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The role of endoplasmic reticulum stress-related genes
in the diagnosis and subtyping of non-alcoholic fatty liver disease
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Abstract. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease world-
wide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote
the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not
been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune
microenvironment of NAFLD patients and to construct predictive models. We screened 48 en-
doplasmic reticulum stress-related differentially expressed genes (ERSR-DEGs) using data from
two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs
are closely associated with immune-related pathways and functions. The immune infiltration
profile of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). There
were significant differences in immune cell infiltration and immune function between NAFLD
group and control group. Using 113 NAFLD samples, we explored two molecular clusters based
on ERSR-DEGs. A five-gene SVM model was selected as the best machine learning model, and
anomogram based on five-gene SVM model showed good predictive efficiency. The mRNA expres-
sion levels of POR, PPP1R15A, FOS and FAS were significantly different between NAFLD mice
and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We
established a promising and SVM-based predictive model to assess the risk of disease in patients
with ERS subtypes and NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the develop-
ment of hepatic steatosis without heavy alcohol consumption
or causes other than metabolic disorders (drugs or genetic
disorders) that constitute a metabolic syndrome. The preva-
lence of NAFLD has been increasing with the expansion of
the world economy and the improvement of living standards,
with a global prevalence of approximately 25% (Younossi et
al. 2016). Given the increasing understanding of the patho-
genesis of NAFLD and its high prevalence, experts have
proposed a clinical diagnosis — metabolic dysfunction as-
sociated with fatty liver disease (Eslam et al. 2020). The liver
pathology of NAFLD ranges from simple hepatic steatosis to
steatohepatitis, which increases the risk of developing cirrho-
sis and cancer (Powell et al. 2021). Despite rapid progress in
clinical research into NAFLD treatments as new targets and
diagnostics emerge, our understanding of NAFLD remains
poor (Friedman et al. 2018). Hence, further illumination of
the molecular pathogenesis of NAFLD is necessary for better
treatment of NAFLD.

NAFLD is characterized by the synthesis and accumula-
tion of hepatic triglycerides and the lipotoxicity of fatty acids,
free cholesterol, and other lipid metabolites, leading to mi-
tochondrial dysfunction with oxidative stress, endoplasmic
reticulum stress (ERS), activation of the unfolded protein
response, and ultimately chronic liver disease (Yazici and
Sezer 2017). Hepatocytes are responsible for lipogenesis,
cholesterol biosynthesis, glucose, and xenobiotic metabolism.
Hepatocytes contain an abundance of rough endoplasmic
reticulum and smooth endoplasmic reticulum to meet the
metabolic demands of the individual (Wang and Kaufman
2016). In eukaryotic cells, the endoplasmic reticulum is a key
organelle for protein folding and quality control, as well as
for regulating intracellular calcium homeostasis and steroid
molecule synthesis. The endoplasmic reticulum’s homeosta-
sis is crucial to the physiological functions of normal cells
(Pagliassotti 2012). When misfolded protein accumulation
in the endoplasmic reticulum exceeds a critical threshold,
endoplasmic reticulum homeostasis is disrupted, and cells
initially trigger an adaptive signaling pathway called the un-
folded protein response (UPR). UPR reduces secreted protein
load, enhances protein folding (transcription of molecular
chaperones and folding enzymes), and attempts to correct this
by promoting autophagy and endoplasmic reticulum associ-
ated degradation, which increases clearance. UPR is initiated
by three endoplasmic reticulum transmembrane proteins:
PKR-like ER kinase (PERK), inositol-requiring enzyme 1
(IRE-1), and activating transcription factor-6 (ATF-6). Under
normal conditions, IRE1, PERK, and ATF6 remain inactive
after binding to GRP78. Once ERS occurs, GRP78 dissociates
from the ERS sensor and activates three branches (Doultsinos
et al. 2017). IRE1a-XBP1 pathway regulates hepatic lipid

