
cells and their produced CC16 in the development of COPD. 

�ere is a negative correlation between TGF-β1 and CC16 
levels, indicating that inhibiting TGF-β1 might enhance the 
activity of club cells (Gu et al. 2021). Hydrogen sul�de therapy 
has been shown to mitigate COPD induced by cigarette 
smoke through the inhibition of the TGF-β1/Smad pathway 
(Wang et al. 2020a). However, it remains unknown whether 
the TGF-β1/ALK5 pathway impacts the survival of club cells 
by the MEK/ERK signaling pathway. MEK inhibitors have 
been utilized to treat COPD and reduce airway in�ammation 
(Kurian et al. 2019). However, it is important to note that both 
the TGF-β1/ALK5 and MEK/ERK pathways can a�ect the 
proliferation and DNA damage of various cell types includ-
ing neurons (Zhang et al. 2019), breast cancer cells (Li et al. 
2009), osteosarcoma, and ovarian and breast cancer cells (Lee 
et al. 2017). Based on these observations, we have put forth 
a hypothesis that inhibiting the TGF-β1/ALK5 and MEK/ERK 
pathways may promote the activity of club cells in COPD.

�erefore, the objective of this study was to establish an in 
vivo mouse model of COPD and investigate whether inhibit-
ing the TGF-β1/ALK5 pathway, which regulates MEK/ERK 
signaling pathway, in�uences the survival of club cells and 
potentially alleviates COPD progression.

Materials and Methods

Construction of COPD model mice 

Forty male C57BL/6J mice (25 ± 2  g) were purchased 
from Hunan Silaikejingda Experimental Animal Co., Ltd. 
A scheme demonstrating the time management of the ex-
periment was helpful in understanding our work (Fig. 1). 
In brief, to investigate lung injury and club cell functional 
changes in COPD, the animals were randomly divided into 
Normal group and COPD group, with 8 mice in each group. 
A�er one week of acclimation, mice were used to establish an 
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in vivo COPD model by exposure to cigarette smoke extract 
(CSE) (Su et al. 2020). �e incremental CSE process started 
in October 2022 and ended in December of the same year. In 
brief, COPD mice were placed in a smoking chamber where 
the smoke from commercial �ltered cigarettes (containing 
0.8 mg nicotine, 11 mg tar, and 13 mg carbon monoxide per 
cigarette) was introduced. �e COPD mice were exposed to 
1 h of CSE twice a day (morning and a�ernoon), for a total of 
12 weeks (Ridzuan et al. 2021). �e 12-week CSE process was 
divided into four stages, with the amount of smoke the mice 
received increasing gradually with the duration of smoking. 
�roughout the smoke exposure process, carbon monoxide 
concentration was maintained at 310–380 ppm and oxygen 
concentration was ≥18%. �e mice in Normal group, on 
the other hand, were continuously kept in fresh air. COPD 
mice were evaluated as described previously (Su et al. 2020).

To investigate the e�ects of TGF-β1 on club cell function 
in COPD, the COPD mice were further divided into COPD 
group, DMSO group, and LY2109761 group, with 8 mice in 
each group. A�er CSE treatment, the mice in DMSO group 
received oral administration of 10 mg/kg DMSO daily for 
4 days. �e mice in the LY2109761 group received oral 
administration of 150 mg/kg TGF-β1 receptor inhibitor 
LY2109761 daily for 4 days (Wang et al. 2021). LY2109761 
was dissolved in DMSO and stored at −80°C. �e mice in 
COPD group received an equal dosage of normal saline by 
orally once a day for 4 days.

Hemotoxylin-eosin staining

�e para�n-embedded mouse lung tissue was subjected to 
a roasting process at 60°C for 12 h. Subsequently, the tissue 
sections were sequentially treated with xylene for dewaxing 
and gradient ethanol for rehydration. For staining, hema-
toxylin eosin staining solution (AWI0020a, Abiowell, China) 
was used. Following staining, the sections were dehydrated 
with gradient ethanol (95–100%) and then placed in xylene. 
Finally, the sections were sealed using neutral gum and ob-

served under a light microscope (BA210T, Motic, Germany). 
Lung injury was blindly scored according to a  previous 
protocol (Cheng et al. 2019). �e scoring items included 
alveolar septa, intrapulmonary hemorrhage, and bronchial 
in�ammation. Each scoring item ranged from 0 to 4, with 
0 representing no injury and 4 representing severe lesions.

