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Abstract 
Despite being the second most often diagnosed form of cancer, lung cancers are rarely found in the general 
population. It is proposed in this study to employ a methodology of extracting both global and local features 
from CT scan images for the identification of lung cancer. 
Data gathering, globalised and localised training as well as testing the model are all part of this structure. 
This study makes use of 800 CT scan images. Images are pre-processed by warping and cropping in 
advance of the global testing step. Each image is represented by a feature vector employing eight distinct 
types of image characteristics, which are taken from the images. After creating feature vectors, three 
machine learning methods are employed to create detection models. Every medical image has been 
partitioned over a series of simple divisions throughout the training and testing process locally. To describe 
each block, feature vectors are derived from the image features that worked effectively in the general 
phase of the experiment. Similar extracted features are then used to build detection systems for all picture 
blocks using the learning strategies that were effective in the global stage. SVM using Haar Wavelet 
characteristics had an accuracy, sensitivity, and specificity of 89%, 90%, and 89%, respectively. One might 
get 90%‑accurate results with SVM and 91%‑sensitive and 91%‑specific results using SVM plus HOG 
features. Finally, the utilisation of SVM with Gabor Filter characteristics achieved the greatest correctness, 
specificity, and sensitivity values, particularly 87%, 86%, and 87%, respectively (Tab. 3, Fig. 7, Ref. 18). Text 
in PDF www.elis.sk
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Introduction 

Cancer is a  disease that affects a  large percentage of the 
population and is extremely deadly (1). Within the human body, 
aberrant cells are growing and spreading. If identified and properly 
diagnosed, this can be effectively treated. In the regular course 
of things, damaged cells are updated with new ones. When this 
mechanism collapses and injured cells are not replaced, cancer 
develops. These cancerous cells might spread to other parts of the 

body and form metastases. Cancer that originates in the lungs is 
known as lung cancer. In terms of frequency, it is ranked second. 
Only 17.4% of patients in the United States survive without therapy 
for five years following cancer diagnosis, and that number is far 
lower in undeveloped nations (2). 

It is vital to note that early identification of lung cancer can 
lead to a faster recovery time as well as reduce the complexity and 
cost of the therapy. It is possible for a 5-year survival rate in the 
United States to rise from 20% to 65–70% with early detection 
and treatment of the disease (3). Blood tests, radiological tests, 
endoscopic procedures, and biopsies are all options for detect-
ing and diagnosing lung cancer. Some tests have advantages and 
disadvantages, while others might be used for specific purposes. 
Scanners use CT (Computerized Tomography) scans to provide 
an accurate diagnosis quickly and painlessly. They may also get 
information on the tumour’s structure, volume, and position (4). 

An x-ray scanner captures several pictures from different an-
gles of the same cranial area, resulting in a CT scan, which creates 
three‑dimensional pictures inside the system. Additionally, a CT 
scan aids in the diagnosis of medical disorders inside the thorax. 
Specialists often use imaging tests with a contrast‑enhancing agent 
infused into the bloodstream to identify lung cancer (5). This im-
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age provides a clearer view of the lung’s finer characteristics. To 
better diagnose lung cancer, CT scans like this one offer highly 
detailed images of the patient’s chest. Radiologists use CAD sys-
tems to detect signs of malignancy in their patients’ images. For 
radiograph-based images, such schemes employ numerous image 
processing techniques as well as machine learning approaches to 
identify questionable areas (6). 

Doctors and specialists benefit from the detection of these 
zones, which aids in their final evaluation of the images. Many 

various computer-aided detection (CAD) methods have been 
proposed by researchers to identify and categorise lung cancer 
in CT scan images. The following section provides a brief over-
view of these systems. These systems employ a variety of image 
attributes and machine learning methods in an effort to identify 
and classify objects (7). Segmentation, Feature Extraction and 
Characterization are the three steps in the detection of lung cancer. 
The establishment of lung and colon cancer diagnoses with the use 
of Artificial Intelligence is becoming a hot study topic. Lung as 
well as colon cancer are now the leading causes of cancer-related 
mortality. General structure of Lung cancer classification Model 
is depicted in Figure 1. 

Lung cancer has the highest incidence and mortality rate 
of any cancer in the world. Dataset selection over testing and 
training, image pre-processing with the specified image dataset, 
extracting the features depending on numerous factors, and image 
classification utilizing classification methods are the four basic 
stages in medical image classification. Texture, colour structure, 
and shape extraction are some of the more traditional methods 
for extracting feature information. Due to their sensitivity to light 
intensity, quantization mistakes and computational complexity on 
representation, these extracted features are fraught with serious 
problems (8). Other issues include extracting geographical infor-
mation, indexing and retrieving images. Machine learning may 
be used to improve the accuracy and precision of classifications 
because of these issues. 

A range of feature extraction, feature optimization, and 
classification approaches may be used to biomedical images via 
machine learning and artificial intelligence in order to detect and 
treat illness in its earliest stages (9). Extraction of features using 
an existing system while building a machine learning classifier 
based atop, or refinement of the existing trained model with 
learned weights as starting parameters, are two examples of how 
transfer learning may be used in practise. Using a pre-trained 
CNN as a fixed feature extractor for the job at hand is typical 
practise when working with convolutional neural networks. In 
order to get the most out of transfer learning, it is not necessary 
to create new machine learning models for each and every opted 
activity. Healthy and cancer‑affected lungs are shown in Figure 2. 

In today’s world, Transfer Learning 
as well as Artificial Intelligence are 
playing a crucial role, especially in 
the medical sector’s diverse area. 
In order to identify the ailment, 
these computational intelligence 
tools do not hurt the patient (10). 
According to recent data, one of 
the most taxing duties in medical 
treatment is the diagnosis and cat-
egorization of lung cancer disease. 
In order to deploy algorithms for 
cancer classification and early 
detection, it is challenging to build 
a medical image dataset for train-
ing a machine learning model. For 
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Fig. 1. General structure of lung cancer classification model. 
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Fig. 2. Healthy and cancer‑affected lungs. 
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example, we have considered a medical image dataset with 4,500 
colour images divided into five categories, each of which had 
900 images of cancerous or benign tissue in the colon or lung, as 
well as images of cancerous or benign squamous cell carcinoma 
in the lung (11). 

