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Abstract. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease world-
wide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote 
the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not 
been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune 
microenvironment of NAFLD patients and to construct predictive models. We screened 48 en-
doplasmic reticulum stress-related di�erentially expressed genes (ERSR-DEGs) using data from 
two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs 
are closely associated with immune-related pathways and functions. �e immune in�ltration 
pro�le of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). �ere 
were signi�cant di�erences in immune cell in�ltration and immune function between NAFLD 
group and control group. Using 113 NAFLD samples, we explored two molecular clusters based 
on ERSR-DEGs. A �ve-gene SVM model was selected as the best machine learning model, and 
a nomogram based on �ve-gene SVM model showed good predictive e�ciency. �e mRNA expres-
sion levels of POR, PPP1R15A, FOS and FAS were signi�cantly di�erent between NAFLD mice 
and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We 
established a promising and SVM-based predictive model to assess the risk of disease in patients 
with ERS subtypes and NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the develop-
ment of hepatic steatosis without heavy alcohol consumption 
or causes other than metabolic disorders (drugs or genetic 
disorders) that constitute a metabolic syndrome. �e preva-
lence of NAFLD has been increasing with the expansion of 
the world economy and the improvement of living standards, 
with a global prevalence of approximately 25% (Younossi et 
al. 2016). Given the increasing understanding of the patho-
genesis of NAFLD and its high prevalence, experts have 
proposed a clinical diagnosis – metabolic dysfunction as-
sociated with fatty liver disease (Eslam et al. 2020). �e liver 
pathology of NAFLD ranges from simple hepatic steatosis to 
steatohepatitis, which increases the risk of developing cirrho-
sis and cancer (Powell et al. 2021). Despite rapid progress in 
clinical research into NAFLD treatments as new targets and 
diagnostics emerge, our understanding of NAFLD remains 
poor (Friedman et al. 2018). Hence, further illumination of 
the molecular pathogenesis of NAFLD is necessary for better 
treatment of NAFLD.

NAFLD is characterized by the synthesis and accumula-
tion of hepatic triglycerides and the lipotoxicity of fatty acids, 
free cholesterol, and other lipid metabolites, leading to mi-
tochondrial dysfunction with oxidative stress, endoplasmic 
reticulum stress (ERS), activation of the unfolded protein 
response, and ultimately chronic liver disease (Yazici and 
Sezer 2017). Hepatocytes are responsible for lipogenesis, 
cholesterol biosynthesis, glucose, and xenobiotic metabolism. 
Hepatocytes contain an abundance of rough endoplasmic 
reticulum and smooth endoplasmic reticulum to meet the 
metabolic demands of the individual (Wang and Kaufman 
2016). In eukaryotic cells, the endoplasmic reticulum is a key 
organelle for protein folding and quality control, as well as 
for regulating intracellular calcium homeostasis and steroid 
molecule synthesis. �e endoplasmic reticulum’s homeosta-
sis is crucial to the physiological functions of normal cells 
(Pagliassotti 2012). When misfolded protein accumulation 
in the endoplasmic reticulum exceeds a critical threshold, 
endoplasmic reticulum homeostasis is disrupted, and cells 
initially trigger an adaptive signaling pathway called the un-
folded protein response (UPR). UPR reduces secreted protein 
load, enhances protein folding (transcription of molecular 
chaperones and folding enzymes), and attempts to correct this 
by promoting autophagy and endoplasmic reticulum associ-
ated degradation, which increases clearance. UPR is initiated 
by three endoplasmic reticulum transmembrane proteins: 
PKR-like ER kinase (PERK), inositol-requiring enzyme 1 
(IRE-1), and activating transcription factor-6 (ATF-6). Under 
normal conditions, IRE1, PERK, and ATF6 remain inactive 
a�er binding to GRP78. Once ERS occurs, GRP78 dissociates 
from the ERS sensor and activates three branches (Doultsinos 
et al. 2017). IRE1α-XBP1 pathway regulates hepatic lipid 

metabolism through low-density lipoprotein secretion and 
lipogenesis (Wang et al. 2012). Activation of the PERK path-
way inhibits the translation of IkB, increases NF-κB activity, 
and promotes the secretion of TNFα, IL-1β, and IL-6 (Meares 
et al. 2014). Liver biopsies from non-alcoholic steatohepatitis 
(NASH) patients revealed an increase in ERS marker GRP78 
and the pro-apoptotic protein CHOP compared to patients 
with hepatic steatosis alone, which supports the idea that 
ERS-induced apoptosis contributes to the transition from 
steatosis to NASH and beyond (Gonzalez-Rodriguez et al. 
2014). �is �nding suggests the involvement of ERS in the 
onset and progression of NAFLD. Considering the key role 
of ERS in the progression of NAFLD, reticulum stress-related 
genes (ERSGs) may become potential biomarkers and impor-
tant targets for treating NAFLD.