metabolism through low-density lipoprotein secretion and
lipogenesis (Wang et al. 2012). Activation of the PERK path-
way inhibits the translation of IkB, increases NF-kB activity,
and promotes the secretion of TNFa, IL-1f, and IL-6 (Meares
etal. 2014). Liver biopsies from non-alcoholic steatohepatitis
(NASH) patients revealed an increase in ERS marker GRP78
and the pro-apoptotic protein CHOP compared to patients
with hepatic steatosis alone, which supports the idea that
ERS-induced apoptosis contributes to the transition from
steatosis to NASH and beyond (Gonzalez-Rodriguez et al.
2014). This finding suggests the involvement of ERS in the
onset and progression of NAFLD. Considering the key role
of ERS in the progression of NAFLD, reticulum stress-related
genes (ERSGs) may become potential biomarkers and impor-
tant targets for treating NAFLD.

The present study used the GEO database to analyze the
endoplasmic reticulum stress-related differentially expressed
genes (ERSR-DEGs) and immune signatures between normal
and NAFLD samples. Enrichment analysis of these ERSR-
DEGs has the potential to identify biological pathways that
play a key role in the development of NAFLD. We divided
113 NAFLD patients into two groups based on the screened
48 ERSR-DEGs, and the differences in immune cells between
the two groups were further analyzed. Various machine
learning models are also applied to build disease prediction
models. Multiple metrics are used to evaluate the effective-
ness of the predictive model. The model was also validated in
a mouse model of high-fat diet-induced NAFLD, providing
anew perspective on the molecular mechanisms underlying
NAFLD pathogenesis. The flow chart for this study is shown
in Figure S1 (in Supplementary material).

Materials and Methods

Acquisition of datasets and ERS-related genes

We conducted a systematic search of the Gene Expression
Omnibus database (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) using the terms: “Homo sapiens” and “NAFLD”. The
GSE89632 (Arendt et al. 2015) dataset (GPL14951 platform)
and the GSE164760 (Pinyol et al. 2021) dataset (GPL13667
platform) were selected as training sets, and a total of 30 nor-
mal and 113 NAFLD liver tissue samples were included.
The GSE151158 (Kriss et al. 2020) dataset (GPL28577 plat-
form) and the GSE66676 (Xanthakos et al. 2015) (GPL6244
platform) were selected as validation sets. The GSE151158
dataset contained 21 normal and 40 NAFLD liver tissue
samples. The GSE66676 dataset contained 34 normal and 33
NAFLD liver tissue samples. All NAFLD samples included
were diagnosed by liver biopsy, and for healthy samples
by imaging and histology in all datasets. Then we used the
“limma” and “sva” packages in R software (version 4.2.2) to
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perform normalization and batch effect correction on the
training set data (Leek et al. 2012).

ERSGs were obtained from the GeneCards database
(https://www.genecards.org) and genes with a correlation
score >7 were extracted from this study (Safran et al. 2010).

Identification of differentially expressed genes associated
with NAFLD and ERS

We used the R package “limma” to identify differentially
expressed genes (DEGs) between NAFLD and normal liver
tissue by Student’s ¢-test (Ritchie et al. 2015). Genes with
a p-value of < 0.05 and |logFC]| > 0.5 were considered DEGs.
Finally, the DEGs were intersected with ERSGs, and the in-
tersected genes were the ERSR-DEGs in NAFLD. Moreover,
volcano plot is based on differential expression data using
the “ggplot2” package, and gene matrix heat plot using the
“heatmap” package.

Functional and pathway enrichment analysis

The R packages “clusterProfiler” and “org.Hs.eg.db” were
used to elucidate the potential gene function annotation
and enrichment pathways associated with ERSR-DEGs (Yu
et al. 2012). Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were
performed to determine statistically significant enrichment
using an adjusted p value < 0.05 as the cut-off criterion by
Student’s t-test. Histograms and bubble plots were generated
with the R package “ggplot2”.