The key contributions of this research articles are as follows: 
•	 For the identification of lung cancer in CT scan images, this 

research offers an all-inclusive and relative scheme for as-
sessing and relating computerised comprehensive and limited 
feature‑extraction algorithms. 

•	 A total of eight distinct kinds of pre-processed image charac-
teristics are evaluated in this framework based upon the global 
and local feature modelling approaches. 

•	 Three well-known machine learning methods, namely Support 
Vector Machines, K-Nearest Neighbors (KNN), and Naïve 
Bayes are also examined and compared with the proposed 
classifier model. 

Literature survey 
Researchers have used a variety of ways to analyse images, 

extract characteristics, and use machine learning techniques in 
order to diagnose lung cancer. Images of CT scans were segmented 
using image segmentation and subsequently classified using con-
volutional neural networks to detect lung nodules, according to 
Jin et al. Their method has a success rate of 85%. The researchers 
used a genetic algorithm to design a CAD system for detecting 
lung nodules. Depending on the intensity pixel value, they first 
segmented CT scans to identify areas of interest (ROIs) (12). To 
examine the images in all directions, they used varied thresholds. 
They employed an evolutionary algorithm to categorise each 
nodule after lowering the number of ROIs (depending on superior 
and inferior slices). 

An overall sensitivity of 93.4% was recorded across 276 CT 
scans. It was discovered that the model could identify lung cancer 
based upon analysing the CT images by utilising textural cues and 
morphological procedures. The images were first clustered using 
the super pixel technique, and then morphological processes were 
applied. This contour ‑based algorithm was then utilised to identify 
the tumours in the images captured by the camera. Dice similar-
ity was 84.88% for their system (13). The authors came up with 
a brand-new strategy for spotting lung nodules. With respect to 
force, form, quality, and framework, they used 128 characteristics. 
They were only able to achieve the sensitivity of 80%. 

A KNN (K-Nearest Neighbour) classifier built on the nearest 
mean were used to assess SVM’s performance. SVM outperformed 
the other approaches, according to their research (14). There is now 
a CAD method to categorise lung tumours into benign and malig-
nant, according to Gonzalez and Ponomaryvo. Pre – processing, 
lung delineation, nodule identification, and classification were all 
incorporated in the proposed system. They used thresholding and 
morphological processes in the pre-processing stage to calculate 
multiple masks. Previous knowledge along with the similarity 
measure characteristics such as area, irregularity, concentricity, 
and partial measurement are characteristics was utilised to estab-
lish the Region of Interest (ROI). In this approach, they used the 

SVM technique to classify the data set. They recorded a 78.08% 
accuracy rate (15). 

A novel CAD system was created by the authors. From the 
LIDC-IDRI database, they chose 420 instances at random. When 
looking for potential nodules, the system employed the Watershed 
approach to help separate them from other probable structures. 
Features were extracted using a HOG (Histogram of Oriented Gra-
dients) method. SVM and a rule-based classifier were employed 
to minimise false positives. With a sensitivity of 93.9%, they used 
a cross‑validation approach that has ten folds (16). 

In order to detect lung nodules, a CAD system was created 
by Silva et al. In total, 333 tests were classified using SVM. The 
accuracy of their proposed approach was 95.21%. RSM (Random 
Subspace Method) was utilised by the authors to create a CAD 
system (17). RSM was used to identify pulmonary nodules in 
two stages of a  supervised learning system. In the dataset of 
126  samples, they collected 218 characteristics and used RSM 
and genetic algorithms to build a classifier. The proposed method 
has an accuracy rate of 88.9%. 

To detect and identify lung cancers, the researchers em-
ployed EK-Mean clustering. They first used a median filter to 
eliminate the background noise. After that, they clustered and 
segmented the data using the K‑means technique. The GLCM 
( grey-level co-occurrence matrix) was then utilised to excerpt 
characteristics like homogeneity, peak signal to noise ratio, 
correlation and entropy. That method has a 90.7% success rate. 
Linear Discriminant Analysis (LDA) was utilised by Aggarwal 
et al to categorise lung nodules and differentiate them from 
normal architecture. Segmentation was done using thresholding 
and grey-level features (18). 

Using this method, an accuracy of just 84% could be 
achieved. Lung cancer was detected using CT scan images and 
marker-controlled watershed segmentation. Gabor filters were 
utilised as a pre-processing step to improve the image quality. 
An accuracy rate of 90% was reached in their method (19). In 
the segmentation process, an adaptive threshold technique was 
implemented. In order to detect lung nodules, the researchers 
followed a three- step procedure. A thresholding technique was 
first used to isolate the lung area in CT scans. Secondly, another 
active contour model was used to eliminate the lung vessels 
(ACM). They then used a  form filter to identify the nodules. 
Finally, they employed a classifier to discriminate between real 
and false positive nodules based on their characteristics. The 
detection rate of this system was 85% (20). 

A thresholding and region-growing technique was employed 
by Liu and colleagues. For segmentation, they employed pul-
monary parenchyma, and for ROI extraction, they used a circle 
shape descriptor. The system’s sensitivity was 85.6%, while its 
false positive rate was 13.4%. Solitary pulmonary nodules can 
be detected by authors (12), who created a computer-aided de-
tection method. Segmentation was done using the best possible 
thresholding and neighbourhood (21). Dot enhancement filtering 
and angle histograms were employed to identify the nodule. 
Classification was accomplished by the application of support 
vector machines (SVM). A 97.5% sensitivity was achieved by 
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the system. However, there were no further performance metrics 
available. 