�e present study used the GEO database to analyze the 
endoplasmic reticulum stress-related di�erentially expressed 
genes (ERSR-DEGs) and immune signatures between normal 
and NAFLD samples. Enrichment analysis of these ERSR-
DEGs has the potential to identify biological pathways that 
play a key role in the development of NAFLD. We divided 
113 NAFLD patients into two groups based on the screened 
48 ERSR-DEGs, and the di�erences in immune cells between 
the two groups were further analyzed. Various machine 
learning models are also applied to build disease prediction 
models. Multiple metrics are used to evaluate the e�ective-
ness of the predictive model. �e model was also validated in 
a mouse model of high-fat diet-induced NAFLD, providing 
a new perspective on the molecular mechanisms underlying 
NAFLD pathogenesis. �e �ow chart for this study is shown 
in Figure S1 (in Supplementary material).

Materials and Methods

Acquisition of datasets and ERS-related genes

We conducted a systematic search of the Gene Expression 
Omnibus database (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) using the terms: “Homo sapiens” and “NAFLD”. �e 
GSE89632 (Arendt et al. 2015) dataset (GPL14951 platform) 
and the GSE164760 (Pinyol et al. 2021) dataset (GPL13667 
platform) were selected as training sets, and a total of 30 nor-
mal and 113 NAFLD liver tissue samples were included. 
�e GSE151158 (Kriss et al. 2020) dataset (GPL28577 plat-
form) and the GSE66676 (Xanthakos et al. 2015) (GPL6244 
platform) were selected as validation sets. �e GSE151158 
dataset contained 21 normal and 40 NAFLD liver tissue 
samples. �e GSE66676 dataset contained 34 normal and 33 
NAFLD liver tissue samples. All NAFLD samples included 
were diagnosed by liver biopsy, and for healthy samples 
by imaging and histology in all datasets. �en we used the 
“limma” and “sva” packages in R so�ware (version 4.2.2) to 
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perform normalization and batch e�ect correction on the 
training set data (Leek et al. 2012).

ERSGs were obtained from the GeneCards database 
(https://www.genecards.org) and genes with a  correlation 
score >7 were extracted from this study (Safran et al. 2010).

Identi�cation of di�erentially expressed genes associated 
with NAFLD and ERS

We used the R  package “limma” to identify di�erentially 
expressed genes (DEGs) between NAFLD and normal liver 
tissue by Student’s t-test (Ritchie et al. 2015). Genes with 
a p-value of < 0.05 and |logFC| > 0.5 were considered DEGs. 
Finally, the DEGs were intersected with ERSGs, and the in-
tersected genes were the ERSR-DEGs in NAFLD. Moreover, 
volcano plot is based on di�erential expression data using 
the “ggplot2” package, and gene matrix heat plot using the 
“heatmap” package.

Functional and pathway enrichment analysis

�e R  packages “clusterPro�ler” and “org.Hs.eg.db” were 
used to elucidate the potential gene function annotation 
and enrichment pathways associated with ERSR-DEGs (Yu 
et al. 2012). Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses were 
performed to determine statistically signi�cant enrichment 
using an adjusted p value < 0.05 as the cut-o� criterion by 
Student’s t-test. Histograms and bubble plots were generated 
with the R package “ggplot2”.

Immune in�ltration analysis for NAFLD

Assessment of immune in�ltration status between nor-
mal and fatty liver samples using single sample gene set 
enrichment analysis (ssGSEA) to calculate the normal-
ized enrichment score (Hanzelmann et al. 2013). We used 
Mann-Whitney U-test to screened samples using p < 0.05. 
An immune in�ltration heat map was produced using the 
“heatmap” package. Immune cell levels between NAFLD and 
control were visualized using the “vioplot” package.