Immune infiltration analysis for NAFLD

Assessment of immune infiltration status between nor-
mal and fatty liver samples using single sample gene set
enrichment analysis (ssGSEA) to calculate the normal-
ized enrichment score (Hanzelmann et al. 2013). We used
Mann-Whitney U-test to screened samples using p < 0.05.
An immune infiltration heat map was produced using the
“heatmap” package. Immune cell levels between NAFLD and
control were visualized using the “vioplot” package.

Predictive modeling based on various machine learning
techniques

We applied the “caret” R package to build machine learning
models, including random forest models (RF), support vec-
tor machine models (SVM), and extreme gradient boosting
(XGB). The residual distributions and feature importance
between these machine learning models are also visualised.
The aim of RF is to reduce the number of variables required
to obtain a prediction in order to reduce the data collec-
tion burden and increase efficiency (Rigatti 2017). SVM is

a powerful feature selection algorithm in machine learning
classification techniques. The algorithm has good robust-
ness and is now widely used to classify data (Speiser et al.
2019). The XGB algorithm is a representative algorithm
based on integral lift, which compensates for the overfitting
problem of the gradient lift model. The region under the
receiver operating characteristic (ROC) curve is displayed
using the “proc” R package. Therefore, the top five most
significantly differentially expressed gene genes from the
optimal machine learning model were used as the hub genes
relevant to NAFLD. ROC curve analysis was performed in
the GSE151158 and GSE66676 dataset to validate the diag-
nostic value of this model. Finally, we also used spearman
correlation analysis to explore the relationship between the
key predictive genes and clinical indicators. p < 0.05 was
considered statistically significant.

Construction and validation of a nomogram

A nomogram was developed using the “rms” R package to
assess the occurrence of NAFLD. Scores for each gene in
NAFLD were obtained, summing the scores for these key
genes and predicting the prevalence of NAFLD based on the
scores. Validation by calibration curves and decision curve
analysis (DCA) curves to measure the recognition capability
of the nomogram.

Subclusters analysis with 48 endoplasmic reticulum stress-
related genes

The “consensusclusterplus” package can be used to iden-
tify patterns associated with ERSGs (Wilkerson and Hayes
2010). First, only the disease group sample was retained,
and NAFLD patients were divided into subgroups with
maximum subgroup classification k = 9, and the optimal
subgroup was selected. Subsequently, a principal component
analysis (PCA) was performed to quantify the endoplasmic
reticulum stress pattern and to further determine whether
the above groupings were correct. The R software pack-
ages “limma” and “heatmap” were then used to explore
the clustered ERSR-DEGs and to study ERSR-DEGs with
significant features of molecular subtypes. We performed
gene set variance analysis (GSVA) using the marker gene set
(C2.cp.kegg.symbols.gmt, C2.go.symbols.gmt) sourced from
the MSigDB database. We then analyzed gene enrichment
signatures using the R package “profiler”. The results can be
visualized using the “ggplot2” package.

Animal model and experiment design

Twenty male C57BL/6] mice, body mass 23.45 + 1.22 g,
6 weeks old, were purchased from the Liaoning Provincial
Laboratory Animal Resource Centre (Liaoning, China).
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Before animal testing, all mice were habituated for 7 days
at a suitable temperature and a light/dark cycle of 12 hours.
Animal management and experimental procedures are in
strict compliance with the standard requirements of the
Laboratory Animal Centre of the Fourth Hospital of Harbin
Medical University (2022-DWSYLLCZ-20). All mice were an-
esthetized using 2% isoflurane after 12 weeks. After mice were
sacrificed by cervical dislocation, liver tissues were collected.

After habituation, 20 mice were randomly divided into
the normal control (NC) group (n = 10) and NAFLD group
(n=10). The normal control group was fed with the standard
chow diet (SCD), and the NAFLD group was fed with high-
fat diet (HFD) (60% fat) (D12492, xiaoshuyoutai, Beijing,
China). Both groups of mice were executed after 12 weeks.