In the literature, there are a variety of approaches for extract-
ing features. Grayscale contrast, grayscale correlation grayscale 
energy monochrome uniformity, sample variance, and Haar wave-
let are among the possible candidates for an intensity histogram. 
Other possibilities include histograms of directed gradients and 
Gabor filters. For a variety of datasets, deep learning algorithms 
have been used to classify histopathology images of various 
cancers. For the pre-training of a neural network for the detec-
tion of lung and colon cancer, Garg et al in 2020 employed the 
LC 25000 image dataset. Colon and lung cancers were studied 
individually, and eight CNN-based algorithms were used to cat-
egorize cancer and normal images accurately. For the whole lung 
and colon dataset, there are no results for accuracy, F1 score, and 
other metrics (22). 

Classification of lung cancer from cytological images using 
Deep Convolutional Neural Networks (DCNNs) achieved a 71% 
accuracy rate in 2017. Only 71% of classifications are accurate 
due to the implementation of DCNN, which consists of 3 conv 
layers, 3 pooling layers, along with 2 completely linked layers. 
Only lung cancer was considered when creating the image dataset. 
By cropping and resampling, the images were scaled to 256 x 256, 
which caused quantization errors. Deep learning algorithms and 
histopathological imaging can considerably benefit patients with 
lung cancer, according to Wang et al in 2019. After scaling the 
images to 300 x 300 pixels, researchers utilised a neural network 
to categorise images of healthy and cancerous tissues, but were 
only able to reach 89.8% accuracy. 

Sophisticated sampling of tissue areas was used by Shapcott 
and colleagues in 2019 to improve performance and accuracy in 
colon cancer cell detection using deep learning. Deep learning 
was used to extract cell density and morphological parameters 
for colon cancer diagnosis and prediction, which the authors 
used for categorization. In 2021, Nur Ibrahim et al introduced 
a  non-complex deep learning model that can detect four dif-
ferent types of colon cancer with an 83% accuracy rate for the 
dataset 2500, which includes tumour, complicated lymphoma, 
and stroma. Using histology images, the authors were able to 
extract characteristics from 150 x 50-pixel textures and present 
the results for four different forms of colon cancer. Smaller data-
sets have been utilised and the accuracy has also been reduced. 
Neither the sensitivity nor the selectivity of the classifiers can 
be determined (23). 

Using Machine Learning, Wang et al in 2021 developed 
gender-specific lung cancer classification algorithms with 
82.9% and 73.2% accuracy rates for women and men, respec-
tively. It is necessary to do more research in order to identify 
any gender-specific characteristics which might or might not 
exist in order to improve accuracy. There is certainly room for 
improvement in this area, and we need a system that is more 
accurate regardless of gender. Deep residual learning was 
used by Bhatia et al to demonstrate a  method for detecting 
lung cancer from a CT image. Preprocessing approaches have 
been described by the researchers as a pipeline for highlighting 

lung malignant spots and extracting the characteristics utilising 
models such as UNet and ResNet. 

Many classifiers, such as XGBoost as well as Random For-
est, are applied to the feature set, and the unique predictions are 
then combined to form ensembles for predicting whether or not 
a CT scan depicts malignant tissue (24). LIDC-IRDI outperforms 
traditional approaches in terms of accuracy by 84%. Extraction 
of FCH histogram features. Because of lighting fluctuations and 
quantization issues, it was also employed to minimise the noise, 
The purpose of these feature‑extraction algorithms is image index-
ing and retrieval, not classification. 

Proposed system 

Preliminaries 
The most important ideas and phrases in this literature are 

discussed in detail in this chapter. 

Input images 
Medical images come in a variety of forms. Lung cancer is 

frequently detected by the use of CT scan images. Accurate cancer 
detection systems require a comprehensive data set that includes 
images of both healthy and pathologic tissues in order to be suc-
cessful. As a  result, the computer is better able to distinguish 
between regular and aberrant images. One type of CT scanner 
captures each CT scan image. As a result, the coordinate system 
of each scanner was used to generate a range of distinct sizes and 
orientations. CT scan findings must be aligned with a structural 
model that replaces the initial system that was exclusive to every 
scanner for uniformity. Anatomical characteristics in each image 
are aligned to a shared‑reference physiological coordinate system 
through image warping. Depending on how each CT scan image 
is obtained, certain undesirable regions such as areas outside the 
body, may be present. Image cropping is designed to eliminate all 
undesired areas from image graphs. 

Feature extraction 
Pixel intensity, brightness, histogram of directed gradients, 

Gabor and entropy filters as well as the grayscale sharpness and 
grayscale relationship and energy measures, as well as standard 
deviation and Haar wavelet, are a few of the possible contenders. 
For example, the intensity histogram is a visual characteristic that 
illustrates how frequently brightness of every pixel recurs. Thus, 
the number of intensity value repeats determines this characteristic, 
without regard to the image’s pixel positions. There are several 
more features that may be calculated as follows: the histogram of 
directed gradients cells has been created within the image. The 
gradient’s direction in each cell is then calculated. In the end, a his-
togram is constructed from the counts of each gradient direction. 
A Gabor filter consisting of a Gaussian window is used to examine 
the local surface frequency of the image. To further enhance an 
image’s unpredictability and entropy is another characteristic that 
measures the scientific measurement of the unpredictability of pixel 
values. The entropy value (Ien) can be estimated by considering n 
normalised histogram numbers as: 
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3.1.1 Input Images

Medical images come in a variety of forms. Lung cancer is frequently detected by the
use of CT scan images. Accurate cancer detection systems require a comprehensive data set
that includes both normal and pathologic images in order to be successful. As a result, the
computer is better able to distinguish between regular and aberrant images. One type of CT
scanner captures each CT scan image. As a result, the coordinate system of each scanner was
used to generate a range of distinct sizes and orientations. CT scan findings must be aligned
with an structural model that replaces the initial system that was exclusive to every scanner
for uniformity. Anatomical characteristics in each image are aligned to a shared reference
physiological coordinate system through image warping. Depending on how each CT scan
image is obtained, certain undesirable regions, such as areas outside the body, may be
present. Image cropping is designed to eliminate all of the undesired areas from imagegraphs.