Terminal deoxyribonucleotide transferase (TdT)-mediated 
dUTP nick end labeling (TUNEL)

To evaluate apoptosis in the lung tissue of mice, the TUNEL 
test kit (40306ES50, YEASEN, China) was used according to 
the corresponding instructions. �e cells were then stained 
with 4’,6-diamidino-2-phenylindole (DAPI) staining solu-
tion (AWI0331a, Abiowell, China) to visualize the nuclei, 
and subsequently observed under a light microscope. �e 
apoptotic rate of lung cells was evaluated by calculating the 
percentage of TUNEL-positive cells to the total number of 
cells in the region.

Enzyme-linked immunosorbent assay (ELISA)

�e procedures of BALF were performed with reference to the 
previous protocol (Li et al. 2020). A�er sacri�cing the mice, 
the entire lungs were injected with 4 ml of saline and lavaged 
three times to obtain the BALF. �e levels of interleukin-
1beta (IL-1β) (KE10003), IL-6 (KE10007), TNF-α (KE10002), 
IL-4 (KE10010), IL-5 (KE10018), IL-13 (KE10021), IL-12 
(KE10014), and interferon-gamma (IFN-γ) (KE10001) in 
serum and BALF were detected according to the instructions. 
All kits used were obtained from Proteintech (USA). 

Western blotting 

The radioimmunoprecipitation assay (RIPA) lysate 
(AWB0136, Abiowell, China) was used to isolate total pro-
tein samples from lung tissues. �e protein concentration 
was determined using a bicinchoninic acid (BCA) protein 

Figure 1. Scheme demon-
strating time management 
of the animal experiments.
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concentration assay kit (ab102536, Abcam, UK) according to 
the instructions. Subsequently, the proteins were separated by 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred to nitrocellulose membranes. 
�e membranes were sealed using a bu�er containing 5% 
skim milk. Next, the membranes were incubated with the 
primary antibodies overnight at 4°C, including TGF-β1 
(ab215715, Abcam, UK), ALK5 (ab235578, Abcam, UK), 
p-ALK5 (PA5-40298, �ermoFisher, USA), phosphorylated 
(p)-MEK (ab96379, Abcam, UK), MEK (ab32091, Protein-
tech, USA), ERK (16443-1-AP, Proteintech, USA), p-ERK 
(28733-1-AP, Proteintech, USA), CC16 (ab213203, Abcam, 
UK), checkpoint kinase 1 (Chk1) (25887-1-AP, Proteintech, 
USA), p-Chk1(28805-1-AP, Proteintech, USA), Caspase3 
(#9661, CST, USA), and β-actin (66009-1-Ig, Proteintech, 
USA). Following that, the membranes were co-incubated 
with HRP goat anti-mouse IgG (SA00001-1, Proteintech, 
USA) and HRP goat anti-rabbit IgG (SA00001-2, Proteintech, 
USA) at room temperature for 90 min. A�er that, the mem-
branes were incubated with an enhanced chemiluminescence 
(ECL) solution (AWB0005, Abiowell, China) for 1 min and 
the protein bands were detected using ChemiScope6100 
(CLiNX, China). �e relative protein levels were determined 
by calculating the gray value of the corresponding protein 
band relative to the gray value of the β-actin protein band.

Immunohistochemistry staining

A�er being roasted at 60°C for 12 h, the lung sections were 
dewaxed and rehydrated successively in xylene and gradient 
ethanol. To repair the antigen, 0.01 M citrate bu�er (pH 6.0) 
was used at high temperatures. Next, 1% periodate was added 
to inactivate endogenous enzymes. �e primary antibodies 
(CC16, 10490-1-AP, 1:200, Proteintech, USA; Caspase3, 
19677-1-AP, 1:200, Proteintech, USA) were incubated with 
samples overnight at 4°C. Subsequently, the secondary anti-
bodies were co-incubated with samples at 37°C for 30 min. 
A�er color rendering using diaminobenzidine (DAB) and 
re-staining with hematoxylin, the sections were dehydrated 
once again. Finally, the sections were immersed in xylene, 
sealed with neutral gum, and observed under a microscope.