Quantitative real-time PCR

Total RNA was extracted from liver tissue using TRIzol rea-
gent (Invitrogen, Carlsbad, CA, USA), and cDNA was syn-
thetized using PrimeScript reverse transcriptase (Takara, Ku-
satsu, Japan). Then, 2*SYBR Green qPCR (Vazyme, Nanjing,
China) was used to analyze gene expression. 2~*** method
is used to analyze the expression level of the target gene, and
the result is controlled by B-actin. Primer sequences in this
study are listed in Table S1 (in Supplementary material).

Triglyceride and cholesterol levels, histology

Mice’s liver pathological damage was measured by hema-
toxylin and eosin (H&E) staining. Oil red O staining was
used to detect liver lipid deposition. Total triglycerides (TG)
and Total cholesterol (TC) were determined using a TG kit
and TC kit (Jiancheng, Nanjing, China), according to the
manufacturer’s instructions.

Statistical analysis

All statistical analyzes were performed using R version 4.2.2.
Differences between two groups were compared using Stu-
dent’s ¢-test or Mann-Whitney U-test according to whether
the data conformed to a normal distribution. Correlations
between each variable were analyzed using the Spearman
correlation test. A value of p < 0.05 was considered as sta-
tistical significance. All statistical analyses were performed
using GraphPad prism8.0.2 software.

Results

ERS-related genes differentially expressed in NAFLD

The GSE89632 and GSE63067 datasets were combined and
batch effects were eliminated (Fig. 1A,B). Based on the

screening criteria, a total of 598 DEGs were obtained, includ-
ing 301 up-regulated genes and 297 down-regulated genes.
The top 50 DEGs are indicated by a heatmap (Fig. 1C). We
used the obtained DEGs to take intersections with ERSGs
and obtained a total of 48 ERSR-DEGs (Fig. 1D). The inter-
secting genes were represented with a volcano plot (Fig. 1E).

Enrichment analysis of differentially expressed ERS-related
genes

Enrichment analysis was performed on the 48 ERSR-DEGs
obtained above. ERSR-DEGs related to biological processes
were significantly enriched in the regulation of positive
regulation of inflammatory response, response to unfolded
protein, and response to oxidative stress. ERSR-DEGs re-
lated to cytological components were significantly enriched
in the endoplasmic reticulum lumen, RNA polymerase II
transcription regulator complex, and collagen-containing
extracellular matrix. ERSR-DEGs related to molecular func-
tions are mainly enriched in DNA-binding transcription ac-
tivator activity, RNA polymerase II-specific, and low-density
lipoprotein particle binding (Fig. S2A in Supplementary
material). KEGG analysis revealed that ERSR-DEGs were
mainly enriched in TNF signaling pathways, non-alcoholic
fatty liver, and fluid shear stress and atherosclerosis (Fig. S2B
in Supplementary material).

Immune infiltration analysis

Immune permeability analysis revealed differences in the
percentage of infiltration of immune cell types between
NAFLD and non-NAFLD controls. As shown in the heatmap
and boxplot (Fig. 2A,B), activated CD4 T cells, activated CD8
T cells, activated dendritic cell, CD56 natural killer cells,
eosinophil, gamma delta T cells, immature B cell, immature
dendritic cell, MDSC, mast cell, neutrophil, plasmacytoid
dendritic cell, T follicular helper cell, Type 1 T helper cell,
Type 17 T helper cell, Type 2 T helper cell, effector memory
CD4 T cells, memory B cells, central memory CD4 T cells,
and central memory CD4 T cells showed statistical difference
between the NAFLD group and the control group. In terms
of immune function (Fig. 2C), cytolytic activity, Type ITFN
reponse, APC co-inhibition, APC co-stimulation, CCR,
check-point, MHC class I, parainflammation, and T cell
co-inhibition was significantly different in the control and
NAFLD groups.