Predictive modeling based on various machine learning 
techniques 

We applied the “caret” R package to build machine learning 
models, including random forest models (RF), support vec-
tor machine models (SVM), and extreme gradient boosting 
(XGB). �e residual distributions and feature importance 
between these machine learning models are also visualised. 
�e aim of RF is to reduce the number of variables required 
to obtain a prediction in order to reduce the data collec-
tion burden and increase e�ciency (Rigatti 2017). SVM is 

a powerful feature selection algorithm in machine learning 
classi�cation techniques. �e algorithm has good robust-
ness and is now widely used to classify data (Speiser et al. 
2019). �e XGB algorithm is a  representative algorithm 
based on integral li�, which compensates for the over�tting 
problem of the gradient li� model. �e region under the 
receiver operating characteristic (ROC) curve is displayed 
using the “proc” R  package. �erefore, the top �ve most 
signi�cantly di�erentially expressed gene genes from the 
optimal machine learning model were used as the hub genes 
relevant to NAFLD. ROC curve analysis was performed in 
the GSE151158 and GSE66676 dataset to validate the diag-
nostic value of this model. Finally, we also used spearman 
correlation analysis to explore the relationship between the 
key predictive genes and clinical indicators. p < 0.05 was 
considered statistically signi�cant.

Construction and validation of a nomogram

A nomogram was developed using the “rms” R package to 
assess the occurrence of NAFLD. Scores for each gene in 
NAFLD were obtained, summing the scores for these key 
genes and predicting the prevalence of NAFLD based on the 
scores. Validation by calibration curves and decision curve 
analysis (DCA) curves to measure the recognition capability 
of the nomogram. 

Subclusters analysis with 48 endoplasmic reticulum stress-
related genes

�e “consensusclusterplus” package can be used to iden-
tify patterns associated with ERSGs (Wilkerson and Hayes 
2010). First, only the disease group sample was retained, 
and NAFLD patients were divided into subgroups with 
maximum subgroup classi�cation k = 9, and the optimal 
subgroup was selected. Subsequently, a principal component 
analysis (PCA) was performed to quantify the endoplasmic 
reticulum stress pattern and to further determine whether 
the above groupings were correct. �e R  so�ware pack-
ages “limma” and “heatmap” were then used to explore 
the clustered ERSR-DEGs and to study ERSR-DEGs with 
signi�cant features of molecular subtypes. We performed 
gene set variance analysis (GSVA) using the marker gene set 
(C2.cp.kegg.symbols.gmt, C2.go.symbols.gmt) sourced from 
the MSigDB database. We then analyzed gene enrichment 
signatures using the R package “pro�ler”. �e results can be 
visualized using the “ggplot2” package.

Animal model and experiment design

Twenty male C57BL/6J mice, body mass 23.45 ± 1.22  g, 
6 weeks old, were purchased from the Liaoning Provincial 
Laboratory Animal Resource Centre (Liaoning, China). 
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Before animal testing, all mice were habituated for 7 days 
at a suitable temperature and a light/dark cycle of 12 hours. 
Animal management and experimental procedures are in 
strict compliance with the standard requirements of the 
Laboratory Animal Centre of the Fourth Hospital of Harbin 
Medical University (2022-DWSYLLCZ-20). All mice were an-
esthetized using 2% iso�urane a�er 12 weeks. A�er mice were 
sacri�ced by cervical dislocation, liver tissues were collected.

A�er habituation, 20 mice were randomly divided into 
the normal control (NC) group (n = 10) and NAFLD group 
(n = 10). �e normal control group was fed with the standard 
chow diet (SCD), and the NAFLD group was fed with high-
fat diet (HFD) (60% fat) (D12492, xiaoshuyoutai, Beijing, 
China). Both groups of mice were executed a�er 12 weeks.

Quantitative real-time PCR

Total RNA was extracted from liver tissue using TRIzol rea-
gent (Invitrogen, Carlsbad, CA, USA), and cDNA was syn-
thetized using PrimeScript reverse transcriptase (Takara, Ku-
satsu, Japan). �en, 2*SYBR Green qPCR (Vazyme, Nanjing, 
China) was used to analyze gene expression. 2–∆∆Ct method 
is used to analyze the expression level of the target gene, and 
the result is controlled by β-actin. Primer sequences in this 
study are listed in Table S1 (in Supplementary material).

Triglyceride and cholesterol levels, histology

Mice’s liver pathological damage was measured by hema-
toxylin and eosin (H&E) staining. Oil red O staining was 
used to detect liver lipid deposition. Total triglycerides (TG) 
and Total cholesterol (TC) were determined using a TG kit 
and TC kit (Jiancheng, Nanjing, China), according to the 
manufacturer’s instructions.

Statistical analysis

All statistical analyzes were performed using R version 4.2.2. 
Di�erences between two groups were compared using Stu-
dent’s t-test or Mann-Whitney U-test according to whether 
the data conformed to a normal distribution. Correlations 
between each variable were analyzed using the Spearman 
correlation test. A value of p < 0.05 was considered as sta-
tistical signi�cance. All statistical analyses were performed 
using GraphPad prism8.0.2 so�ware.