3.1.2 Feature Extraction

Pixel intensity, brightness, histogram of directed gradients, Gabor and entropy filters
as well as the grayscale sharpness and grayscale relationship and energy measures, as well as
standard deviation and Haar wavelet, are a few of the possible contenders. For example, the
intensity histogram is a visual characteristic that illustrates how frequently brightness of
every pixel recurrences. Thus, number of intensity values repeats determines this
characteristic, without regard to the image's pixel positions. There are several more features
that may be calculated as follows: the histogram of directed gradients Cells have been created
within the image. The gradient's direction in each cell is then calculated. In the end, a
histogram is constructed from the counts of each gradient direction. A Gabor filter consisting
of a Gaussian window is used to examine the local surface frequency of the image. To
further enhance an image's unpredictability and entropy is another characteristic that
measures the scientific measurement of the unpredictability of pixel values. The entropy
value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) can be estimated by considering 𝑒𝑒𝑒𝑒 normalised histogram numbers as:

𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 (1)

All the grayscale features are providing a unique pixel value to define the image that
is being considered. The contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) that gets the pixel differences
of adjacent pixels of an image can be estimated as:

𝐼𝐼𝐼𝐼 = ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) (2)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) can be estimated as:

𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ ∑ (𝑥𝑥𝑥𝑥,)−𝜇𝜇𝜇𝜇r𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇r𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
(3)

where 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 represents the mean pixel values of the row wise and column wise pixels
respectively. The various pixels and how they are organised are analysed by the metric
known as uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) that can be calculates as:

𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒 = ∑𝑥𝑥𝑥𝑥, 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 (4)

Gray-level co-occurrence matrix proximity to orthogonal is quantified using this
metric known as homogeneity of the neighbourhood pixels 𝐼𝐼𝐼𝐼ℎ and can be calculated as:
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Gray-level co-occurrence matrix proximity to orthogonal is 
quantified using this metric known as homogeneity of the neigh-
bourhood pixels 𝐼ℎ and can be calculated as: 

𝐼𝐼𝐼𝐼ℎ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 
 

 𝑥𝑥𝑥𝑥, 1+|𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦| 
(5)

To find out the distribution of pixel data throughout the image, we are using the
variance and the standard deviation measures of the given CT image. We are estimating the
metric (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) for 𝑃𝑃𝑃𝑃 number of total pixels as follows:

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = √∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)−𝜇𝜇𝜇𝜇)2 

𝑃𝑃𝑃𝑃−1 
(6)

Also, we are assuming one dimensional Haar wavelet model for the discretised image
as follows:

1, 𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 
(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 

0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 
(7)

We can also consider two dimensional images and the model can be represented as:
𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) (8)
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

3.1.3 Machine Learning Models

A technique must be devised to identify normal as well as abnormal sections in the
images after characteristics have been retrieved. There is a slew of machine learning
algorithms out there. Random forests, SVM, decision trees, KNN (K-Nearest Neighbours),
and Naïve Bayes are well-known approaches. Classifying feature vectors into abnormal and
normal categories is done using the Support Vector Machine (SVM) approach Analysis of a
labelled collection of vectors is used to learn classifications, which are subsequently used to
categorise unlabelled vectors as belonging to one of two distinct classes. This classifier
determines the optimum hyper-plane for dividing the subspace into two distinct areas, then
uses SVM to distinguish the two classes. The proposed system architecture is shown in
Figure 3.
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We can also consider two dimensional images and the model can be represented as:
𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) (8)
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

3.1.3 Machine Learning Models

A technique must be devised to identify normal as well as abnormal sections in the
images after characteristics have been retrieved. There is a slew of machine learning
algorithms out there. Random forests, SVM, decision trees, KNN (K-Nearest Neighbours),
and Naïve Bayes are well-known approaches. Classifying feature vectors into abnormal and
normal categories is done using the Support Vector Machine (SVM) approach Analysis of a
labelled collection of vectors is used to learn classifications, which are subsequently used to
categorise unlabelled vectors as belonging to one of two distinct classes. This classifier
determines the optimum hyper-plane for dividing the subspace into two distinct areas, then
uses SVM to distinguish the two classes. The proposed system architecture is shown in
Figure 3.
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belonging to one of two distinct classes. This classifier determines 
the optimum hyper-plane for dividing the subspace into two distinct 
areas, then uses SVM to distinguish the two classes. The proposed 
system architecture is shown in Figure 3. 

With this hyperplane, it is possible to maximize the margin, 
ensuring that feature vectors closest to the hyperplane on either 
side have the most space within the partitions. It is the decision 
boundary, a hyper-plane that divides the different classes of people. 
Class 1 is reserved for data points above this line. Linear SVM is 
the term used to describe the approach that calculates the values 
of and b with the widest margin available. Each extracted feature 
is evaluated to a set of previously labelled feature vectors. The 
majority of adjacent labelled feature vectors are used to derive 
the label for the feature vector. In order to discriminate between 
positive and negative examples, the Random Forest learning 
approach uses a  series of heterogeneous decision tree models. 
A random sample of a dataset is used to build each decision tree. 
Decision tree models are used to compare feature vectors to the 
previously generated decision tree models. All of the decision 
trees’ predictions are gathered together. The feature vector’s label 
is chosen by acclamation from all of the decision tree predictions 
that have been made. 

The cross-validation approach may be used to test and evalu-
ate the results of various feature extraction techniques and deep 
learning systems. All labelled feature vector sets are separated 
into eight separate parts, with seven of them utilised in training 
and one in testing, respectively. There are 8 repetitions of the 
method to ensure that each division is tested once. Each perfor-
mance metric is given ten values, which are then aggregated. 
There are a  variety of ways to measure performance. Within 
research, some researchers have employed measures of efficiency, 
utilising specificity as along with sensitivity to measure precision. 
It is the system’s capacity to discriminate between normal and 
abnormal instances that is the measure of accuracy. Specificity 
demonstrates the system’s capacity to recognise normal cases, 
while sensitivity demonstrates the system’s ability to identify 
aberrant cases. 