Immuno�uorescence

�e lung tissues from mice were roasted at 60°C for 12 h. 
Subsequently, they were subjected to dewaxing and rehydra-
tion by being placed in xylene and gradient ethanol. �ermal 
antigen retrieval was performed on lung tissue sections, fol-
lowed by treatment with sodium borohydride solution, 75% 
ethanol solution, and Sudan black dye solution for speci�c 
durations. �en, the sections were treated with 5% bovine 
serum albumin (BSA) for 60 min to block non-speci�c bind-
ing. �e tissue samples were then incubated overnight at 4°C 

with the gamma-H2A histone family member (γ-H2AX) an-
tibody (13584-1-AP, Abcam, UK). Subsequently, the samples 
were incubated with a �uorescently labeled goat anti-rabbit 
IgG(H+L) secondary antibody (SA00013-2, Proteintech, 
USA) at 37°C for 90 min. Nuclei were stained with DAPI 
(AWC0293a, Abiowell, China) at 37°C for 10 min. Finally, 
the sections were observed under a microscope a�er being 
encapsulated in glycerin.

Masson trichrome staining

�e lung tissues from mice underwent a roasting process at 
60°C for 12 h. According to the instructions of the Masson 
staining kit (AWI0253, Abiowell, China), the sections were 
dewaxed to water and stained with the nuclear dye solution 
for 1  min. Subsequently, the sections were immersed in 
distilled water and ammonia for 10 min to restore the nuclei 
to blue. Next, the slurry dye was added and allowed to stain 
for 5 min. A color separation solution was applied for ap-
proximately 30 s to separate the colors. �en, a redye solution 
was added to cover the entire tissue for 8 min. Finally, the 
sections were rendered transparent using the xylene, sealed 
with neutral gum, and observed using a light microscope.

Statistical analysis

Data were presented as mean ± standard deviation, and each 
experiment was repeated at least 3 times. Statistical analysis 
was performed using GraphPad Prism 9.0. Student‘s t-test 
was used to compare between two groups, while one-ANO-
VA or two-ANOVA was used for comparison among multi-
ple groups. p < 0.05 was considered statistically signi�cant.

Results

Construction of a mouse model of COPD

In the Normal group, the alveolar structure appeared intact 
with no evident in�ammatory in�ltration. Compared to the 
healthy mice, COPD mice exhibited deformity of alveolar 
structure, thickening of alveolar walls, reduced alveolar spaces, 
interstitial edema, and signi�cant in�ammatory in�ltrates 
(Fig. 2A). COPD mice had higher scores compared to Normal 
group (Fig. 2B), indicating severe lung injury in COPD mice. 
�e apoptosis rate in COPD group was higher compared to 
Normal group (Fig. 2C). Additionally, the levels of IL-1β, IL-6, 
and TNF-α were signi�cantly increased in COPD group com-
pared to Normal group (Fig. 2D). Compared to Normal group, 
COPD group showed markedly elevated levels of TGF-β1 and 
ALK5, as well as enhanced phosphorylation levels of MEK and 
ERK (Fig. 2E). Taken together, these results demonstrated the 
successful establishment of the COPD mice model.
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COPD mice exhibited impaired club cell function and lung 
injury 

To assess the survival of club cells and the extent of tissue 
cell injury in the COPD mice, we evaluated the expression 

of CC16, a  protein associated with club cell function, as 
well as the DNA damage marker γ-H2AX, the apoptotic 
marker cleaved Caspase3, and the DNA damage response 
protein Chk1. We observed a notable decrease in the level of 
CC16 protein in COPD group compared to Normal group 

Figure 2. Construction of the COPD mice model. A. Hemotoxylin-eosin staining was used to detect the damage to mouse lung tissue. B. 
�e lung injury scores of each group of mice were recorded. C. Apoptosis was detected by TUNEL staining. D. �e levels of in�amma-
tory cytokines, including IL-1β, IL-6, and TNF-α, in serum were determined by ELISA. E. �e levels of TGF-β1, ALK5, MEK, p-MEK, 
ERK, and p-ERK were detected by Western blotting. @ p < 0.05 vs. Normal group.