Results

ERS-related genes di�erentially expressed in NAFLD

�e GSE89632 and GSE63067 datasets were combined and 
batch e�ects were eliminated (Fig. 1A,B). Based on the 

screening criteria, a total of 598 DEGs were obtained, includ-
ing 301 up-regulated genes and 297 down-regulated genes. 
�e top 50 DEGs are indicated by a heatmap (Fig. 1C). We 
used the obtained DEGs to take intersections with ERSGs 
and obtained a total of 48 ERSR-DEGs (Fig. 1D). �e inter-
secting genes were represented with a volcano plot (Fig. 1E).

Enrichment analysis of di�erentially expressed ERS-related 
genes

Enrichment analysis was performed on the 48 ERSR-DEGs 
obtained above. ERSR-DEGs related to biological processes 
were signi�cantly enriched in the regulation of positive 
regulation of in�ammatory response, response to unfolded 
protein, and response to oxidative stress. ERSR-DEGs re-
lated to cytological components were signi�cantly enriched 
in the endoplasmic reticulum lumen, RNA polymerase II 
transcription regulator complex, and collagen-containing 
extracellular matrix. ERSR-DEGs related to molecular func-
tions are mainly enriched in DNA-binding transcription ac-
tivator activity, RNA polymerase II-speci�c, and low-density 
lipoprotein particle binding (Fig. S2A in Supplementary 
material). KEGG analysis revealed that ERSR-DEGs were 
mainly enriched in TNF signaling pathways, non-alcoholic 
fatty liver, and �uid shear stress and atherosclerosis (Fig. S2B 
in Supplementary material).

Immune in�ltration analysis

Immune permeability analysis revealed di�erences in the 
percentage of in�ltration of immune cell types between 
NAFLD and non-NAFLD controls. As shown in the heatmap 
and boxplot (Fig. 2A,B), activated CD4 T cells, activated CD8 
T  cells, activated dendritic cell, CD56 natural killer cells, 
eosinophil, gamma delta T cells, immature B cell, immature 
dendritic cell, MDSC, mast cell, neutrophil, plasmacytoid 
dendritic cell, T follicular helper cell, Type 1 T helper cell, 
Type 17 T helper cell, Type 2 T helper cell, e�ector memory 
CD4 T cells, memory B cells, central memory CD4 T cells, 
and central memory CD4 T cells showed statistical di�erence 
between the NAFLD group and the control group. In terms 
of immune function (Fig. 2C), cytolytic activity, Type I IFN 
reponse, APC co-inhibition, APC co-stimulation, CCR, 
check-point, MHC class  I, parain�ammation, and T  cell 
co-inhibition was signi�cantly di�erent in the control and 
NAFLD groups.

Identi�cation of cluster-speci�c di�erentially expressed 
ERS-related genes

Using unsupervised cluster analysis, di�erent subtypes 
associated with ERS were identi�ed according to the ex-
pression levels of 48 ERSR-DEGs. �e most stable grouping 
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was provided when k = 2 (Fig. 3A). Furthermore, at k = 2, 
the cumulative distribution function (CDF) curve (Fig. 
3B) is the �attest and the delta area curve (Fig. 3C) has 
an in�ection point. �erea�er, the 113 NAFLD samples 
were divided into two di�erent categories, namely Clus-
ter 1 (n = 97) and Cluster 2 (n = 16). �e samples of the 
two clusters can be clearly distinguished as shown in the 
PCA diagram (Fig. 3D). �e expression levels of ERSGs 
were visualized by heatmap and boxplot (Fig. 3E,F). Most 
of the ERSGs, including FOS, PTGS2, JUN, ZC3H12A, 
PPP1R15A, and SGK1, were expressed at higher levels in 
Cluster 2 than in Cluster 1.

Functional annotation and immune in�ltration characteristics 
between endoplasmic reticulum stress clusters

�ere are di�erences in the immune microenvironment 
between Cluster 1 and Cluster 2 (Fig. 4A). Most immune 
cells including activated B cells, activated CD4 T cells, and 
activated dendritic cells were signi�cantly elevated in Clus-
ter 2, with the exception of gamma delta T cells. Similarly, 
Cluster  2 has a  higher immunity score (Fig. 4B). GSVA 
analysis was used to further explore the function between 
the two clusters in relation to cluster speci�c DEGs. In the 
KEGG analysis (Fig. 4C), Cluster  1 was enriched in the 
metabolism of xenobiotics by cytochrome p450, pentose 
and glucuronate interconversions, ascorbate, and alternate 
metabolism; whereas Cluster 2 was upregulated in the in-
testinal immune network for IgA production, P53 signaling 
pathway, proximal tubule bicarbonate reclamation. �e 
functional enrichment (Fig. 4D) showed that the transcrip-
tion factor AP-1 complex negative regulation of interleukin 
21 production, and positive regulation of miRNA meta-
bolic process were signi�cantly correlated with Cluster 2; 
however, thiolester hydrolase activity, monoacylglycerol 
metabolic process, alpha linolenic acid metabolic process 
were enriched in Cluster 1.