Identification of cluster-specific differentially expressed
ERS-related genes

Using unsupervised cluster analysis, different subtypes
associated with ERS were identified according to the ex-
pression levels of 48 ERSR-DEGs. The most stable grouping
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was provided when k = 2 (Fig. 3A). Furthermore, atk = 2,
the cumulative distribution function (CDF) curve (Fig.
3B) is the flattest and the delta area curve (Fig. 3C) has
an inflection point. Thereafter, the 113 NAFLD samples
were divided into two different categories, namely Clus-
ter 1 (n = 97) and Cluster 2 (n = 16). The samples of the
two clusters can be clearly distinguished as shown in the
PCA diagram (Fig. 3D). The expression levels of ERSGs
were visualized by heatmap and boxplot (Fig. 3E,F). Most
of the ERSGs, including FOS, PTGS2, JUN, ZC3HI12A,
PPP1R15A, and SGK1, were expressed at higher levels in
Cluster 2 than in Cluster 1.

Figure 3. Identification of ERS
subtypes in NAFLD. A. Two dif-
ferent subtypes of NAFLD. B. CDF
curves. C. Delta area of CDF curves.
D. PCA analysis showing significant
differences in genes between the
different models. Heatmap (E) and
boxplot (F) showed differences in
the expression of ERSGs in C1 and
C2, with significant differences in
the expression of 45 genes. * p <
0.05,** p<0.01,** p < 0.001. PCA,

principal component analysis. CDF,
cumulative distribution function
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the SVM model (ERN1, POR, PPP1R15A, FOS, and FAS)
were selected as hub ERSR-DEGs for further analysis.

To further evaluate the predictive efficiency of the SVM
model, we constructed a nomogram based on the five hub
ERSR-DEGs described above (Fig. 6A). Based on the calibra-
tion curves, the error between the actual and predicted risk
of NAFLD was small (Fig. 6B). The study found between
0 and 1 in the decision analysis graph, indicating that the
nomogram has a higher clinical value than individual trait
genes and has implications for predicting the occurrence
of NAFLD (Fig. 6C). The ROC curves showed good results
for the 5-gene SVM model with an AUC value of 0.712 in
the GSE151158 dataset and 0.710 in the GSE66676 dataset
(Fig. 6D,E). After these validations, it was shown that our
diagnostic model was effective in distinguishing NAFLD
from normal individuals.

To investigate the biological relationship between hub
ERSR-DEGs and immune microenvironmental features,
the correlation between five ERSR-DEGs and infiltrating
immune cells was analysed (Fig. 6F). Correlation analysis
showed that five hub ERSR-DEGs were positively correlated
with the most immune cells. As an example, POR expression
was significantly positively correlated with plasmacytoid
dendritic cell, neutrophil natural killer cell, monocyte,
MDSC, mast cell, and eosinophil and significantly negatively
correlated with immature B cell. It is speculated that hub
ERSR-DEGs are a key factor controlling the state of immune
infiltration in NAFLD patients.

Correlation of genes with clinical indicators

We validated the correlation of hub ERSR-DEGs with clinical
indicators using clinical information from patients in the
GSE89632 dataset (Fig. S3 in Supplementary material).
We found that FAS was positively correlated with AST (p =
0.047, R =0.32), ballooning (intensity) (p = 0.021, R=0.37),
fibrosis (stage) (p = 0.021, R=10.37), and FOS was negatively
correlated with HDL (p = 0.033, R = —0.37).

Changes in expression of the five hub ERSR-DEGs in
HFD-induced NAFLD mice

Mice fed HFD developed hepatic steatosis, similar to NAFLD
in humans (Van Herck et al. 2017). After 12 weeks of feeding
HEFD to mice in the NAFLD group, liver pathology showed
swollen hepatocytes and balloon-like degeneration in liver
pathology sections of mice (Fig. 7A). Oil red O staining
showed accumulation of neutral lipids in NAFLD group
(Fig. 7B). Mouse liver TG (Fig. 7C) and TC (Fig. 7D) content
and adipogenic genes (ACC1 FASN SCD1) expression (Fig.
7E) were significantly elevated in the NAFLD group. The
above results indicated that the NAFLD mouse model was
successfully established.