A B

C

D

E
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(Fig. 3A). �e positive expression of CC16 was signi�cantly 
lower in COPD group (Fig. 3B). �ese results indicated 
that club cell survival was impaired in COPD mice. Con-
versely, the expression of γ-H2AX was higher in COPD 
group compared to Normal group (Fig. 3C). Moreover, the 
levels of cleaved Caspase3 and the phosphorylation levels of 
Chk1 were elevated in COPD group compared to Normal 
group (Fig. 3D). �e results collectively suggested that the 
survival of club cells was reduced and tissue cell damage 
was increased in COPD mice.

TGF-β1 knockdown regulated the MEK/ERK signaling pathway

To investigate the relationship between the TGF-β1/ALK5 
and MEK/ERK signaling pathways, we used a TGF-β1 in-
hibitor, LY2109761, to knockdown its expression in COPD 
mice. Compared to DMSO group, the levels of TGF-β1 and 
the phosphorylation levels of ALK5, MEK, and ERK were 
reduced in LY2109761 group (Fig. 4). �ese �ndings sug-
gested that TGF-β1 knockdown limited the TGF-β1/ALK5 
and MEK/ERK signaling pathways.

Figure 3. Club cell survival and lung damage were assessed in COPD mice. A. �e expression of CC16 was measured by Western blotting. 
B. Immunohistochemistry staining was utilized to measure the positive expression of CC16. C. �e levels of γ-H2AX were detected using 
immuno�uorescence assays. D. �e levels of cleaved Caspase3, Chk1, and p-Chk1 were detected using Western blotting. @ p < 0.05 vs. 
Normal group.

A B

C

D
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Inactivation of the TGF-β1/ALK5 signaling pathway miti-
gated lung injury in COPD mice

To further con�rm the regulatory function of TGF-β1/ALK5 
and MEK/ERK signaling pathways in the tissue injury of 
mice with COPD, we assessed the pathological conditions of 
lung tissue, the level of impaired apoptosis, and the changes 
in related in�ammatory factors in mice. In COPD group, 
pulmonary �brosis was observed to be severe. However, 
a�er administration with LY2109761, the extent of �ber 
deposition in the lungs of the mice was noticeably inhibited 
in COPD mice (Fig. 5A). �e positive rate of Caspase3 was 
decreased in lung tissues of mice a�er administration with 
LY2109761 (Fig. 5B). Additionally, the levels of IL-4, IL-5, IL-
13, IL-12, and IFN-γ in the BALF were remarkably reduced 
in LY2109761 group (Fig. 5C). �ese results indicated that 
inhibiting the expression of TGF-β1 e�ectively improved 
pulmonary �brosis, delayed cell apoptosis, and decreased 
the levels of in�ammatory factors such as IL-4, IL-5, IL-13, 
IL-12, and IFN-γ in the BALF.

Inactivation of the TGF-β1/ALK5 signaling pathway enhanced 
the activity of club cell in COPD mice

To validate the e�ects of the TGF-β1/ALK5 signaling path-
way on club cell activity in COPD mice, we assessed the ex-
pression of CC16 and cleaved Caspase3 as well as apoptosis. 
Compared to DMSO group, the positive expression level of 
CC16 was dramatically increased, while the apoptosis rate 

was markedly decreased in LY2109761 group (Fig. 6A). Ad-
ditionally, the levels of cleaved Caspase3 and p-Chk1 were 
downregulated in COPD mice a�er administration with 
LY2109761 (Fig. 6B). �ese results indicated that inactiva-
tion of the TGF-β1/ALK5 signaling pathway restored club 
cell dysfunction and inhibited cell apoptosis in COPD mice.

Discussion

Studies have reported that long-term exposure to smoke can 
cause physical and chemical stimulation to the respiratory 
tract, which can lead to airway mucosal damage and chronic 
in�ammation, ultimately resulting in reduced airway func-
tion and the development of COPD (Kim et al. 2008). �e 
role of mast cell trypsin in the pathogenesis of COPD has 
been identi�ed using a mouse model of COPD (Beckett et al. 
2013). It was reported that smoke exposure could be used to 
establish the rat model of COPD skeletal muscle dysfunction 
(Su et al. 2020). In this study, mice exposed to smoke showed 
pulmonary edema, bronchitis, and increased lung cell ap-
optosis, suggesting a  successful COPD model. �erefore, 
we used the established COPD model for follow-up studies. 