Construction of predictive model based on multiple machine 
learning methods

To more accurately identify speci�c genes with high diag-
nostic value, we used RF, SVM, and XGB models based on 
the screened 48 relevant genes. �e SVM machine learning 
model provided the lowest residual (Fig. 5A,B). �e impor-
tant ERSGs in each machine model (Fig. 5C). In addition, we 
used ROC curves to evaluate the diagnostic performance of 
the three machine learning algorithms (Fig. 5D–F). �e area 
under the ROC curve of the machine learning SVM model 
is the largest (SVM, AUC = 0.997; RF, AUC = 0.990; XGB, 
AUC = 0.990). Overall, in combination with these results, 
the SVM model proved to have the highest predictive per-
formance. In the end, the �ve most important characters in F
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the SVM model (ERN1, POR, PPP1R15A, FOS, and FAS) 
were selected as hub ERSR-DEGs for further analysis.

To further evaluate the predictive e�ciency of the SVM 
model, we constructed a nomogram based on the �ve hub 
ERSR-DEGs described above (Fig. 6A). Based on the calibra-
tion curves, the error between the actual and predicted risk 
of NAFLD was small (Fig. 6B). �e study found between 
0 and 1 in the decision analysis graph, indicating that the 
nomogram has a higher clinical value than individual trait 
genes and has implications for predicting the occurrence 
of NAFLD (Fig. 6C). �e ROC curves showed good results 
for the 5-gene SVM model with an AUC value of 0.712 in 
the GSE151158 dataset and 0.710 in the GSE66676 dataset 
(Fig. 6D,E). A�er these validations, it was shown that our 
diagnostic model was e�ective in distinguishing NAFLD 
from normal individuals.

To investigate the biological relationship between hub 
ERSR-DEGs and immune microenvironmental features, 
the correlation between �ve ERSR-DEGs and in�ltrating 
immune cells was analysed (Fig. 6F). Correlation analysis 
showed that �ve hub ERSR-DEGs were positively correlated 
with the most immune cells. As an example, POR expression 
was signi�cantly positively correlated with plasmacytoid 
dendritic cell, neutrophil natural killer cell, monocyte, 
MDSC, mast cell, and eosinophil and signi�cantly negatively 
correlated with immature B cell. It is speculated that hub 
ERSR-DEGs are a key factor controlling the state of immune 
in�ltration in NAFLD patients.

Correlation of genes with clinical indicators

We validated the correlation of hub ERSR-DEGs with clinical 
indicators using clinical information from patients in the 
GSE89632 dataset (Fig. S3 in Supplementary material). 
We found that FAS was positively correlated with AST (p = 
0.047, R = 0.32), ballooning (intensity) (p = 0.021, R = 0.37), 
�brosis (stage) (p = 0.021, R = 0.37), and FOS was negatively 
correlated with HDL (p = 0.033, R = −0.37).

Changes in expression of the �ve hub ERSR-DEGs in 
HFD-induced NAFLD mice

Mice fed HFD developed hepatic steatosis, similar to NAFLD 
in humans (Van Herck et al. 2017). A�er 12 weeks of feeding 
HFD to mice in the NAFLD group, liver pathology showed 
swollen hepatocytes and balloon-like degeneration in liver 
pathology sections of mice (Fig. 7A). Oil red  O  staining 
showed accumulation of neutral lipids in NAFLD group 
(Fig. 7B). Mouse liver TG (Fig. 7C) and TC (Fig. 7D) content 
and adipogenic genes (ACC1 FASN SCD1) expression (Fig. 
7E) were signi�cantly elevated in the NAFLD group. �e 
above results indicated that the NAFLD mouse model was 
successfully established.

We evaluated the �ve hub ERSR-DEGs. qRT-PCR results 
(Fig. 7F) showed that the mRNA levels of POR, PPP1R15A, 
and FOS were signi�cantly down-regulated and FAS was 
signi�cantly up-regulated in the HFD group compared to 
the NC group. In contrast, there were no signi�cant changes 
in other genes. In short, these results suggest that ERSGs are 
well di�erentiated for NAFLD, validating the analysis of the 
microarray data.