We evaluated the five hub ERSR-DEGs. gRT-PCR results
(Fig. 7F) showed that the mRNA levels of POR, PPP1R15A,
and FOS were significantly down-regulated and FAS was
significantly up-regulated in the HFD group compared to
the NC group. In contrast, there were no significant changes
in other genes. In short, these results suggest that ERSGs are
well differentiated for NAFLD, validating the analysis of the
microarray data.

Discussion

As obesity, diabetes, and metabolic syndrome continue to
rise, epidemiological projections indicate that the prevalence
of NAFLD will continue to rise through 2030; liver-related
disease mortality will double (Estes et al. 2018). Numerous
NAFLD-causing factors are also strongly associated with
hepatocellular carcinoma. It is challenging to detect NAFLD-
associated hepatocellular carcinoma through exploration of
the pathogenesis, so relevant biomarkers, initial treatment,
and prevention of NAFLD are imminent (Ioannou 2021).
The important role of ERS in NAFLD has been found in
fatty liver mouse models and many clinical samples (Leb-
eaupin et al. 2018). The endoplasmic reticulum is the main
site of intracellular protein synthesis and modification. When
protein precursors are synthesized over the quality control
capacity of the endoplasmic reticulum, an unfolded protein
response is triggered, which in turn induces ERS, disrupting
hepatic lipid metabolism and apoptosis of hepatocytes and
hepatic stellate cells. This study provides the first insight into
the biological importance of ERSGs and their relationship
to immune infiltration in NAFLD. Furthermore, NAFLD
subtypes were predicted using genetic markers linked to ERS.
We identified 48 ERSR-DEGs using GEO and GeneCards
databases to conduct the first comprehensive analysis of
the expression profile of ERS regulators in liver tissue from
normal and non-alcoholic fatty liver patients. We further
demonstrated the level of immune cell infiltration in NAFLD
patients through the ssGSEA algorithm. activated CD4
T cells, activated CD8 T cells, activated dendritic cell, CD56
natural killer cells, eosinophil, gamma delta T cells, immature
B cell, immature dendritic cell, MDSC, mast cell, neutrophil,
plasmacytoid dendritic cell, T follicular helper cell, Type 1
T helper cell, Type 17 T helper cell, Type 2 T helper cell, ef-
fector memory CD4 T cells, memory B cells, central memory
CD4 T cells, and central memory CD4 T cells showed statis-
tical difference between the NAFLD group and the control
group, as determined by the immune cell infiltration analysis.
This finding - consistent with previous studies (Wen et al.
2021; Zhang et al. 2022) - suggests that immunity plays an
essential role in NAFLD. Furthermore, based on 48 ERSR-
DEGs, we identified two ERS-related clusters using unsu-
pervised cluster analysis. Cluster 2 exhibited relatively high
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levels of immune infiltration and immune scores. In KEGG
analysis, C2 was enriched in the intestinal immune network
for IgA production, P53 signaling pathway, proximal tubule
bicarbonate reclamation; in GO analysis, C2 was enriched in
the transcription factor AP-1 complex, negative regulation of
interleukin 21 production, and positive regulation of miRNA
metabolic process. Therefore, it is reasonable to hypothesize
that Cluster 2 may be able to block the progression of NAFLD
by producing a variety of immune cells, such as T cells and
B cells, and ultimately exhibit a better prognosis for NAFLD.
To construct reliable prediction models, we compared the
prediction properties of three machine algorithms (RE, SVM,
and XGB) and finally selected the prediction model of SVM.
The SVM model provided the smallest residuals and had
the highest test cohort prediction efficiency (AUC = 0.997),
indicating that SVM-based machine learning performs
satisfactorily in predicting NAFLD.