Studies have demonstrated that CC16 can e�ectively pro-
tect alveolar epithelium, prevent harmful substances from 
destroying lung tissue, and enhance lung immune function 
(Iannuzzi 2004). Reduction of club cell protein is considered 
a key indicator of early epithelial damage caused by tobacco 
smoke (Cuzić et al. 2012). Research has shown that serum 

Figure 4. TGFβ1/ALK5 regulated the 
MEK/ERK signaling pathway. The 
levels of TGF-β1, ALK5, p-ALK5 (A) 
and the levels of MEK, p-MEK, ERK, 
p-ERK (B) were detected by Western 
blotting. $ p < 0.05 vs. DMSO group.

A

B
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CC16 levels in smokers are lower compared to those in 
former smokers, and both smokers and former smokers are 
markedly lower compared to those in individuals who have 
never smoked (Lomas et al. 2008). Additionally, studies have 
observed a signi�cant inhibition of airway CC16 expression 
in COPD patients, smoke-exposed monkey models, and 
smoke-induced COPD mouse models. �e loss of CC16 
expression has been associated with aggravated airway in-

�ammation and alveolar damage in mice (Zhu et al. 2015). 
In our study, we observed negative expression of CC16 in 
COPD group, indicating impaired survival of club cells in 
COPD mice. Furthermore, the levels of γ-H2AX, cleaved 
Caspase3, and phosphorylated Chk1 were signi�cantly in-
creased in COPD mice. An increased number of γ-H2AX 
foci, elevated phosphorylation of Chk1, and higher levels 
of cleaved Caspase3 are indicators of DNA damage and 

Figure 5. TGFβ1/ALK5 modulated the MEK/ERK signaling pathway to improve chronic obstructive pulmonary injury in mice. A. �e 
degree of pulmonary �brosis was assessed by Masson staining. B. Positive rate of Caspase3 was examined by immunohistochemistry 
staining. C. �e levels of IL-4, IL-5, IL-13, IL-12, and IFN-γ in BALF were determined by ELISA. $ p < 0.05 vs. DMSO group.

A

B
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apoptosis (Campagne et al. 2020; Klomp et al. 2021). �ese 
results suggested that the lung tissue of COPD mice in our 
study experienced aggravated cell damage. Taken together, 
our results indicate decreased survival of club cells and 
increased tissue cell damage in COPD mice.

Furthermore, TGF-β1 is a multifunctional cytokine with 
noticeably increased plasma levels in COPD patients (Mak et 
al. 2009). Increased T-cell apoptosis in the airway of COPD 
patients resulted in unbalanced cell homeostasis, defective 
clearance of apoptotic substances by monocytes/mac-
rophages, secondary necrosis, and prolonged in�ammatory 
responses, which is closely associated with activated TGF-β1 
signaling (Hodge et al. 2003). Our research found that the 
TGF-β1/ALK5 and signaling pathway was activated in COPD 
mice. We also observed activated MEK/ERK signaling path-
way in COPD mice. �e MEK/ERK signaling pathway plays 
an important role in the development of many types of cancer 
(Ullah et al. 2022). Studies have shown that activation of the 
Raf/MEK/ERK pathway promotes the progression of colorec-
tal cancer (Wang X et al. 2020). Activated ERK pathway is also 

found in other types of cancer, including breast cancer (Jin 
et al. 2019), nasopharynx cancer (Ding et al. 2022), and pan-
creatic cancer (Li et al. 2022). Inhibition of the MEK1/ERK 
signaling pathway has been demonstrated to e�ectively in-
hibit tumor growth and metastasis (Du et al. 2022). It has also 
been demonstrated that TGF-β1-induced keratinocyte motil-
ity is associated with the MEK/ERK signaling pathway (Feng 
et al. 2022). However, the relationship between TGF-β1 and 
MEK/ERK in COPD had not been reported. In this study, we 
found that in COPD mice, the TGF-β1/ALK5 and MEK/ERK 
signaling pathways were activated. �e levels of TGF-β1 and 
the phosphorylation level of ERK, MEK, and ALK5 in lung 
tissues were decreased in COPD mice a�er administration 
with a TGF-β1 inhibitor. LY2109761 disrupted the binding 
of ALK5 to TGF-β1, resulting in decreased phosphorylation 
levels of MEK, ERK, and ALK5. �ese �ndings suggested 
that inactivation of the TGF-β1/ALK5 axis inhibited the 
MEK/ERK signaling pathway.