In order to develop global models, visual characteristics are 
taken from the complete image. As a  result of extracting these 
various forms of information, a  feature vector is created. Us-
ing them, the global recognition models may be computed and 
constructed. The samples have been twisted, gathered, followed 
separated among a number of local chunks in order to be able to 
locate the image areas containing questionable material. The image 
characteristics of the local block are extracted in each local block. 
Local blocks are represented by a  feature vector that includes 
the extracted feature types. They are then utilised to create and 
calculate the local detection methods. 

Algorithm 1: Feature Extraction 
Input: Set of CT images 𝐼1, 𝐼2, 𝐼3 … 
Output: Features from the images 
1.	 For each image 𝐼𝑛 do 
	 1.1	 Find co-ordinate values of image 
	 1.2	 Mark anatomical control points of image 

	 1.3	 Complete Image warp process 
2.	 Compute geometric transformation for the sample image 
3.	 Crop the image by choosing cropping points as 𝐼(𝗑, 𝑦) such 

that x and y are extreme points of the image 
4.	 Generate normalised intensity histogram by estimating
		

The images are partitioned into a number of regional blocks that construct ROIs
during the Local Phase. Feature vectors are generated from the extracted feature of the image
blocks using the kinds of visual features that worked well all through the Strategic Phase.
Using the learning techniques that worked effectively in the Strategic Phase, those feature
vectors are therefore utilised to create machine learning models. To find the best number of
blocks for each image, we test with varying quantities of blocks per image, including just one
block. The performance has been evaluated and related to the performance of the existing
approaches.

This study relied on a collection of 800 CT scans. In total, there were 400 unusual
instances and 400 normal instances. The images were chosen at random from Kaggle's
collection of thousands of images. Prior to undergoing any therapy or surgery, these
individuals underwent diagnostic CT scans. A CT scan produces a stack of slices, and each
image reflects a particular slice from that stack. A CT scanner's slice thickness ranges
between 3 and 6 mm. There are more than 3000 images in this collection from a variety of
patients. The training phase of our algorithm to determine lung cancer using CT scan data in
the global phase. Data pre - processing, extraction of features, and feature learning are all
steps in the process. In the testing stage, the model's performance is evaluated based on the
results of the learning process. Various feature extraction and learning techniques are applied.

Algorithm 1: Feature Extraction
Input: Set of CT images 𝐼𝐼𝐼𝐼1, 𝐼𝐼𝐼𝐼2, 𝐼𝐼𝐼𝐼3 … 
Output: Features from the images

1. For each image 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒 do
1.1. Find co-ordinate values of image
1.2. Mark anatomical control points of image
1.3. Complete Image warp process

2. Compute geometric transformation for the sample image
3. Crop the image by choosing cropping points as 𝐼𝐼𝐼𝐼(𝗑𝗑𝗑𝗑, 𝑦𝑦𝑦𝑦) such that x and y are

extreme points of the image
4. Generate normalised intensity histogram by estimating 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒.
5. Calculate energy of the image as 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒 = ∑𝗑𝗑𝗑𝗑,𝑦𝑦𝑦𝑦 𝑒𝑒𝑒𝑒 (𝗑𝗑𝗑𝗑, 𝑦𝑦𝑦𝑦)2 
6. Find the contrast value with 𝐼𝐼𝐼𝐼 = ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝗑𝗑𝗑𝗑 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝗑𝗑𝗑𝗑 − 𝑦𝑦𝑦𝑦) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 𝗑𝗑𝗑𝗑 𝑦𝑦𝑦𝑦 
7. Establish the correlation matrix by calculating correlation values of the

pixels
from 𝐼𝐼𝐼𝐼 = ∑ ∑ 𝑒𝑒𝑒𝑒(𝗑𝗑𝗑𝗑,𝑦𝑦𝑦𝑦)−𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

8. Extract the standard deviation feature with 𝐼𝐼𝐼𝐼 = √∑𝗑𝗑𝗑𝗑,𝑦𝑦𝑦𝑦(𝑒𝑒𝑒𝑒(𝗑𝗑𝗑𝗑,𝑦𝑦𝑦𝑦)−𝜇𝜇𝜇𝜇)2
 

𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃−1 
9. Establish Haar wavelet model as 𝑚𝑚𝑚𝑚𝗑𝗑𝗑𝗑 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦 , 2𝗑𝗑𝗑𝗑 ).

𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

To create the final lung cancer prediction model, this study evaluates the effectiveness
of each feature extraction and learning approach. Each image in our dataset is subjected to
two image pre-processing steps: image warping and image cropping. Anatomical control
points were manually indicated on 19 images to ensure that the structural characteristics were
aligned using a consistent structural organisation of the model. The corners of the lungs and
the corners of the heart were the sites of these control points. The images were then warped to
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blocks using the kinds of visual features that worked well all through the Strategic Phase.
Using the learning techniques that worked effectively in the Strategic Phase, those feature
vectors are therefore utilised to create machine learning models. To find the best number of
blocks for each image, we test with varying quantities of blocks per image, including just one
block. The performance has been evaluated and related to the performance of the existing
approaches.
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instances and 400 normal instances. The images were chosen at random from Kaggle's
collection of thousands of images. Prior to undergoing any therapy or surgery, these
individuals underwent diagnostic CT scans. A CT scan produces a stack of slices, and each
image reflects a particular slice from that stack. A CT scanner's slice thickness ranges
between 3 and 6 mm. There are more than 3000 images in this collection from a variety of
patients. The training phase of our algorithm to determine lung cancer using CT scan data in
the global phase. Data pre - processing, extraction of features, and feature learning are all
steps in the process. In the testing stage, the model's performance is evaluated based on the
results of the learning process. Various feature extraction and learning techniques are applied.
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1. For each image 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒 do
1.1. Find co-ordinate values of image
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of each feature extraction and learning approach. Each image in our dataset is subjected to
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points were manually indicated on 19 images to ensure that the structural characteristics were
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during the Local Phase. Feature vectors are generated from the extracted feature of the image
blocks using the kinds of visual features that worked well all through the Strategic Phase.
Using the learning techniques that worked effectively in the Strategic Phase, those feature
vectors are therefore utilised to create machine learning models. To find the best number of
blocks for each image, we test with varying quantities of blocks per image, including just one
block. The performance has been evaluated and related to the performance of the existing
approaches.
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collection of thousands of images. Prior to undergoing any therapy or surgery, these
individuals underwent diagnostic CT scans. A CT scan produces a stack of slices, and each
image reflects a particular slice from that stack. A CT scanner's slice thickness ranges
between 3 and 6 mm. There are more than 3000 images in this collection from a variety of
patients. The training phase of our algorithm to determine lung cancer using CT scan data in
the global phase. Data pre - processing, extraction of features, and feature learning are all
steps in the process. In the testing stage, the model's performance is evaluated based on the
results of the learning process. Various feature extraction and learning techniques are applied.
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To create the final lung cancer prediction model, this study evaluates the effectiveness
of each feature extraction and learning approach. Each image in our dataset is subjected to
two image pre-processing steps: image warping and image cropping. Anatomical control
points were manually indicated on 19 images to ensure that the structural characteristics were
aligned using a consistent structural organisation of the model. The corners of the lungs and
the corners of the heart were the sites of these control points. The images were then warped to