We used the GSE151158 and GSE66676 datasets for vali-
dation, and the results showed that the area under the ROC
curve was 0.712 and 0.710, respectively. The SVM model can
accurately predict NAFLD. This prediction provides a new
way of diagnosing NAFLD. The five ERSGs (ERN1, POR, PP-
P1R15A, FOS, and FAS) with the most significant differences
in the SVM model were included in the risk study; a nomo-
gram was constructed to calculate total scores to analyze the
probability of risk in NAFLD patients. Correlations between
immune cell infiltration and hub ERSR-DEGs were then
estimated to elucidate ERSR-DEGs in the immunological
context of NAFLD. AST and HDL are routine blood tests for
NAFLD patients, and ballooning and fibrosis are important
indicators to assess the severity of NAFLD. Therefore, we
correlated the five genes in the SVM model with them. The
results showed that FAS was positively correlated with AST,
ballooning, and fibrosis, while FOS was negatively correlated
with HDL. After the successful induction of NAFLD in mice,
mRNA levels of ERSGs were analyzed using qRT-PCR. The
results demonstrated that compared with the control group,
the levels of POR, PPP1R15A, FOS, and FAS in the liver tis-
sue of HFD-fed mice were significantly changed, supporting
the microarray analysis.

PPP1R15A/GADD34 - a cell cycle protein - is up-
regulated under ERS conditions and reduces endoplasmic
reticulum stress-related apoptosis by selectively inhibiting
the phosphorylation of the ERS protein elF2a, an impor-
tant molecule for restoring protein synthesis during ERS
(Walter and Ron 2011; Moreno et al. 2012). Overexpression
of GADD34 phosphatase in the mice liver leads to dephos-
phorylation of eIF2a, which has been shown to lead to
aweakening of the adipose-forming nuclear receptor PPARYy,
lipogenic enzymes, and metabolic transcriptional regulators
C/EBP-a and C/ EBP-P. This resulted in glucose tolerance,
increased insulin sensitivity and a reduced incidence of he-
patic steatosis in mice fed a high-fat diet compared to mice

fed a normal diet (Oyadomari et al. 2008). Van Herck et al.
(2017) demonstrated that GADD34-deficient mice on a nor-
mal diet became obese and developed fatty liver, followed by
cirrhosis, hepatocellular carcinoma, and insulin resistance.
And liver steatosis can be exacerbated by aging and a high-
fat diet. Unlike the results of Oyadomari et al. (2008), eIF2a
phosphorylation did not increase significantly in GADD34-
deficient mice due to HFD and aging. Obesity and steatosis
in GADD34-deficient mice are caused by up-regulation
of insulin-Akt signaling. Therefore, the mechanism of the
effect of GADD34 on fatty liver is still controversial, which
deserves further investigation.

FAS/FASL pathway is one of the major apoptosis path-
ways, and FASL is a ligand for FAS. FASL expression increases
in response to lipotoxicity and binds to FAS, causing FAS
to trimerize and form an apoptosis-inducing complex,
which initiates apoptotic signaling and cell death (Zhang
et al. 2012). FAS-mediated apoptosis requires endoplasmic
reticulum-mediated calcium release, which is dependent
on phospholipase C-gammal (PLC-gammal) activation
and Ca2+ release from inositol 1,4,5-trisphosphate receptor
(IP3R) channels (Wozniak et al. 2006). FAS is significantly
expressed in liver samples from NASH patients and can
mediate hepatocyte apoptosis (Wozniak et al. 2006). Inhibi-
tion of FAS receptor signaling and inhibition of downstream
effectors (including caspase3 and NF-kB) by injection of
small interfering RNA (siRNA) into mouse tail vein re-
duces apoptosis and inflammation progression in mouse
hepatocytes (Savari et al. 2019). FAS not only has an effect
on apoptosis and inflammation in fatty liver cells, but also
on fat metabolism. In normal diet mice with FAS overex-
pression, FAS impaired mitochondrial function and fatty
acid oxidation by BH3 interaction domain death agonist,
thereby promoting hepatic lipid accumulation and insulin
resistance (Item et al. 2017).