Discussion

As obesity, diabetes, and metabolic syndrome continue to 
rise, epidemiological projections indicate that the prevalence 
of NAFLD will continue to rise through 2030; liver-related 
disease mortality will double (Estes et al. 2018). Numerous 
NAFLD-causing factors are also strongly associated with 
hepatocellular carcinoma. It is challenging to detect NAFLD-
associated hepatocellular carcinoma through exploration of 
the pathogenesis, so relevant biomarkers, initial treatment, 
and prevention of NAFLD are imminent (Ioannou 2021). 

�e important role of ERS in NAFLD has been found in 
fatty liver mouse models and many clinical samples (Leb-
eaupin et al. 2018). �e endoplasmic reticulum is the main 
site of intracellular protein synthesis and modi�cation. When 
protein precursors are synthesized over the quality control 
capacity of the endoplasmic reticulum, an unfolded protein 
response is triggered, which in turn induces ERS, disrupting 
hepatic lipid metabolism and apoptosis of hepatocytes and 
hepatic stellate cells. �is study provides the �rst insight into 
the biological importance of ERSGs and their relationship 
to immune in�ltration in NAFLD. Furthermore, NAFLD 
subtypes were predicted using genetic markers linked to ERS.

We identi�ed 48 ERSR-DEGs using GEO and GeneCards 
databases to conduct the �rst comprehensive analysis of 
the expression pro�le of ERS regulators in liver tissue from 
normal and non-alcoholic fatty liver patients. We further 
demonstrated the level of immune cell in�ltration in NAFLD 
patients through the ssGSEA algorithm. activated CD4 
T cells, activated CD8 T cells, activated dendritic cell, CD56 
natural killer cells, eosinophil, gamma delta T cells, immature 
B cell, immature dendritic cell, MDSC, mast cell, neutrophil, 
plasmacytoid dendritic cell, T follicular helper cell, Type 1 
T helper cell, Type 17 T helper cell, Type 2 T helper cell, ef-
fector memory CD4 T cells, memory B cells, central memory 
CD4 T cells, and central memory CD4 T cells showed statis-
tical di�erence between the NAFLD group and the control 
group, as determined by the immune cell in�ltration analysis. 
�is �nding – consistent with previous studies (Wen et al. 
2021; Zhang et al. 2022) – suggests that immunity plays an 
essential role in NAFLD. Furthermore, based on 48 ERSR-
DEGs, we identi�ed two ERS-related clusters using unsu-
pervised cluster analysis. Cluster 2 exhibited relatively high 
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levels of immune in�ltration and immune scores. In KEGG 
analysis, C2 was enriched in the intestinal immune network 
for IgA production, P53 signaling pathway, proximal tubule 
bicarbonate reclamation; in GO analysis, C2 was enriched in 
the transcription factor AP-1 complex, negative regulation of 
interleukin 21 production, and positive regulation of miRNA 
metabolic process. �erefore, it is reasonable to hypothesize 
that Cluster 2 may be able to block the progression of NAFLD 
by producing a variety of immune cells, such as T cells and 
B cells, and ultimately exhibit a better prognosis for NAFLD. 
To construct reliable prediction models, we compared the 
prediction properties of three machine algorithms (RF, SVM, 
and XGB) and �nally selected the prediction model of SVM. 
�e SVM model provided the smallest residuals and had 
the highest test cohort prediction e�ciency (AUC = 0.997), 
indicating that SVM-based machine learning performs 
satisfactorily in predicting NAFLD.

We used the GSE151158 and GSE66676 datasets for vali-
dation, and the results showed that the area under the ROC 
curve was 0.712 and 0.710, respectively. �e SVM model can 
accurately predict NAFLD. �is prediction provides a new 
way of diagnosing NAFLD. �e �ve ERSGs (ERN1, POR, PP-
P1R15A, FOS, and FAS) with the most signi�cant di�erences 
in the SVM model were included in the risk study; a nomo-
gram was constructed to calculate total scores to analyze the 
probability of risk in NAFLD patients. Correlations between 
immune cell in�ltration and hub ERSR-DEGs were then 
estimated to elucidate ERSR-DEGs in the immunological 
context of NAFLD. AST and HDL are routine blood tests for 
NAFLD patients, and ballooning and �brosis are important 
indicators to assess the severity of NAFLD. �erefore, we 
correlated the �ve genes in the SVM model with them. �e 
results showed that FAS was positively correlated with AST, 
ballooning, and �brosis, while FOS was negatively correlated 
with HDL. A�er the successful induction of NAFLD in mice, 
mRNA levels of ERSGs were analyzed using qRT-PCR. �e 
results demonstrated that compared with the control group, 
the levels of POR, PPP1R15A, FOS, and FAS in the liver tis-
sue of HFD-fed mice were signi�cantly changed, supporting 
the microarray analysis.