	 1.	Establish the correlation matrix by calculating correla-
tion values of the pixels from.

		   

The images are partitioned into a number of regional blocks that construct ROIs
during the Local Phase. Feature vectors are generated from the extracted feature of the image
blocks using the kinds of visual features that worked well all through the Strategic Phase.
Using the learning techniques that worked effectively in the Strategic Phase, those feature
vectors are therefore utilised to create machine learning models. To find the best number of
blocks for each image, we test with varying quantities of blocks per image, including just one
block. The performance has been evaluated and related to the performance of the existing
approaches.
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steps in the process. In the testing stage, the model's performance is evaluated based on the
results of the learning process. Various feature extraction and learning techniques are applied.
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To create the final lung cancer prediction model, this study evaluates the effectiveness
of each feature extraction and learning approach. Each image in our dataset is subjected to
two image pre-processing steps: image warping and image cropping. Anatomical control
points were manually indicated on 19 images to ensure that the structural characteristics were
aligned using a consistent structural organisation of the model. The corners of the lungs and
the corners of the heart were the sites of these control points. The images were then warped to
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The images are partitioned into a number of regional blocks that construct ROIs
during the Local Phase. Feature vectors are generated from the extracted feature of the image
blocks using the kinds of visual features that worked well all through the Strategic Phase.
Using the learning techniques that worked effectively in the Strategic Phase, those feature
vectors are therefore utilised to create machine learning models. To find the best number of
blocks for each image, we test with varying quantities of blocks per image, including just one
block. The performance has been evaluated and related to the performance of the existing
approaches.
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collection of thousands of images. Prior to undergoing any therapy or surgery, these
individuals underwent diagnostic CT scans. A CT scan produces a stack of slices, and each
image reflects a particular slice from that stack. A CT scanner's slice thickness ranges
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of each feature extraction and learning approach. Each image in our dataset is subjected to
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To create the final lung cancer prediction model, this study 
evaluates the effectiveness of each feature extraction and learning 
approach. Each image in our dataset is subjected to two image pre-
processing steps: image warping and image cropping. Anatomical 
control points were manually indicated on 19 images to ensure 
that the structural characteristics were aligned using a consistent 
structural organisation of the model. The corners of the lungs and 
the corners of the heart were the sites of these control points. The 
images were then warped to match with the respective chokepoints 
in our standard anatomical reference frame using these 19 control 
points. 

Proposed methodology 
To develop a  lung cancer diagnosis system using CT scan 

images, we present a framework for extracting global and local 
features that is both comprehensive and comparable. Features 
gleaned from the images are subjected to a bevy of categoriza-
tion algorithms. A Data Collection Process, the Strategic Process, 
and the Local Process are the three key sequential phases of this 
technique. The samples of medical images are gathered throughout 
the Data Collection stage. 

The acquired images are normalised with image distortion 
and clipping during the Global Phase. Each pre-processed image 
is then used to extract 8 distinct kinds of global characteristics. 
Each image receives 8 feature vectors as a result of this process. 
Machine learning methods are then applied to these feature 
vectors to create detection models. Afterwards, each detection 
model’s performance is tested and compared to that of the other 
detection models. 

The images are partitioned into a number of regional blocks 
that construct ROIs during the Local Phase. Feature vectors 
are generated from the extracted feature of the image blocks 
using the kinds of visual features that worked well all through 
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the Strategic Phase. Using the learning techniques that worked 
effectively in the Strategic Phase, those feature vectors are 
therefore utilised to create machine learning models. To find 
the best number of blocks for each image, we test with varying 
quantities of blocks per image, including just one block. The 
performance has been evaluated and related to the performance 
of the existing approaches.

This study relied on a collection of 800 CT scans. In total, 
there were 400 unusual instances and 400 normal instances. The 
images were chosen at random from Kaggle’s collection of thou-
sands of images. Prior to undergoing any therapy or surgery, these 
individuals underwent diagnostic CT scans. A CT scan produces 
a stack of slices, and each image reflects a particular slice from 
that stack. A CT scanner’s slice thickness ranges between 3 and 
6 mm. There are more than 3,000 images in this collection from 
a variety of patients. The training phase of our algorithm to de-
termine lung cancer using CT scan data in the global phase. Data 
pre-processing, extraction of features, and feature learning are all 
steps in the process. In the testing stage, the model’s performance 
is evaluated based on the results of the learning process. Various 
feature extraction and learning techniques are applied to the re-
spective chokepoints in our standard anatomical reference frame 
using these 19 control points.

An anatomical coordinate system reference image and an 
image to be warped were marked with control points using 
a MATLAB programme. The control points in the chosen image 
were then aligned with those in our standard anatomical reference 
frame using a geometric transformation. For each of the 19 coordi-
nates in the sample image, an non-linear conversion was calculated 
that alters the selected one to match its (x,y) pixel coordinates that 
these already in the source images. 