Cytochrome P450 reductase (POR) is a microsomal elec-
tron transporter found in the endoplasmic reticulum. It is an
obligate electron donor of cytochrome P450 (P450), which
includes P450 required for drug metabolism, cholesterol,
steroids, and bile acid synthesis (Henderson et al. 2003). POR
deficient mice showed increased liver triglyceride content
and decreased non-fasting plasma triglyceride and choles-
terol levels (Weng et al. 2005). Porter etal. (2011) successfully
replicated hepatic lipid accumulation in POR-deficient mice
through RNA (siRNA) to inhibit POR in a cellular model.
Bile acid deficiency and loss of farnesol X receptor stimula-
tion led to excessive triglyceride synthesis in hepatocytes.

The FOS proto-oncogene (also known as ¢-FOS) is an
immediate early expression gene and a major member of the
FOS gene family. It can be dimerized with the JUN family
to form an activating protein 1 (AP-1) complex. c-FOS, as
atranscription factor, is involved in cell growth, proliferation,
differentiation and death (Eferl and Wagner 2003). In our
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study, the downregulation of c-FOS expression in NAFLD
group was verified by microarray differential gene analysis
and animal experiments. This is consistent with previous
research findings (Chen et al. 2020; Jiang et al. 2021). After
cluster analysis, we found that c-FOS expression was signifi-
cantly higher in group C2 than in group C1. We speculated
that the expression of c-FOS may also be different in different
NAFLD subtypes. Although the contribution of c-FOS to the
etiology of NAFLD seems to be little or unknown, there have
been several bioinformatics articles on fatty liver, which have
screened c-FOS as a hub gene (Ye et al. 2020; Ma et al. 2021).
Therefore, it is necessary to further clarify their functions in
the future. c-FOS is involved in the onset and development
of HCC. Hepatocyte-specific expression of c-FOS leads to

hepatic inflammation, hepatocyte proliferation, DNA dam-
age response, and precancerous transformation, but specific
deletion of c-Fos reverses this phenotype. Mechanistically,
c-FOS decreases the expression and activity of the nuclear
receptor LXRa, leading to increased hepatic cholesterol and
accumulation of bile acids (Bakiri et al. 2017).

Despite the encouraging results, the present study has sev-
eral limitations. First, our data came from public databases
and lacked raw sequencing data, leading to some bias in the
results. Second, we could not collect clinical samples, so the
results of the bioinformatics analysis could not be validated
on liver tissue from NAFLD patients. Finally, more in-depth
studies are required to understand the potential mechanisms
of ERSGs in NAFLD.
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Conclusions

In conclusion, our study demonstrated the association be-
tween ERSGs and immune system infiltration in NAFLD
patients through different bioinformatics techniques and
explained the considerable immune heterogeneity in NAFLD
patients with different ERS groups. POR, PPP1R15A, FOS,
and FAS may predict the occurrence risk of NAFLD patients
and play important roles in the pathogenesis of immune in-
filtration in NAFLD. Our findings elucidate the involvement
of ERSGs in the progress of NAFLD and may provide new
insight into the disease typing and diagnosis.
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Table S1. Primer information in study

Gene Forward primer Reverse primer

ERN1 ATCTCAGGATGTGGAGGAGAA CAGGAAGGTGCTCAGGATAATG
POR AGATCGACAAGTCCCTGGTA CTCCTGCAGCCAATCATAGAA
PPPIR15A AGAGGACACAGAGGAAGAAGA TTCAGGAAGGCACTTGTATGG
FOS GGTGAAGACCGTGTCAGGAG AGTTGATCTGTCTCCGCTTGG
FAS TGTCAGCCTGGTGAACGAAA CTTGGTATTCTGGGTCCGGG
FASN CACAGTGCTCAAAGGACATGCC CACCAGGTGTAGTGCCTTCCTC
ACC1 GCTGCTCGGATCACTAGTGAA TTCTGCTATCAGTCTGTCCAG
SCD1 CACACCTTCCCCTTCGACTA TGACTCCCGTCTCCAGTTCT

B-actin

GTCGTACCACAGGCATTGTGATGG

GCAATGCCTGGGTACATGGTGG