PPP1R15A/GADD34 – a  cell cycle protein – is up-
regulated under ERS conditions and reduces endoplasmic 
reticulum stress-related apoptosis by selectively inhibiting 
the phosphorylation of the ERS protein eIF2α, an impor-
tant molecule for restoring protein synthesis during ERS 
(Walter and Ron 2011; Moreno et al. 2012). Overexpression 
of GADD34 phosphatase in the mice liver leads to dephos-
phorylation of eIF2α, which has been shown to lead to 
a weakening of the adipose-forming nuclear receptor PPARγ, 
lipogenic enzymes, and metabolic transcriptional regulators 
C/EBP-α and C/ EBP-β. �is resulted in glucose tolerance, 
increased insulin sensitivity and a reduced incidence of he-
patic steatosis in mice fed a high-fat diet compared to mice 

fed a normal diet (Oyadomari et al. 2008). Van Herck et al. 
(2017) demonstrated that GADD34-de�cient mice on a nor-
mal diet became obese and developed fatty liver, followed by 
cirrhosis, hepatocellular carcinoma, and insulin resistance. 
And liver steatosis can be exacerbated by aging and a high-
fat diet. Unlike the results of Oyadomari et al. (2008), eIF2α 
phosphorylation did not increase signi�cantly in GADD34-
de�cient mice due to HFD and aging. Obesity and steatosis 
in GADD34-de�cient mice are caused by up-regulation 
of insulin-Akt signaling. �erefore, the mechanism of the 
e�ect of GADD34 on fatty liver is still controversial, which 
deserves further investigation.

FAS/FASL pathway is one of the major apoptosis path-
ways, and FASL is a ligand for FAS. FASL expression increases 
in response to lipotoxicity and binds to FAS, causing FAS 
to trimerize and form an apoptosis-inducing complex, 
which initiates apoptotic signaling and cell death (Zhang 
et al. 2012). FAS-mediated apoptosis requires endoplasmic 
reticulum-mediated calcium release, which is dependent 
on phospholipase C-gamma1 (PLC-gamma1) activation 
and Ca2+ release from inositol 1,4,5-trisphosphate receptor 
(IP3R) channels (Wozniak et al. 2006). FAS is signi�cantly 
expressed in liver samples from NASH patients and can 
mediate hepatocyte apoptosis (Wozniak et al. 2006). Inhibi-
tion of FAS receptor signaling and inhibition of downstream 
e�ectors (including caspase3 and NF-κB) by injection of 
small interfering RNA (siRNA) into mouse tail vein re-
duces apoptosis and in�ammation progression in mouse 
hepatocytes (Savari et al. 2019). FAS not only has an e�ect 
on apoptosis and in�ammation in fatty liver cells, but also 
on fat metabolism. In normal diet mice with FAS overex-
pression, FAS impaired mitochondrial function and fatty 
acid oxidation by BH3 interaction domain death agonist, 
thereby promoting hepatic lipid accumulation and insulin 
resistance (Item et al. 2017).

Cytochrome P450 reductase (POR) is a microsomal elec-
tron transporter found in the endoplasmic reticulum. It is an 
obligate electron donor of cytochrome P450 (P450), which 
includes P450 required for drug metabolism, cholesterol, 
steroids, and bile acid synthesis (Henderson et al. 2003). POR 
de�cient mice showed increased liver triglyceride content 
and decreased non-fasting plasma triglyceride and choles-
terol levels (Weng et al. 2005). Porter et al. (2011) successfully 
replicated hepatic lipid accumulation in POR-de�cient mice 
through RNA (siRNA) to inhibit POR in a cellular model. 
Bile acid de�ciency and loss of farnesol X receptor stimula-
tion led to excessive triglyceride synthesis in hepatocytes. 