To create distorted copies of all 1000 images in our dataset, 
we used a geometric modification that we calculated and applied 
to each individual image. As with the originals, these images have 
the same level of textural detail, but the control points have been 
aligned to match those in the source images instead. The previ-
ously twisted image is clipped. The topmost and bottom most 
coordinates, as well as the maximum and minimum points, were 
the cropping locations. Our suggested methodology relies heavily 
on the characteristics extracted from extracted images. Various 
feature extraction approaches are compared in this research. These 
feature categories are extracted from the entire image for global 
feature extraction. 

Extracted features for each image are generated using this 
method. After that, the learning process makes use of these feature 
vectors. To represent each image, a feature vector is constructed 
using the retrieved features. In order to develop the final detection 
model, these 8 feature vectors are employed as inputs in the learn-
ing process. To do this, a variety of algorithms are employed. The 
very similar pre-processing and segmentation techniques proce-
dures were used for every CT scan image. The learned algorithm 
categorises medical images as either benign or malignant. Table 1 
lists the feature‑extraction process steps and identified features of 
the proposed system.

Algorithm 2: Classification Model 
Input: CT image from the training and testing dataset rep-
resented with 𝐼1, 𝐼2, 𝐼3 … Output: Classified data as benign 
or malignant 
Steps: 
1.	 Get the training data images for training the classifier model. 
2.	 For each image 𝐼𝑛 do 

• 	 Get the features by feature extraction model. 
• 	 Estimate the correlation value as 
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5. Find the ���	value for the testing image. 
6. If (�����	for image ��	= 1 then 

Conclude benign 
Else 

Conclude malignant 
7. Compute loss function value for the classifier model. 
8. Update the learning function value to reduce the loss value. 
9. Obtain the metric values to analyse the performance of the classifier. 
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4.	 Compare with the discretised image model 

	 1, wℎ𝑒𝑟𝑒 0 ≤ 𝑙 ≤ 0. 5
		 𝑚(𝑙) = {−1, wℎ𝑒𝑟𝑒 0.  5 ≤ 𝑙 ≤ 1 

	0 , 𝑂𝑡ℎ𝑒𝑟wi𝑠𝑒 
5.	 Find the (𝑙) value for the testing image. 
6.	 If (𝑚(𝑙)) for image 𝐼𝑛 = 1 then 
	 Conclude benign Else 
	 Conclude malignant 
7.	 Compute loss function value for the classifier model. 
8.	 Update the learning function value to reduce the loss value. 
9.	 Obtain the metric values to analyse the performance of the 

classifier. 

The efficiency, specificity, and precision of each of the 
60 learned models were calculated using a k-fold cross‑validation 
approach. Global Training and Testing functions compare three 
machine learning algorithms with extracted image data to see 

Table 1. Feature extraction and identified features of proposed 
system.

Name of the feature Estimator 
Entropy value (𝐼𝑒𝑛) − ∑ 𝑛 log2 𝑛 

Contrast of the medical 
image (𝐼𝑐𝑜𝑛) 

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model
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(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 Two-dimensional Haar wavelet model 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) 
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

 

The adjacent pixel 
correlation (𝐼𝑐𝑜𝑟)

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model

𝑃𝑃𝑃𝑃 − 1 
1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 

(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 Two-dimensional Haar wavelet model 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) 
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

 

Uniformity (𝐼𝑒) 

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model

𝑃𝑃𝑃𝑃 − 1 
1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 

(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 Two-dimensional Haar wavelet model 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) 
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

 

Homogeneity (𝐼ℎ)

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model

𝑃𝑃𝑃𝑃 − 1 
1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 

(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 Two-dimensional Haar wavelet model 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) 
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

 

Standard deviation (𝐼𝑠𝑑)

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model

𝑃𝑃𝑃𝑃 − 1 
1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 

(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
0, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

 Two-dimensional Haar wavelet model 𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥 (i, j) = 2𝑦𝑦𝑦𝑦/2(2𝑦𝑦𝑦𝑦    , 2𝑥𝑥𝑥𝑥 ) 
𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 i−𝑎𝑎𝑎𝑎 j−𝑏𝑏𝑏𝑏 

 

One dimensional Haar 
wavelet model

Table 1. Feature extraction and identified features of proposed system

Name of the Feature Estimator
Entropy value (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − ∑ 𝑒𝑒𝑒𝑒 log2 𝑒𝑒𝑒𝑒 

 Contrast of the medical image (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) ∑𝑀𝑀𝑀𝑀ℎ ∑𝑀𝑀𝑀𝑀ℎ(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)2. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦) 
𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦 

 

The adjacent pixel correlation (𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∑ ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐 
Uniformity (𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒) ∑ 𝑒𝑒𝑒𝑒 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)2 

𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 
 

Homogeneity (𝐼𝐼𝐼𝐼ℎ) ∑ 
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 

𝑥𝑥𝑥𝑥, 1 + |𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦| 
Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 

 
One dimensional Haar wavelet model

𝑃𝑃𝑃𝑃 − 1 
1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0 ≤ 𝑙𝑙𝑙𝑙 ≤ 0.5 

(𝑙𝑙𝑙𝑙) = {−1, 𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 0.5 ≤ 𝑙𝑙𝑙𝑙 ≤ 1 
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Standard Deviation (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎) 

√∑𝑥𝑥𝑥𝑥,(𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) − 𝜇𝜇𝜇𝜇)2 
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which techniques outperform the others in terms of performance. 
Local training and testing functions then make advantage of the 
more effective features and techniques. Both global and local im-
ages warp and crop in the local phase of this process. Blocks are 
created for each twisted image in this step. We then employ the 
sorts of feature extraction that worked well during the Strategic 
Stage in each of the individual blocks. 

With P being the maximum number of pixels in the image, 
every feature type generates b feature vectors per image. Af-
terwards, each of the P feature vectors may be utilised to label 
a single block. All 400 anomalous images are examined to see 
which blocks have suspicious material in order to cut down 
on training and learning time. As a result, the feature extrac-
tion and training and learning algorithms do not include many 
blocks in anomalous images that do not contain any worrisome 
material. To put it another way, we only train our algorithms 
using the blocks of questionable material that appear in the 
anomalous images. Every ROI (Region of Interest) in a  test 
image is labelled as malignant or benign using these models 
in the test procedure. 