�e MEK/ERK pathway has been identi�ed as a potential 
therapeutic target for cancer treatment, as knockdown of 

Figure 6. E�ect of TGFβ1/ALK5 on the activity of club cells in COPD mice. A. TUNEL double staining was used to label CC16-positive 
and apoptotic cells. B. �e levels of cleaved Caspase3, Chk1, and p-Chk1 were detected by Western blotting. $ p < 0.05 vs. DMSO group.

A

B
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MEK/ERK has shown to inhibit kidney injury and renal 
�brosis (Barbosa et al. 2021). Moreover, MEK1/2 inhibitors 
have been proposed as potential treatments for lesions caused 
by pathogenic variants of neuro�bromatosis genes type 1 
and type 2 (NF1, NF2) (Harder 2021). On the other hand, 
impaired TGF-β signaling has been linked to accelerated 
in�ammation and the development of COPD (Zhang et al. 
2016). CC16 directly inhibits the production and activity of 
IFN-γ, TNF-α, IL-1β, and other in�ammatory mediators, 
limiting the in�ammatory cascade reaction (Broeckaert and 
Bernard 2000). Increased levels of IL-1β, TNF-α and TGF-β1 
are observed in COPD rats (Li et al. 2014). However, the 
speci�c role of the TGF-β1/ALK5 and MEK/ERK signaling 
pathways in COPD had not been established. In our study, 
we observed that COPD group exhibited severe pulmonary 
�brosis, which was reduced a�er inhibiting the expression of 
TGF-β1. In addition, administration with LY2109761 led to 
a decrease in the positive rate of Caspase3, as well as reduced 
levels of IL-4, IL-5, IL-13, IL-12 and IFN-γ. �ese �ndings 
supported the e�ectiveness of regulating the TGF-β1/ALK5 
axis in improving lung �brosis, delaying lung cell apoptosis, 
and reducing the expression of pro-in�ammatory factors 
in the BALF. �ese results suggested that the regulation of 
TGF-β1/ALK5, and its impact on the MEK/ERK signaling 
pathway, mitigated tissue injury associated with COPD in 
mice.

Previous studies have indicated that TGF-β1 can stimulate 
the generation of club cells by binding to the ALK5 receptor, 
with ALK5 playing a vital role in this process. �e deletion 
of ALK5 has been shown to impact the development of 
bronchial epithelial progenitor cells, resulting in a signi�cant 
decrease in the expression level of club cell protein (Xing et 
al. 2010). In our study, we further investigated the e�ect of 
TGF-β1/ALK5 on the activity of club cells in COPD mice 
by inhibiting the expression of TGF-β1. Our results demon-
strated that COPD mice treated with LY2109761 exhibited 
downregulated phosphorylation levels of MEK and ERKl, 
lower levels of cleaved Caspase3, decreased apoptosis rate, 
and increased levels of CC16. �ese above results showed 
that the TGF-β1/ALK5 pathway has a signi�cant impact on 
the activity of club cells in COPD mice.

Limitations of the study

We acknowledge that our study has certain limitations. One 
limitation is that the di�erent groups did not select lung 
tissue from the same site for hemotoxylin-eosin staining, 
TUNEL, Western blotting, and other experiments. Further 
standardization and re�nement of the study regions in each 
group is necessary to minimize interference from other fac-
tors. Additionally, we have yet to demonstrate the clinical-
level impact of TGF-β1/ALK5 regulation on the MEK/ERK 
signaling pathway, club cell activity, and lung tissue damage 

improvement in COPD. �erefore, we eagerly anticipate 
expanding our research to the clinical level in future studies.

Conclusion

In this study, we have made advancements in understand-
ing the mechanism of club cell-related pathways and factors 
in COPD. Our research has provided innovative insights 
into the theoretical aspects of this �eld. Moreover, we have 
demonstrated the potential of inhibiting the TGF-β1/ALK5 
pathway, which regulates the MEK/ERK signaling pathway, 
to improve club cell survival and inhibit the development of 
COPD. Our study has laid the foundation for further eluci-
dating the pathogenesis of COPD and has proposed a novel 
idea for the development of targeted drugs for its treatment.
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