�e FOS proto-oncogene (also known as c-FOS) is an 
immediate early expression gene and a major member of the 
FOS gene family. It can be dimerized with the JUN family 
to form an activating protein 1 (AP-1) complex. c-FOS, as 
a transcription factor, is involved in cell growth, proliferation, 
di�erentiation and death (Eferl and Wagner 2003). In our 
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Figure 6. Validation of the 5-gene-based SVM model. A. Construction of a nomogram for predicting the risk of NAFLD based on the 
5-gene-based SVM model. To assess the predictive e�ciency of the nomogram model, calibration curves (B) and DCA (C) were con-
structed. ROC analysis of the 5-gene-based SVM model in GSE151158 datasets (D) and GSE66676 (E) datasets. F. Correlation between 
immune in�ltration and �ve hub ERSR-DEGs. DCA, decision curve analysis.
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study, the downregulation of c-FOS expression in NAFLD 
group was veri�ed by microarray di�erential gene analysis 
and animal experiments. �is is consistent with previous 
research �ndings (Chen et al. 2020; Jiang et al. 2021). A�er 
cluster analysis, we found that c-FOS expression was signi�-
cantly higher in group C2 than in group C1. We speculated 
that the expression of c-FOS may also be di�erent in di�erent 
NAFLD subtypes. Although the contribution of c-FOS to the 
etiology of NAFLD seems to be little or unknown, there have 
been several bioinformatics articles on fatty liver, which have 
screened c-FOS as a hub gene (Ye et al. 2020; Ma et al. 2021). 
�erefore, it is necessary to further clarify their functions in 
the future. c-FOS is involved in the onset and development 
of HCC. Hepatocyte-speci�c expression of c-FOS leads to 

hepatic in�ammation, hepatocyte proliferation, DNA dam-
age response, and precancerous transformation, but speci�c 
deletion of c-Fos reverses this phenotype. Mechanistically, 
c-FOS decreases the expression and activity of the nuclear 
receptor LXRα, leading to increased hepatic cholesterol and 
accumulation of bile acids (Bakiri et al. 2017). 

Despite the encouraging results, the present study has sev-
eral limitations. First, our data came from public databases 
and lacked raw sequencing data, leading to some bias in the 
results. Second, we could not collect clinical samples, so the 
results of the bioinformatics analysis could not be validated 
on liver tissue from NAFLD patients. Finally, more in-depth 
studies are required to understand the potential mechanisms 
of ERSGs in NAFLD.

Figure 7. Hub genes expression in HFD-fed 
mice. Hematoxylin and eosin staining (A) and 
Oil red O staining (B) (original magni�cation 
× 400). Intrahepatic TG (C) and TC (D) con-
tent of the HFD group were higher than those 
in the NC group. �e relative mRNA expres-
sion levels of hepatic lipogenesis-related genes 
(E) and ERSGs (F) in the NC group and HFD 
group were detected by qRT-PCR (n =10 mice 
per group). * p < 0.05. NC, normal control; 
TG, total triglyceride; TC, total cholesterol; 
HFD, high-fat diet. 
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Conclusions

In conclusion, our study demonstrated the association be-
tween ERSGs and immune system in�ltration in NAFLD 
patients through di�erent bioinformatics techniques and 
explained the considerable immune heterogeneity in NAFLD 
patients with di�erent ERS groups. POR, PPP1R15A, FOS, 
and FAS may predict the occurrence risk of NAFLD patients 
and play important roles in the pathogenesis of immune in-
�ltration in NAFLD. Our �ndings elucidate the involvement 
of ERSGs in the progress of NAFLD and may provide new 
insight into the disease typing and diagnosis.
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Figure S1. Flow chart.
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Figure S2. Functional enrichment analysis of the 48 ERSR-DEGs. A. Histogram of GO analysis for ERSR-DEGs, including biological 
processes, cellular components, and molecular functions. B. Bubble diagram of KEGG analysis for ERSR-DEGs. GO, Gene Ontology; 
BP, Biological process; CC, Cellular component; MF, Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table S1. Primer information in study

Gene Forward primer Reverse primer
ERN1 ATCTCAGGATGTGGAGGAGAA CAGGAAGGTGCTCAGGATAATG
POR AGATCGACAAGTCCCTGGTA CTCCTGCAGCCAATCATAGAA
PPP1R15A AGAGGACACAGAGGAAGAAGA TTCAGGAAGGCACTTGTATGG
FOS GGTGAAGACCGTGTCAGGAG AGTTGATCTGTCTCCGCTTGG
FAS TGTCAGCCTGGTGAACGAAA CTTGGTATTCTGGGTCCGGG
FASN CACAGTGCTCAAAGGACATGCC CACCAGGTGTAGTGCCTTCCTC
ACC1 GCTGCTCGGATCACTAGTGAA TTCTGCTATCAGTCTGTCCAG
SCD1 CACACCTTCCCCTTCGACTA TGACTCCCGTCTCCAGTTCT
β-actin GTCGTACCACAGGCATTGTGATGG GCAATGCCTGGGTACATGGTGG