If an aberrant ROI is found in a test image, the entire image 
is considered abnormal. No abnormalities are found in any of the 
images; hence the image is categorised as normal. It is good to 
have training sets that comprise an equal amount of aberrant and 
normal examples for the purpose of training. That is why we went 
with 400 scans of pathological tissue and 400 scans of healthy 
tissue. In contrast, when the images have been broken down into 
individual blocks, there are numerous standard chunks compared to 
aberrant blocks. In each pathological tissue image, there may only 
be ten abnormal blocks in the 400 aberrant images. As a result, the 
number of normal blocks vs anomalous blocks inside the training 
set with that block is drastically skewed. 

Results and discussion 

On a system with an Intel Quad Core CPU at 3.7 GHz and 
16GB of RAM, MATLAB is used to conduct experiments. As 
previously stated, lung nodules from the Kaggle dataset are 
evaluated. Here, an image database is randomly partitioned into 
different sets via a  validation mechanism. Standard measures 
of specificity, sensitivity, and accuracy are used to compare the 
performance of different systems. Only the most relevant traits 
are considered, and they may not be quantified for categorization 
purposes. Table 2 compares various classifier algorithms and their 
prediction accuracy. 

Methods for selecting the most important distinguishing 
characteristics are anticipated. A  10-fold cross validation and 
classification are then done using the Improved Nave Bayes clas-
sifier. Predicted feature selection approaches are evaluated using 
classification accuracy and the strategy is compared with the most 
commonly used feature selection methods. A comparison is made 
between the performance of the upgraded Naïve Bayes classifier 
and the support vector machine (SVM) and k-NN classifier. 

The expected I-NB classification is investigated using the 
classification rate, which is the ratio of properly classified im-
ages to entirely classified CT lung images, specificity (SP), and 
sensitivity (SN). They performed better in the general strategy, the 
precision, responsiveness, and selectivity rates of the local feature 
extraction approach are described and analysed a 1 x 1 block to 
a 20 x 20 blocks. For eight image characteristics, SVM and generic 
model assesses the correctness, consideration and precision. Com-
parative analysis of prediction accuracy is depicted in Figure 4. 

When utilising SVM with global feature extraction, the find-
ings show that outcomes are obtained. A total of 78%, 79%, and 
81% of the metrics of performance were attained by the Gabor 
Filter, making it the top performer. However, we initially carried 
out multiple tests to discover the optimal k values for the global 
feature extraction technique of accuracy. Using a universal fea-
ture extraction technique, it reveals the k values that produced 
the greatest accuracy rates. For the 8 image features, KNN with 
global feature extraction was used to test accuracy, sensitivity, and 
specificity. Confusion Matrix for the proposed system is shown 
in Figure 5. 
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Table 2. Prediction Accuracy Comparison.

Classifier Prediction Accuracy (%) 
SVM 84.8 
KNN 86.5 
Naïve Bayes 83.67 
Proposed 87.52 



231

Murugaiyan SURESH KUMAR et al. Integrated global and local feature extraction and classification from CT images…

In terms of overall performance, the Gabor Filter was the 
most accurate with an accuracy of 65%, a sensitivity rate of 61%, 
and a specificity rate of 70%. A Nave Bayes method employing 
global feature extraction produced better results with the others. 
Its overall accuracy, sensitivity and specificity were all found to 
be at 66%, 60% and 71%, respectively, for the Gabor filter. ROC 
curve of the proposed system is shown in Figure 6. 

The findings also show that the Gabor Filter outscored the 
other feature extraction when using the proposed technique. We 
use a dataset of 800 medical images and the results of this study 
show that such local feature extraction strategy is superior to the 
global approach. In addition, it implies that the suggested strategy 
outperforms the existing approaches described within this study. 
For a variety of reasons, the study described here is superior to oth-
ers that have been conducted in the past. Performance comparison 
of classifiers is shown in Table 3. 

As a first step, the study used a  far bigger data set than is 
commonly used in the scientific literature. Compared to the lit-
erature, our study relies on a much larger data set of 800 CT scan 
images. Secondly, our study outperformed the approaches listed 
in the literature in terms of performance. An efficiency, sensitiv-
ity, and precision rates of 97% were reached. Also, whereas the 
mentioned study employed global detection approaches utilizing 
diverse machine learning algorithms, our research focuses on 
building the localized machine learning approach for detecting 
lung cancer. Figure 7 explains the training process of the proposed 
classifier model. 

Anatomical areas in CT scan images are critical to the inter-
pretation and diagnosis by radiologists, hence the building on 
localized learning models is essential. It’s possible that normal 
material in one section of the body is abnormal in another. We 
also compared the efficiency of 8 distinct characteristics that were 
extracted and three existing approaches in our study. This explains 
why our suggested local segmentation and learning technique is 
superior to other methods. 

Conclusion 

This study provided a methodology of global and local extrac-
tion of features for the diagnosis of lung cancer in CT scan images 
that is both comprehensive and comparable. In this work, three 
existing machine learning algorithms were evaluated using distinct 
image feature extraction approaches using internal and external 
feature extraction strategies. Anatomical structure, local extracted 
features, and model learning were enabled through image warp-
ing. There were eight different features extracted and tested in this 
study. The results showed that the proposed approach to feature 

extraction techniques surpassed all the existing approaches. The 
proposed feature extraction surpassed the typical global technique 
over study outcomes. Results from this study reveal that the sug-
gested strategy outperforms other referenced methods within the 
research not only in terms of obtaining greater accuracy but also 
in terms of utilizing 800 CT scan data and developing localized 
teaching methods for lung cancer diagnosis. Radiologists may be 
able to better diagnose lung cancer by utilizing SVM combined 
with Gabor Filter extraction of features to identify worrisome 
spots in CT scan images. 
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