Journal info
|
||||
Select Journal
Journals
Bratislava Medical Journal 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Ekologia - Ecology Endocrine Regulations General Physiology and Biophysics Neoplasma Acta Virologica Studia Psychologica Cardiology Letters Psychológia a patopsych. dieťaťa Kovove Materialy-Metallic Materials Slovenská hudba 2025Webshop Cart
Your Cart is currently empty.
Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.
Bratislava Medical Journal Vol.119, No.9, p.588–592, 2018 |
||
Title: The effect of exposure to 1800 MHz radiofrequency radiation on epidermal growth factor, caspase-3, Hsp27 and p38MAPK gene expressions in the rat eye | ||
Author: E. D. Eker, B. Arslan, M. Yildirim, A. Akar, N. Aras | ||
Abstract: OBJECTIVE: Radiofrequency electromagnetic fields (RF-EMF) may induce DNA damage and oxidative stress in human lens epithelial cells (LECs). We aimed to investigate the expression levels of heat shock protein 27 (Hsp27), p38 mitogen-activated protein kinase (p38MAPK), epidermal growth factor receptor (EGFR) and caspase-3 gene expression levels in rat eye that was exposed to 1800 MHz RF-EMF. METHODS: Thirty-seven female Wistar albino rats were divided into three groups. The rats in the study group (n = 9) were exposed to 1800 MHz RF-EMF at an electric field 6.8 ± 0.1 V/m and 0.06 W/kg specific absorption rate (SAR) for 2 hours per day for eight weeks. Sham group (n = 9) was kept under similar conditions as the exposed group without exposure to RF-EMF. The rats in all three groups were sacrificed and their eyes were removed. Hsp27, p38MAPK, EGFR, caspase-3 gene expression levels were investigated in detail with real-time polymerase chain reactions (Real-Time PCR). RESULTS: caspase-3 and p38MAPK gene expression were significantly upregulated in the ocular tissues following exposure to RF-EMF (p < 0.05). CONCLUSION: According to our findings, eye cells recognize EMF as a stress factor, and in response, activate caspase-3 and p38MAPK gene expressions. These results confirm that RF-EMF can cause cellular damage in rat ocular cells (Tab. 2, Fig. 3, Ref. 37). |
||
Keywords: radiofrequency radiation, rat eye, gene expression, caspase-3, p38MAPK | ||
Published online: 13-Sep-2018 | ||
Year: 2018, Volume: 119, Issue: 9 | Page From: 588, Page To: 592 | |
doi:10.4149/BLL_2018_106 |
||
|
![]() |
|